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A duality for isotropic median algebras

Miroslav Ploščica

Abstract. We establish categorical dualities between varieties of isotropic median algebras
and suitable categories of operational and relational topological structures. We follow
a general duality theory of B.A. Davey and H. Werner. The duality results are used to
describe free isotropic median algebras. If the number of free generators is less than five,
the description is detailed.

Keywords: median algebra,duality

Classification: 08B20, 06C05, 06E15, 18A40

1. Preliminaries.

In [2] B.A. Davey and H. Werner developed a general scheme for constructing
dualities for certain classes of algebras. Let us recall their setting.

We assume we have an algebra P and a topological structure P̃ (i.e. a set en-
dowed with a topology, relations and operations) on the same underlying set P

such that all operations of P are continuous with respect to the topology of P̃ and

moreover all relations and operations of the structure P̃ are algebraic over P ; i.e.
they are subalgebras of appropriate powers of P . (In fact, Davey and Werner con-
sider also partial operations, but we will not need them.) Let A := ISP (P ) be

the prevariety generated by P and let X := IScP (P̃ ) be the class of all structures

embeddable as a closed substructure into a power of P̃ . Then for each A ∈ A the
set D(A) of all homomorphisms A −→ P is a natural member of X , a substructure

of P̃A. Similarly, for each X̃ ∈ X the set E(X̃) of all X -morphisms (i.e. continuous

structure-preserving maps) X̃ −→ P̃ forms a subalgebra of P
X
and thus belongs

to A. We have thereby defined two contravariant (hom-)functors

D : A −→ X , E : X −→ A,

which are adjoint to each other. Moreover, for each A ∈ A, the evaluation map
e
A
: A −→ ED(A) defined by

e
A
(a) (f) = f(a) for every a ∈ A, f ∈ D(A)

is an embedding. Similarly, for each X̃ ∈ X , the evaluation map ε eX : X̃ −→

DE(X̃) is also an embedding. We call the pair (D,E) a duality if e
A
is an isomor-

phism for each A ∈ A. We speak about a full duality if in addition each ε eX is an
∗Research supported by GA SAV Grant 362/91.
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isomorphism. In this case D and E are equivalent to categorical antiisomorphisms
between the categories A and X which are inverse to each other.
We are interested in a special case when the set P is finite, the topology of P̃ is

discrete and the algebra P has a near-unanimity term, i.e. (k+1)-ary term p such
that P satisfies the equations

p(x, y, . . . , y) = p(y, x, y, . . . , y) = · · · = p(y, . . . , y, x) = y.

Let k be a positive integer, R a subalgebra of P
k
. Let I be an arbitrary set and

X ⊆ P I . We say that a function f : X −→ P preserves R if [f(u1), . . . , f(uk)] ∈ R
holds whenever u1, . . . , uk ∈ X , uj = (xij)i∈I , are such that [xi1, . . . , xik] ∈ R for

every i ∈ I. We say that the structure on P̃ generates R if, for every X̃ ∈ X , each
X -morphism ϕ : X̃ −→ P̃ preserves R.

We say that an object Z̃ ∈ X is injective in X if for any X -embedding α : X̃ −→
Ỹ and any X -morphism ϕ : X̃ −→ Z̃ there exists an X -morphism ψ : Ỹ −→ Z̃
with ϕ = ψα.

1.1. Theorem ([2, Theorem 1.19]). Let P be a finite algebra having a (k+1)-ary

near unanimity term function. If the structure on P̃ generates all subalgebras of P
k
,

then (D,E) is a duality between A and X . Moreover, P̃ is injective in X .

1.2. Theorem ([2, Theorem 1.20]). Assume that the operations in the type of P̃
are at most unary and that (D,E) is a duality between A and X . Then (D,E) is
a full duality provided the following condition holds:

(E) if X̃ is a proper substructure of some finite Ỹ ∈ X , then there exist two

different X -morphisms ϕ, ψ : Ỹ −→ P̃ such that ϕ ↾ X̃ = ψ ↾ X̃.

