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Totally convex algebras

DiETER PUMPLUN, HELMUT ROHRL

Abstract. By definition a totally convex algebra A is a totally convex space |A| equipped
with an associative multiplication, i.e. a morphism p : |[A| ® |A] — |A| of totally convex
spaces. In this paper we introduce, for such algebras, the notions of ideal, tensor product,
unitization, inverses, weak inverses, quasi-inverses, weak quasi-inverses and the spectrum
of an element and investigate them in detail. This leads to a considerable generalization
of the corresponding notions and results in the theory of Banach spaces.

Keywords: totally convex algebra, Eilenberg-Moore algebra, Banach algebra, ideal, (weak)
inverse, spectrum

Classification: 46H05, 46H10, 46H20, 46K05, 46M99

0. Banach algebras and totally convex algebras.

In [6] totally convex spaces over K, K = R or C, emerged as the Eilenberg-Moore
algebras of the unit ball functor O : Ban; — Set, where Banj is the category of
Banach spaces over K and linear contractions. The step from totally convex spaces
to totally convex algebras in (0.2) is quite natural; it corresponds completely to the
step from abelian groups to rings. Moreover, totally convex algebras appear as the
Eilenberg-Moore algebras of the unit ball functor from the category Bani-Alg of
Banach algebras over K and contractive homomorphisms to Set. We will prove this
in this section, because this result is important for the investigation of totally convex
algebras. Moreover, this result means that the theory of totally convex algebras is
the algebraic theory “generated” by the theory of Banach algebras. The unit ball
functor from Bani-Alg to Set, assigning to each Banach algebra its closed unit
ball, will be denoted by O% : Ban;-Alg — Set.

(0.1) Proposition. O%: Ban;-Alg — Set is pre-monadic but not monadic.

PrOOF: First, we will show the existence of a left adjoint 1{ : Set — Bani-Alg.
If Semi-Grp is the category of semigroups, the unit ball O%(A4) := {a | a € A,
la]] < 1} of a Banach algebra carries a canonical semigroup structure and hence
induces a canonical functor O° : Ban;-Alg — Semi-Grp. Let V° : Semi-
Grp — Set denote the usual forgetful functor, s.th. O% = V® o O° holds. For
a semigroup S define 1j(S) :=1;1(V?®(S)), where, for a set X, 1;(X) is the usual
l1-space generated by X. 13(S) carries a canonical algebra structure, which makes
it a Banach algebra. The multiplication is defined by putting

(55 * 55/ = 558/7
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where 5,5 € S, are the Dirac symbols, which form a basis of 1;(V*(S)). Using
the well known fact that 1; : Set — Ban; is left adjoint to O : Ban; — Set
with unit nx : X — O(11(X)), nx(z) = 0z, * € X , it is elementary to verify
that 17 is left adjoint to O® . For S € Semi-Grp the unit is given by ng : S —
0%(15(9)),ng(s) = ds, s € S.

If F¥ : Set — Semi-Grp is left adjoint to V¥ with unit /x : X — V3o F¥(X),
1 := 1§ o F* is left adjoint to O% with the unit n§ : X — O% 1{(X), 0% =
A% (n%s(X))ﬁX- To show the premonadicity of O% we use (10.1) in [15] and prove that
the counit € : 1{ 0 O — Banj-Alg is a coequalizer. Using (1.1) in [6], one sees
that €% : 1§(0%(4)) — A, A € Bany-Alg, is given by €% (d(4, ... a,,)) = @102 - .. an,
for a basis element (4, 4,) € 1{(F*(O(A))), a; € 0%(A), 1< i < n. The Ban;-
morphism

A l%(oa(A))/keraj — A

in [6, (1.1)], is an isomorphism in Banj;. But it is also a multiplicative homo-
morphism, because €9 has this property. Hence, €% is a coequalizer and O is
pre-monadic. That O® is not monadic will be established presently by using the
Linton space as in [6]. From now on, we will often write simply O(A) instead of
O%(A), whenever the context is clear. O

As we know the Eilenberg-Moore algebras of O : Ban; — Set, namely the
totally convex spaces (cp. [6]), and as Banj-Alg lies over Banj with the usual
forgetful functor denoted by |J| : Bani-Alg— Bany, it is reasonable to expect to
get the Eilenberg-Moore algebras of Bani-Alg out of the totally convex spaces by
adding a (compatible) multiplication. The Eilenberg-Moore algebras of the category
of C*-algebras and the category of Jordan-Banach algebras, which are monadic over
Set with respect to appropriate modifications of the unit ball functor, were recently
investigated in [4] by J.W. Pelletier and J. Rosicky.