We want to apply these theorems to the varieties of isotropic median algebras.
Basic facts about median algebras and isotropic median algebras can be found in [5]
and [3]. The similarity type of these algebras consists of a single ternary operation
m called the median. The variety T of all isotropic median algebras is generated by
the algebra Tω with a countable infinite underlying set and the median operation
defined by the rule

m(x, y, z) =

{
x if y 6= z,

y if y = z.

A function satisfying the above rule is known in the literature under the name of
dual discriminator (see [4]). It is not hard to prove (see [5]) that the subvarieties
of T form a chain

T1 ⊆ T2 ⊆ T3 ⊆ . . . T ,

where Tn is the variety generated by the algebra Tn with an n-element underlying
set and the dual discriminator as the median operation. In fact, Tn = ISP (Tn),
since the only subdirectly irreducible algebras in Tn are Tk’s with k ≤ n (see [5]).
The algebras in T2 are called symmetric median algebras and are closely connected
with distributive lattices (see [1]).
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2. Dualities and full dualities.

In this section we construct for any n ≥ 2 a full duality between Tn and an
appropriate category of topological structures. Let us remark that a full duality for
T2 has already been established by H. Werner (see [6, appendix]), but our duality
will be slightly different.
Let us denote Tn = {1, 2, . . . , n}, Tn = 〈Tn,m〉, wherem is the dual discriminator

defined on Tn. To find a dual category to Tn = ISP (Tn) we have to construct

a suitable topological structure T̃n. We set T̃n = 〈Tn;Sn,1,H ,Z, τ 〉, where
Sn is the set of all permutations on Tn (viewed as unary operations);
1 is the nullary operation (constant) equal to 1 ∈ Tn;
H is the binary relation on Tn defined by

[x, y] ∈ H iff x = 1 or y = 1;

Z = {2, 3, . . . , n} is a unary relation (subspace) on Tn;
τ is the discrete topology on Tn.
We use the boldface letters for 1, H , τ (also for elements of Sn) to indicate that
they also play the role of operational and relational symbols. These operations and
relations extend pointwise to an arbitrary power (Tn)

I (the topology on (Tn)
I is

the usual product topology) and we can restrict them to an arbitrary closed subset

of (Tn)
I that is closed under all operations from Sn and contains 1. Hence, every

X̃ ∈ Xn := IScP (T̃n) is a set X endowed with a set Sn of n! unary operations,
one nullary operation 1, one binary relationH , one unary relation Z and (compact
Hausdorff) topology τ .
It is easy to see that any π ∈ Sn is a subalgebra of (Tn)

2, 1 and Z are subalgebras
of Tn and H is a subalgebra of (Tn)

2. Thus, we have the adjoint pair (D,E) of
functors

D : Tn −→ Xn, E : Xn −→ Tn,

defined as in the first section (with Tn and T̃n playing the roles of P and P̃ , re-
spectively). The median operation m of Tn is clearly a 3-ary near unanimity term.
Theorem 1.1 suggests that we examine the subalgebras of (Tn)

2. Actually, this has
been done by H. Werner [6]. (He used the term p-rectangular sets.)

2.1. Lemma ([6, p.798]). Let S be a subalgebra of Tn ×Tn and let us denote Q =
{x ∈ Tn | [x, y] ∈ S for some y ∈ Tn}, R = {y ∈ Tn | [x, y] ∈ S for some x ∈ Tn}.
Then one of the following cases occurs:

(1) S = Q×R;
(2) S is a bijection between Q and R;
(3) S = ({x} ×R) ∪ (Q× {y}) for some x ∈ Q, y ∈ R.

For i, j ∈ Tn and π ∈ Sn we denote

Ki = (Tn \ {i})× Tn;
Ki = Tn × (Tn \ {i});
Lij = ({i} × Tn) ∪ (Tn × {j});
Mπ = π.
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It is easy to see that, for every i, j and π, the sets Ki, Ki, Lij and Mπ are

subalgebras of (Tn)
2. The following assertion is now a consequence of 2.1.