(0.2) Definition. A totally convex algebra is a totally convex space A together
with a morphism p: A® A — A in TC (cp. [6, (5.3)]), s. th.

@ p(y @ 2)) = p(p(r @y) @ 2)

holds for all z,y,z2 € A. If plzx ® y) = ply ® z) for all z,y € A, A is called
commutative. p is called the multiplication in A and will be denoted by

zy = p(z ®y)

throughout. A is called a unital totally convex algebra, if there is a (necessarily)
unique e € A, s.th. for any z € A ex = xe = x holds. e is called the unit element
of A.

Natural examples for totally convex algebras are given by the endomorphism sets
End(C) := Hom(C,C) for C € TC (cp. [6, §5]). End(C) is even unital, i.e. it has
a unit element (see (0.7)).
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(0.3) Definition. A morphism ¢ : A — B of totally convex algebras is a mor-
phism of the underlying totally convex spaces preserving the product as well: ¢(zy)
= o(x)p(y), x,y € A. The totally convex algebras together with their morphisms
form a category TC-Alg. The canonical functor assigning to a totally convex alge-
bra its underlying totally convex space is denoted by |O| : TC-Alg — TC. There
will be no misunderstandings by using the same notation as for the forgetful functor
from Bani-Alg to Ban;. This connection between TC-Alg and TC explains, why
we often will call a totally convex algebra a T'C-algebra for short.

For A € Banj-Alg, O(A) is in a canonical way a totally convex algebra, which we
denote by O%(A) or simply by O(A), if the context is clear. This induces a functor
0% : Ban;-Alg — TC-Alg and we have 0% = WoO¢? for the canonical forgetful
functor W : TC-Alg — Set.

TC-Alg is a category of equationally defined universal algebras, hence the canon-
ical forgetful functor W : TC-Alg — Set has a left adjoint. An explicit construc-
tion of it is given in the

(0.4) Theorem. 0% o 19 : Set — TC-Alg is a left adjoint of W : TC-Alg —
Set. TC-Alg is the (up to isomorphism unique) category of Eilenberg-Moore alge-
bras of 0% : Banj-Alg — Set and O% : Banj-Alg — TC-Alg is the canonical
comparison functor.

PROOF: There is a canonical forgetful functor || : TC-Alg— Semi-Grp with
V¢ o |[O* = Uo|d|. Moreover, we know that WoO® = O% hence n% X —
WoO%I¢(X). For any A € TC-Alg and any f : X — U(|A|) we have, because
of U(JA]) =V*(]A4]®), a unique morphism f,: F5(X) — |A|® in Semi-Grp with
f = V3(f,)iix. V5(f,) induces a unique morphism ¢ : Ooly(VSoF*(X)) — |A]
in TC with V*(fo) = U(@)nysops(x) because of [6, (3.1)]. It is obvious that ¢
also preserves the multiplication, because f, does, s.th. ¢ : O“ol‘f(X) — Aisin
TC-Alg and W(p)n% = f. This equation determines ¢ uniquely, because 1% (X)
is a set of generators of the TC-algebra O%l¢(X).

One has Wo O“ol‘f = O%I{, the unit 1% is the same for both adjunctions and
it is elementary to verify by looking at the co-units that both adjunctions induce
the same monad (cp. [6, (3.5)]). As W : TC-Alg — Set is monadic, it may be
identified with its own category of Eilenberg-Moore algebras i.e. with the category of
Eilenberg-Moore algebras of O : Banj-Alg — Set. [13, (2.9)], then immediately
shows that O® is the comparison functor.

(0.5) Remark. It is now easy to see that O : Ban;-Alg — Set is not monadic.
The Linton space L(K) := {z | z € K and |z| = 1 } U{0} in[6, p. 985], does the job.
It has a canonical structure of a TC-algebra and quite obviously is not the unit ball
of a Banach algebra.

(0.6) Corollary. O% : Ban|-Alg — TC-Alg is full and faithful and has a left
adjoint S¢ : TC-Alg — Ban;-Alg.

PrOOF: The first assertion follows from the fact that O% is the comparison func-
tor to the Eilenberg-Moore algebras of the pre-monadic functor O%. The second
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assertion holds, because Banj-Alg has coequalizers (cp. [13, (3.7)]).

It will turn out to be useful later on, to know S% in a more explicit resp. construc-
tive form. This is not difficult, because S® is a canonical lifting of the left adjoint
S: TC — Ban; of O : Ban; — TC (cp. [6, (7.7)]) along the forgetful functors
|d] : TC-Alg — TC and |O] : Ban;-Alg — Banj.

For C € TC-Alg, we define a K-algebra structure on S(|C|) by introducing
a multiplication (for notation see [6, §7]) by

(A07 CO) (Ala Cl) = (AO)\]J COC].)7

(Misc;) € S(|CY), ¢ = 0,1. This multiplication is well-defined and turns S(|C|) into
a K -algebra, which we denote by S*(C). The norm on the Banach space S(|C|) is
given by

[ Ol = inf{lul [ (A )= (wd)},

hence one gets

”(1700) (1701)H = H(lvcocl)H < H(l,CO)HH(l,Cl)H,

which shows that S*(C) is even a Banach algebra over K.
The universal morphism )¢ : [C] — OoS(|C]) in [6, §7], preserves products,

because o|c((coc1) = (1,coc1) = (1,¢0) (1,¢1) = 01¢|(co)ocy(c1), ¢i € C, i =0, 1.
It is easy to verify that the unique morphism ¢ : S(|C|) — |A| in TC, which exists
for a morphism f : C — O%(A) in TC-Alg, A € Ban;-Alg, on the level TC, with
lfl = (A)((p)0'|c‘, also preserves products, i.e. can be lifted to TC-Alg. Denoting by
o the TC-morphism Ltel regarded as an element of TC-Alg, we have shown that

S is left adjoint to O% with unit o C — 0% $%(C). This construction is the
reason why we will drop the superscript “*” in ¢® and S%, whenever the context is
clear.

(0.7) Remark. Analogous results hold for subtypes of Banach algebras. If Ban}'-
Alg denotes the category of unital Banach algebras and contractive algebra homo-
morphisms preserving the unit element, the unit ball functor (denoted for simplicity
by the same symbol) O% : Ban{-Alg— Set is premonadic but not monadic and
its left adjoint 1{ is constructed as in (0.1) substituting for Semi-Grp the category
Mon of monoids. The zero algebra {0} is a unital Banach algebra as well as a TC-
algebra. The Eilenberg-Moore algebras of O are given by the category TCU-Alg
of unital totally convex algebras and unit preserving TC-Alg morphisms. (0.4)
remains true.

(0.8) Remark. Considering the category Ban{-Alg of commutative Banach al-
gebras over K, the unit ball functor O% : Ban{-Alg — Set is pre-monadic but
not monadic. Its left adjoint 1{ is constructed as in (0.1) substituting the category
Ab-Semi-Grp of abelian semigroups for Semi-Grp. Its Eilenberg-Moore algebras
are given by the category TC¢-Alg of commutative totally convex algebras, where
a totally convex algebra is called commutative, iff its multiplication is. (0.4) remains
valid for O%.



Totally convex algebras

(0.9) Remark. For the category Ban{"-Alg of commutative, unital Banach al-
gebras the same results hold, mutatis mutandis. The place of Semi-Grp is taken
by the category Ab-Mon of abelian monoids and the category TC*-Alg of com-
mutative, unital TC-algebras and unit preserving TC-Alg-morphisms is the cor-
responding category of Eilenberg-Moore algebras.

(0.10) Remark. For a Banach algebra B define another Banach algebra B° on
the same underlying set by taking the same addition, defining a new multiplication
with scalars by aob :=ab, a € K, b € B, and by taking the opposite multiplication
bo X by := b1by. A *-Banach algebra is then defined as a Banach algebra B together
with a morphism [0* : B — B°P in Bany, which is an involution as a set mapping.
A *-Banach algebra is essentially a *-normed Banach algebra in the notation of [14].
The *-Banach algebras with the contractive homomorphisms commuting with the
*-operation form the category Ban]-Alg. The unit ball functor O : Banj-Alg
— Set is pre-monadic but not monadic. One gets its left adjoint by substitut-
ing the category Semi-Grp* of *-semigroups for Semi-Grp in the proof of (0.1).
The category TC*-Alg of *-TC-algebras, i.e. TC-algebras with an involution, and
involution preserving TC-algebra morphisms is the category of Eilenberg-Moore
algebras of O.