2.2. Corollary. Every subalgebra of (Tn)
2 is an intersection of algebras of the

types Ki, Ki, Lij and Mπ.

Now we can prove the duality result.

2.3. Theorem. (D,E) is a duality between Tn and Xn.

Proof: Since the median operation on Tn is a 3-ary near unanimity term, we have

to show that the structure on T̃n generates all subalgebras of Tn ×Tn. Let X̃ ∈ Xn

be a substructure of (T̃n)
I and let ϕ : X̃ −→ T̃n be an Xn-morphism. We claim

that ϕ preserves all subalgebras of the types Ki, Ki, Lij and Mπ.

To see that ϕ preserves Ki, let x, y ∈ X̃, x = (xk)k∈I , y = (yk)k∈I be such that

[xk, yk] ∈ Ki for each k ∈ I. Hence, xk 6= i for each k ∈ I. Choose π ∈ Sn such that
π(i) = 1. Then π(x) ∈ Z. Since ϕ is an Xn-morphism, we obtain ϕ(π(x)) ∈ Z,
hence π(ϕ(x)) = ϕ(π(x)) ∈ Z and π(ϕ(x)) 6= 1. This implies that ϕ(x) 6= i and

therefore [ϕ(x), ϕ(y)] ∈ Ki. The proof for Ki is similar.

To see that ϕ preserves Lij , let x, y ∈ X̃, x = (xk)k∈I , y = (yk)k∈I be such that
[xk, yk] ∈ Lij for each k ∈ I. Choose π,ρ ∈ Sn such that π(i) = 1 and ρ(j) = 1.
Then [π(x),ρ(y)] ∈ H , hence [ϕ(π(x)), ϕ(ρ(y))] = [π(ϕ(x)),ρ(ϕ(y))] ∈ H . This
means that π(ϕ(x)) = 1 or ρ(ϕ(y)) = 1, hence ϕ(x) = i or ϕ(y) = j. We obtain
[ϕ(x), ϕ(y)] ∈ Lij .
Finally, ϕ preserves any Mπ, since π is in the type of Xn as a basic operation.
It is easy to see that the property of being preserved by ϕ is closed under inter-

sections. According to 2.2, ϕ preserves all subalgebras of (Tn)
2. By 1.1, (D,E) is

a duality between Tn and Xn. �

2.4. Lemma. Let X̃ be a substructure of (T̃n)
I , x ∈ (T̃n)

I \ X̃. Let a, b ∈ X̃ and
ρ1,ρ2 ∈ Sn be such that [a,ρ1(x)] ∈ H , [b,ρ2(x)] ∈ H . Denote J = {i ∈ I | ai =

1}, K = {i ∈ I | bi = 1}. If J ∩K = ∅ then J ∪K = I and ρ−1
1 (1) 6= ρ−1

2 (1).

Proof: Suppose that J ∩K = ∅. For j ∈ I \J and k ∈ I \K we have ρ1(xj) = 1 =

ρ2(xk), hence xj = ρ−1
1 (1), xk = ρ−1

2 (1). If ρ
−1
1 (1) = ρ−1

2 (1), then xj = ρ−1
1 (1) for

every j ∈ I, hence x = ρ−1
1 (1). Since X̃ is a substructure of (T̃n)

I , we have 1 ∈ X̃

and ρ−1
1 (1) ∈ X̃, a contradiction. We obtain that ρ−1

1 (1) 6= ρ−1
2 (1). This implies

that J ∪K = I because for i ∈ I \ (J ∪K) we would have ρ−1
1 (1) = xi = ρ−1

2 (1).
�

2.5. Lemma. Let X̃ be a finite substructure of (T̃n)
I , x ∈ (T̃n)

I \ X̃ . Then there

is an Xn-morphism ϕ : X̃ −→ T̃n such that [a,ρ(x)] /∈ H whenever ρ ∈ Sn, a ∈ X̃,
ϕ(a) 6= 1.