(0.11) Definition. A finitely totally convex algebra A is a finitely totally convex
space (cp. [6]) together with a morphism p1: A ® A — A in TCyyy,, s. th.

(e @ ply ® 2)) = ppz ®@y) @ 2),2,y,2 € A.

Again, one writes for short
zy = p(z ©y),

z,y € A. A morphism ¢ : A — B between two finitely totally convex algebras is
a TC y;,-morphism, which also preserves this multiplication. With these morphisms
the finitely totally convex algebras constitute the category TCf;,-Alg. It is evident,
how one has to define the category of commutative, resp. unital, resp. finitely totally
convex x-algebra.

As the following theorem shows, TCy;,-Alg appears, too, as a category of
Eilenberg-Moore algebras.

(0.12) Theorem. If Norm;-Alg is the category of normed K-algebras and con-
tractive K-algebra homomorphisms, the unit ball functor O : Norm;-Alg — Set
is pre-monadic but not monadic. TC;,-Alg together with the canonical forget-
ful functor W : TCy;,-Alg — Set is the category of Eilenberg-Moore algebras
of O and the canonical lifting of 0%, 0% : Norm;-Alg — TCy;y-Alg, is the

comparison functor.

The proof will be omitted, because of its analogy to the proof of (0.4). We will
give just a hint as to what has to be changed in the proof of (0.4) to yield (0.12).
The left adjoint 1; ¢;, : Set — Vecy of O : Vec; — Set in [6, (1.5)], can be
lifted, as in (0.4), to a left adjoint lifin : Semi-Grp — Normi-Alg of O :
Norm;i-Alg — Semi-Grp.
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The explicit construction of the left adjoint of 0% : Norm;-Alg — TCyi-Alg
is analogous, taking into account the slightly different construction of Sg;, in [6,
(7.10)]. The results (0.8) to (0.10) hold, of course, also for finitely totally convex
algebras, mutatis mutandis.

1. Ideals.

As a category of equationally defined universal algebras TC-Alg is complete
and cocomplete. Of course, the same statement holds for the category of unital,
resp. commutative (and unital), resp. *-TC-algebras and for the corresponding
categories of finitely totally convex algebras. As usual, limits are modelled on the
corresponding limits of the underlying sets and are also limits on the level of totally
convex spaces.

To obtain explicit knowledge of colimits is by far more complicated, as it is in the
case of totally convex spaces (cp. [6, §4], [9]). At first we will investigate coequalizers
or, equivalently, congruence relations. As in any algebraic theory, a congruence re-
lation in a T'C-algebra is an equivalence relation on the underlying set, compatible
with the algebra operations. For many purposes it is convenient to consider for an
equivalence relation “~” on a set X its graph, graph(~) := {(z1,22) | 1 € X, 21 ~
x2}. Because graph () is a bijection between the equivalence relations on X and
the subsets I of X x X that contain the diagonal A x and are closed under the reflec-
tion (z1,z2) — (z2,z1) and under the transitivity operation ((x1,x2), (z2,z3) € I
implies (z1,x3) € I), we will often not distinguish between an equivalence relation
and its graph.

For a TC-algebra A, a left- A TC-space C is given by a totally convex space C and
an (external) left multiplication of elements of A with elements of C, (a,c) — ac,
which is distributive with respect to the totally convex operations on C| i.e. for
a€Q(cp. 6]) andc; € C,i€N,andac A

@(Z Qici) = Z a;(ac;)

holds, such that the resulting map ¢ : A — End(C) is a TC-algebra morphism.
Right-A T C-spaces are defined analogously.

(1.1) Definition. Let A be a (finitely) totally convex algebra. “~” is called a left
ideal of A, if ~< |A| x |4] is a congruence relation on the underlying totally convex
space |A| (cp. [10]) and a left-A TC-space, where the operation of A on ~ is given
by a(z,y) := (ax,ay).