Proof: Denote A = {a ∈ X̃ | [π(a),ρ(x)] ∈ H for some π,ρ ∈ Sn}. The set A is
closed under all π ∈ Sn and contains 1 = (1)i∈I . Hence, A is an underlying set of

the substructure Ã of X̃. Let us define a mapping ϕ0 : Ã −→ T̃n by the rule

ϕ0(a) = π−1(1), where π ∈ Sn is such that [π(a),ρ(x)] ∈ H for some ρ ∈ Sn.
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First we prove the correctness of the definition. Let π1,π2,ρ1,ρ2 ∈ Sn be such
that [π1(a),ρ1(x)] ∈ H , [π2(a),ρ2(x)] ∈ H . Let us denote J = {i ∈ I |π1(ai) =

1}, K = {i ∈ I |π2(ai) = 1}. We have to show that π−1
1 (1) = π−1

2 (1). This is clear

if J∩K 6= ∅, because for i ∈ J∩K we have π−1
1 (1) = ai = π−1

2 (1). Assume now that

J∩K = ∅. Then, by 2.4, J∪K = I and ρ−1
1 (1) 6= ρ−1

2 (1). For any j ∈ J = I \K we
have π2(aj) 6= 1 and, since [π2(a),ρ2(x)] ∈ H , ρ2(xj) = 1. Similarly, ρ1(xk) = 1

holds for any k ∈ K. If π−1
1 (1) 6= π−1

2 (1), then x = σ(a), where σ is an arbitrary

permutation from Sn with σ(π−1
1 (1)) = ρ−1

2 (1), σ(π−1
2 (1)) = ρ−1

1 (1). This is

impossible, because x /∈ A and A is closed under all σ ∈ Sn, hence π−1
1 (1) =

π−1
2 (1).
Now we show that ϕ0 is a Xn-morphism. It is easy to se that ϕ0 preserves 1 and

all π ∈ Sn. Let a ∈ A, a ∈ Z. Then [π(a),ρ(x)] ∈ H for some π,ρ ∈ Sn. Since
ρ(x) 6= 1 (otherwise x = ρ−1(1) ∈ A), there must be i ∈ I with π(ai) = 1. Since
a ∈ Z, we have ai 6= 1, hence ϕ0(a) = π−1(1) 6= 1, which means that ϕ0(a) ∈ Z.
To show that ϕ0 preserves H , let a, b ∈ A, [a, b] ∈ H . Then [π1(a),ρ1(x)] ∈ H ,

[π2(b),ρ2(x)] ∈ H for some π1,π2,ρ1,ρ2 ∈ Sn. Denote J = {i ∈ I |π1(ai) =
1}, K = {i ∈ I |π2(bi) = 1}. If there exists i ∈ J ∩ K, then 1 ∈ {ai, bi} =

{π−1
1 (1),π

−1
2 (1)} = {ϕ0(a), ϕ0(b)}, hence [ϕ0(a), ϕ0(b)] ∈ H . Assume now that

J ∩ K = ∅. Then, by 2.4, J ∪ K = I and ρ−1
1 (1) 6= ρ−1

2 (1). For any j ∈ J ,
k ∈ K we have ρ1(xk) = ρ2(xj) = 1. We claim that there are i, k ∈ K with
π1(ai) 6= π1(ak). Indeed, if π1(ak) = q ∈ {2, 3, . . . , n} holds for every k ∈ K, then

x = σ(a), where σ ∈ Sn is such that σ(π
−1
1 (q)) = ρ−1

1 (1) and σ(π−1
1 (1)) = ρ−1

2 (1).
This is impossible because x /∈ A and σ(a) ∈ A. Thus, we have i, k ∈ K with
π1(ai) 6= π1(ak), or equivalently, ai 6= ak. Without loss of generality, ai 6= 1.
From [a, b] ∈ H we obtain that bi = 1. Since i ∈ K, we have π2(bi) = 1, hence

ϕ0(b) = π−1
2 (1) = 1. This implies that [ϕ0(a), ϕ0(b)] ∈ H .

Since the structure Ã is finite, its topology is discrete and the mapping ϕ0 is
continuous. Thus, we have shown that ϕ0 is an Xn-morphism. According to 1.1,

T̃n is injective in Xn and therefore ϕ0 extends to an Xn-morphism ϕ : X̃ −→ T̃n.
It remains to show that ϕ has the required property. Let ρ ∈ Sn, a ∈ X and

[a,ρ(x)] ∈ H . Then clearly a ∈ A and ϕ(a) = ϕ0(a) = ι−1(1) = 1, where ι denotes
the identical permutation. �

2.6. Theorem. (D,E) is a full duality between Tn and Xn.

Proof: According to 2.1, we have to prove that the condition (E) is fulfilled. Let

X̃ be a proper substructure of some finite Ỹ ∈ Xn. Let x = (xi)i∈I ∈ Ỹ \ X̃ and let

ϕ : X̃ −→ T̃n be the Xn-morphism constructed in 2.5. The setW = X∪{π(x) |π ∈

Sn} is the underlying set of the substructure W̃ of Ỹ . Since 1 /∈ {π(x) |π ∈ Sn},
there are i, j ∈ I with xi 6= xj . We define the mappings ϕ1, ϕ2 : W −→ Tn by

ϕ1(a) = ϕ2(a) = ϕ(a) for a ∈ X̃;
ϕ1(π(x)) = π(xi), ϕ2(π(x)) = π(xj) for π ∈ Sn.

It is easy to see that both ϕ1 and ϕ2 are Xn- morphisms W̃ −→ T̃n. Because of the

injectivity of T̃n, they extend to Xn-morphisms ψ1 and ψ2 : Ỹ −→ T̃n, respectively.
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We obtain that ψ1 ↾ X̃ = ψ2 ↾ X̃ = ϕ and ψ1(x) 6= ψ2(x). �

Thus, we have constructed a full duality for each of the varieties Tn (n = 2, 3, . . . ).
Let us remark that a full duality for the variety T2 (symmetric median algebras)
was established in [6], but our duality (for n = 2) is different. This is caused by

a different choice of a relational structure on T̃2. Instead of the binary relation H ,
Werner considers the partial ordering relation≤= {[1, 1], [1, 2], [2, 2]}. Of course, our
and Werner’s dual categories are concretely isomorphic to each other. Similarly, for

n > 2 the relation H on T̃n can be replaced by any of the relations Hij = {[x, y] ∈

T̃n |x = i or y = j} (i, j ∈ Tn), but none of them is a partial ordering.

3. Free isotropic median algebras.

A duality theory is a powerful tool for investigation of free algebras. In fact, this
is often the reason why dualities for certain varieties are constructed (see [7], for
example).
It is well-known that the free algebra in the variety generated by an algebra P

with a set S of free generators is isomorphic to the algebra of all term functions

P
S
−→ P (with the projections as free generators and the operations defined point-

wise.). Let D and E be the functors defined in Section 1. Since the structure of P̃ is

algebraic over P , any term function P
S
−→ P must be an X -morphism P̃S −→ P̃ .

Conversely, if (D,E) is a duality, then 1.8 of [2] says that any X -morphism P̃S −→ P̃

is a term function P
S
−→ P . (Although 1.8 of [2] asserts this only for finite S, the

proof contains the easy claim that any continuous function P̃S −→ P̃ depends only
on a finite number of variables.) Hence, we have the following result.

3.1. Corollary. For any set I and any integer n > 1, the Tn- free algebra over

the set I of free generators, denoted by F (Tn, I), is isomorphic to the algebra of all

Xn-morphisms T̃n
I
−→ T̃n.