Analogously, a right ideal of A is a congruence relation on |A|, which is a right-A
TC-space with (z,y)a := (za,ya) for a € A. “~” is called an ideal of A, if it is
both a left and a right ideal. It is easy to verify that a congruence relation “~” on
|A| is an ideal of A, iff ~< A x A, i.e. ~ is a subalgebra of the TC-algebra A x A.

If ~ is an ideal of the TC-algebra A, then A/ ~ is canonically a TC-algebra
and the canonical projection 7 : A — A/ ~ is a TC-Alg morphism. All the
usual homomorphism and isomorphism theorems of algebra remain in force, as do
the results on direct and subdirect products (see e.g. [3], [5]). Moreover, 2.10 in [§]
remains true in TC-Alg:
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(1.2) Proposition. Let ~ be an ideal of the TC-algebra A and w: A — A/~
the canonical projection. Then

(i) [Ixl[ =0 or ||| = 1;

(ii) 7 is a coequalizer in TC-Alg.

Among the so called representations of a TC-algebra in the endomorphism al-
gebra of a left-A TC-space C, i.e. TC-Alg morphisms ¢ : A — End(C), is, as in
the classical case, the left-regular representation of A,

L: A— End(|4]),

defined for a,z € A by Lq(z) := ax. L is obviously a morphism in TC-Alg. A
is called left-regular, if L is injective. The right-regular representation, R : A —
End(|A4]), is defined dually. R is an anti-morphism. A is called right-regular, if R
is injective. A is called regular, if A is left- and right-regular.

(1.3) Definition. If ¢ : A — B is a morphism of TC-algebras, then, as usual,
~y defined by ao ~y a1, if p(ao) = ¢(a1), for ap,a1 € A, is an ideal of A, called
the ideal associated with .

Before looking at some congruences, which are of special interest, it should be
noted that any TC-algebra A carries a “norm” ||0]|| on the underlying totally convex
space |A|. It follows from [6], 6.3 and 6.4, that we have

(1.4) Proposition. Let A be a totally convex algebra. Then, for any a,b € A

[labll < [lal][o]l

In [6] and [7] several interesting types of totally convex spaces are investigated.
Some of these properties also play a role in the theory of T'C-algebras. Hence, we
introduce the following notation.

(1.5) Definition. If P is a property of (finitely) totally convex spaces, we say that
a totally convex algebra A has property P, iff the underlying totally convex space
|A| has property P. For instance the notion of a spherical or separated totally
convex algebra (cp. [7]), is well-defined.

The interior |A| of the totally convex space |A| underlying the TC-algebra A is
canonically a TC-algebra, called the interior of A and denoted by A (cp. [7, (10.1)]).
Several of the types of totally convex spaces discussed in [7] induce canonical con-
gruence relations on any totally convex space. These congruence relations induce
ideals in totally convex algebras, as is shown in the following

(1.6) Proposition. The full subcategory TC*P-Alg of separated totally convex
algebras is a reg-epi-reflective subcategory of TC-Alg.

PrOOF: We look at the reflection TC — TC*P on the level of totally convex

spaces as described in [8, (2.11)]: For A € TC-Alg, =,y € A, put z ~ y, if

%x = %y Obviously ~ is an ideal and the canonical projection m4 : A — A/~ is

the desired reflection. O
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(1.7) Proposition. The full subcategory TC*P"-Alg of spherical totally convex
algebras is a mono-coreflective and a reg-epi-reflective subcategory of TC-Alg.

PROOF: The first assertion follows, because, for A € TC-Alg, the subspace T4(A)
of spherical elements of A (cp. [7, 12.5]) is evidently even a subalgebra.

As for the second assertion, one considers the congruence relation defining the
reg-epi-reflection on the level of TC, i.e. for A € TC-Alg and z,y € A one puts
z~y, ifz=yor|z|,|lyll <1 (cp. [7, (14.3)]). (1.4) shows that ~ is even an ideal
of A, which proves the last assertion. 0

For the investigation of ideals of T'C-algebras the following result plays an im-
portant role. It corresponds to Proposition (1.2) in [10], which was crucial for the
investigation of congruences in TC.