As for the variety T , if the set I is finite, |I| = n, then F (T , I) is isomorphic to
F (Tn, I). The reason for this is that all subalgebras of Tω generated by at most n
elements belong to Tn. Similarly, if k ≥ n = |I|, then F (Tn, I) ∼= F (Tk, I).

If the set I is finite, then any mapping T̃n
I
−→ T̃n is continuous and we can

rewrite 3.1 as follows.

3.2. Theorem. Let k and n be integers, k ≥ 2, n ≥ 1. Then the algebra F (Tk, n)
is isomorphic to the algebra of all functions f : {1, . . . , k}n −→ {1, . . . , k} satisfying
the following conditions:

(i) f(π(x1), . . . ,π(xn)) = π(f(x1, . . . , xn)) for every π ∈ Sk and x1, . . . , xn ∈
{1, . . . , k};

(ii) f(x1, . . . , xn) ∈ {x1, . . . , xn} for every x1, . . . , xn ∈ {1, . . . , k};
(iii) 1 ∈ {f(x1, . . . , xn), f(y1, . . . , yn)} for every x1, . . . , xn, y1, . . . , yn ∈ {1, . . . , k}

such that 1 ∈ {x1, y1} ∩ · · · ∩ {xn, yn}.

The condition (iii) can be replaced by a stronger condition in which the element
1 ∈ Tn does not play a special role:
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3.3. Lemma. Let k ≥ 2, n ≥ 1 and let f : {1, . . . , k}n −→ {1, . . . , k} satisfy
(i)-(iii). Then it also satisfies

(iv) if x1, . . . , xn, y1, . . . , yn, i, j ∈ {1, . . . , k} satisfy {q | xq = i or yq = j} =
{1, . . . , k}, then f(x1, . . . , xn) = i or f(y1, . . . , yn) = j.

Proof: Let x1, . . . , xn, y1, . . . , yn, i, j satisfy the assumption of (iv). Choose π,ρ ∈
Sn such that π(i) = ρ(j) = 1. Then 1 ∈ {π(x1),ρ(y1)} ∩ · · · ∩ {π(xn),ρ(yn)} and,
by (iii), f(π(x1), . . . ,π(xn)) = 1 or f(ρ(y1), . . . ,ρ(yn)) = 1. In the first case we
have (by (i) ) π(f(x1, . . . , xn)) = 1, hence f(x1, . . . , xn) = i. The second case leads
to f(y1, . . . , yn) = j. �

It is easy to see that, for any n ≥ 2, F (Tn, 1) is a one-element algebra and F (Tn, 2)
is isomorphic to T2. The algebra F (T2, 3) has four elements and is isomorphic to the
subalgebra of (T2)

3 consisting of the elements [1, 1, 2], [1, 2, 1], [2, 1, 1] and [1, 1, 1]
(see [1], where also the 12-element algebra F (T2, 4) is described). The algebra
F (Tn, 3) for n ≥ 3 is isomorphic to the subalgebra {[1, 1, 2, 1], [1, 2, 1, 2], [2, 1, 1, 3],
[1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 1, 3]} of (T2)

3×T3 (see [5]; this 6-element algebra is in fact
free in a much larger class of the so called taut median algebras). Both F (T2, 3) and
F (T3, 3) can be easily visualized. In the fig. 1 and the fig. 2, they are represented
as subsets of the lattices L1 and L2 respectively, with the median operation defined
by the rule

m(x, y, z) = (x ∨ (y ∧ z)) ∧ (y ∨ z).

fig.1 fig.2
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In this section we give a detailed description of F (Tn, 4) for n ≥ 3. Denote
by F the set of all functions (T4)

4 −→ T4 satisfying (i)-(iii) of 3.2 (with n=k=4).
According to the condition (i), every f ∈ F is determined uniquely by its values in
the following 15 elements of its domain:

a1 = [1, 1, 1, 1], a6 = [1, 1, 2, 2], a11 = [1, 2, 3, 2],

a2 = [1, 1, 1, 2], a7 = [1, 1, 2, 3], a12 = [1, 2, 2, 1],

a3 = [1, 1, 2, 1], a8 = [1, 2, 3, 3], a13 = [1, 2, 3, 1],

a4 = [1, 2, 1, 1], a9 = [1, 2, 1, 2], a14 = [1, 2, 2, 3],

a5 = [2, 1, 1, 1], a10 = [1, 2, 1, 3], a15 = [1, 2, 3, 4].

3.4. Lemma. Let f ∈ F be such that f(ai) 6= 1 for some i ∈ {1, 2, 3, 4, 5}. Then
f is one of the four projections.

Proof: The case f(a1) 6= 1 is impossible because of (ii). If [x, y, z, t] is an arbitrary
element of (T4)

4, then, by 3.3, f(a2) = 1 or f(x, y, z, t) = t. Thus, if f(a2) 6= 1,
then f must be a projection on the fourth coordinate. The remaining cases are
similar. �

Let us denote A = {f ↾ {a6, a7, a8} | f ∈ F}, B = {f ↾ {a9, a10, a11} | f ∈ F},
C = {f ↾ {a12, a13, a14} | f ∈ F}. Thus, A contains the restrictions of all f ∈ F
to {a6, a7, a8}. It is clear that A, B and C are isotropic median algebras with
respect to the median operation defined pointwise (they are homomorhic images of
F (T4, 4)). Obviously,these algebras are isomorphic to each other. Now we give their
description.
The Lemma 3.4 and (ii) imply the following facts:

(1) if f ∈ F , then f(a6) ∈ {1, 2}, f(a7) ∈ {1, 2, 3}, f(a8) ∈ {1, 2, 3}:
(2) if f ∈ F and f(a6) = 1, then f(a7) = 1;
(3) if f ∈ F and f(a6) = 2, then f(a8) = 3.

It is easy to see that there are 6 functions {a6, a7, a8} −→ T4 satisfying (1), (2)
and (3); namely the restrictions of the four projections and the functions g and
h defined by g(a6) = g(a7) = h(a7) = 1, h(a6) = 2, g(a8) = h(a8) = 3. The
function g is the restriction of g ∈ F defined by g(x, y, z, t) = m(z, x, y). Similarly,

h = h ↾ {a6, a7, a8} for h ∈ F given by h(x, y, z, t) = m(x, z, t). Thus, we have
proved that A is the 6-element subalgebra of (T4)

3 (in fact, of (T3)
3) consisting of

the elements [1, 1, 1], [1, 1, 2], [2, 2, 3], [2, 3, 3], [1, 1, 3] and [2, 1, 3]. It can be easily
visualized. Let L be the lattice depicted in the fig. 3. The six middle layer elements
with the operation m given by m(x, y, z) = (x ∧ (y ∨ z)) ∨ (y ∧ z) form an algebra
isomorphic to A.
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fig. 3

3.5. Lemma. Let g1 ∈ A, g2 ∈ B, g3 ∈ C, k ∈ {1, 2, 3, 4}. Then there is a function
f ∈ F satisfying f ↾ {a6, a7, a8} = g1, f ↾ {a9, a10, a11} = g2, f ↾ {a12, a13, a14} =
g3, f(a15) = k and f(a1) = f(a2) = f(a3) = f(a4) = f(a5) = 1.

Proof: Let f0 : {a1, . . . , a15} −→ T4 be the unique function satisfying the condi-
tions of our assertion. (Except that it does not belong to F , of course.) We define
the function f by the rule

f(x, y, z, t) = π−1(f0(π(x),π(y),π(z),π(t))),

where π ∈ S4 is such that [π(x),π(y),π(z),π(t)] ∈ {a1, . . . , a15}. This definition
is correct. Indeed, π1(x, y, z, t) = ai and π2(x, y, z, t) = aj is only possible if
ai = aj , π1(x) = π2(x), π1(y) = π2(y), π1(z) = π2(z) and π1(t) = π2(t). Since

f0 satisfies (ii), we have f0(ai) ∈ {π1(x),π1(y),π1(z),π1(t)}, hence π−1
1 (f0(ai)) =

π−1
2 (f0(ai)).

It is clear that f ↾ {a1, . . . , a15} = f0, because one can take the identity per-
mutation for π. It remains to show that f ∈ F . The validity of (i) and (ii) is
clear. To show (iii), let ui = [xi, yi, zi, ti] ∈ (T4)

4 (for i = 1, 2) be such that
1 ∈ {x1, x2}∩{y1, y2}∩{z1, z2}∩{t1, t2}. If the element 1 occurs at least three times
in the quadruple u1 then π(u1) ∈ {a1, . . . , a5} for some π ∈ S4 with π(1) = 1, hence
f(u1) = 1. Similarly if 1 occurs at least three times in u2, then f(u2) = 1. The re-
maining case is that the element 1 occurs exactly twice in u1 and exactly twice in u2.
Without loss of generality, x1 = y1 = z2 = t2 = 1 and z1, t1, x2, y2 6= 1. If π ∈ S4 is
such that π(ui) ∈ {a1, . . . , a15}, then π(ui) ∈ {a6, a7, a8}. The function g1 is a re-
striction of some g ∈ F and we have f(ui) = π−1(f0(π(ui))) = π−1(g(π(ui))) =
π−1(π(g(ui))) = g(ui). Since g fulfils (iii), we obtain that 1 ∈ {f(u1), f(u2)}. �

3.6. Theorem. Let p1, p2, p3, p4 denote the four projections (T4)
4 −→ T4. Then

F \ {p1, p2, p3, p4} is a subalgebra of F (T4, 4) isomorphic to A×B × C × T4.
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Proof: By 3.4 one can see easily that F0 = F \{p1, p2, p3, p4} is indeed a subalgebra
of F (T4, 4). We define a map h : F0 −→ A×B × C × T4 by the rule

h(f) = [f ↾ {a6, a7, a8}, f ↾ {a9, a10, a11}, f ↾ {a12, a13, a14}, f(a15)].

Since the median operation in F (T4, 4) is defined pointwise, the map h is a homo-
morphism. Since any f ∈ F is determined by its values on the set {a1, . . . , a15},
the map h is one-to-one. Finally, 3.5 says that it is also surjective. �

3.7. Corollary. F (T4, 4) has 868 elements.

The Theorem 3.6 yields an explicit description of F (T4, 4). Namely, F (T4, 4) is
isomorphic to {p1, p2, p3, p4} ∪A×B × C × T4 with the median operation defined
by

m(x, y, z) =





x if x = z or x = y,

y if y = z,

m(q(x), q(y), q(z)) computed in A×B × C × T4 if x 6= y 6= z 6= x,

where q(x) = x for x ∈ A × B × C × T4 and q(pi) = [pi ↾ {a6, a7, a8}, pi ↾

{a9, a10, a11}, pi ↾ {a12, a13, a14}, pi(a15)].
By a similar way one can prove that F (T3, 4) \ {p1, p2, p3, p4} is isomorphic to

A×B×C and hence that F (T3, 4) has 220 elements. The only difference is that the
element a15 is not in (T3)

4 and should be omitted in considerations, which makes the
proofs a little bit simpler. If we investigate F (T2, 4), we have to omit the elements
a7, a8, a10, a11, a13, a14 and a15. In this case one finds that F (T2, 4)\{p1, p2, p3, p4}
is isomorphic to (T2)

3.
Free isotropic median algebras with more than four free generators have a much

more complicated structure. However, combinatorial considerations and 3.2 allow
to compute their cardinalities. One can show that |F (T2, 5)| = 81, |F (T3, 5)| =
36207977, |F (T4, 5)| = 19583346143237 and |F (Tn, 5)| = 97916730716165 for n > 4.
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