(1.8) Proposition. Let ~ be an ideal of the totally convex algebra A and denote
by I(~) the subvector space of S(A) generated by the set {o4(z) —o4(y) |z, y € A
and x ~ y}. ThenI(~) is a closed ideal of the Banach algebra S(A) and the quotient
map 7 : A — A/~ induces an isomorphism

S(A)/I(~) = S(A/~).

Moreover, I(~) is generated by o 4(A N ker(~)), where ker(~) := {z | € A and
x ~ 0}.

The proof is completely analogous to that of (1.2) in[10], because Lemma (1.1) in
[10] carries over to totally convex algebras. A statement analogous to (1.3) in [10]
holds, too. (1.8) obviously does not hold for unital TC-algebras, but is nevertheless
useful in this case, too. If one just forgets the identity of a unital TC-algebra
and applies (1.8), it is obvious that I(~) is also an ideal in the unital Banach
algebra S(A). ker(~), for an ideal ~ of A, has some interesting properties (cp. [6,

(4.3)]):
(a) ker(~) is a TC-subalgebra of A.

(b) ker(~)A C ker(~) and Aker(~) C ker(~).

In the classical case, i.e. in Banach algebras, these properties characterize ideals,
whereas, in the theory of TC-algebras, ideals are certain subalgebras of A x A.
Nevertheless, subalgebras satisfying properties (a) and (b) play an important role,
too, in the theory of TC-algebras. Generalizing the considerations of congruence
relations in TC in [8] one defines:

(1.9) Definition. (cp. [8, 2.4]): Let A be a TC-algebra and K a subalgebra of A.
Then, for any x,y € A one puts  ~g vy, if %:v — %y € K. “~g”, is called the
relation induced by K, which is obviously reflexive and symmetric.

In [8, 2.5], it was shown that this relation is also a congruence relation of totally
convex spaces, if K is r-closed. Condition (b) implies the compatibility with mul-
tiplication and is also necessary for this property, provided K is r-closed (cp. [8,
1.5]). 2.5, [8], implies the
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(1.10) Proposition. Let K be a subalgebra of the TC-algebra A. Then the
following are equivalent.

(i) ~ is a separated ideal,

(ii) K is r-closed and satisfies KA C K and AK C K.

The other results of [8] carry over mutatis mutandis. The above results also hold,
mutatis mutandis, for finitely totally convex algebras. For instance, to obtain the
analogue of (1.10) for finitely totally convex algebras one has to use 4.6 in [8].

Finally, we present the following interesting example. For a semigroup S put

U= 003(5)\ {6, | €5, e €K, |e[ =1}
for the TC-algebra O(15(S)), (cp. (0.1)). The partition

05(9) =Uu|J{{eds} |s€S, e€K, | =1}

induces an equivalence relation ~ on O(lf (S)). ~ is even a congruence relation on
O(15(S)) regarded as a totally convex space. The proof for this rests on the fact
that the eds,s € 5, |e] = 1, are exactly the extremal points of the totally convex
space O(15(S)) (cp. [10]). The following lemma gives a sufficient condition for ~ to

be an ideal.
(1.11) Lemma. If S is a regular semigroup, then ~ is an ideal.

PROOF: A semigroup is called regular, if, for any a € S, ax = ay implies x = y and
ra = ya implies © = y.
We have to show that, for u,v,w € O(1§(S)), u ~ v implies wu ~ wv and
uw ~ vw. The implication is trivial for u = v, hence we assume u # v, i.e. u,v € U.
First, we assume w ¢ U, i.e. w = €40s,, |€0] = 1, S0 € S. One has a representation

o0
u= ) a;ds; with s; # s; for i # j. wu ¢ U would imply
i=1

o0
Z 0i€00s,s; = EO0t
i=1

with suitable t € S, ¢ € K, |¢|] = 1, which implies €,05,5;, = €0 for i € N with
a; # o. Hence sp8; = sos; for i,j € N with a;a; # o, i.e. s; = s, because S is
regular. Hence, there is exactly one ¢ € N with a; # o and we get u = «;0s,, which
leads to the contradiction u ¢ U, because ||u| = 1 holds. Analogously one proves
that v € U implies uw € U for every w ¢ U.

Now, take w € U and assume, for the sake of simplicity, that «; # o for every 1.

If wu ¢ U, then, as above,
Z ajwls; = €0t
i
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with suitable € and t € S, |¢| = 1, which implies p;wds, = €d; ¢ U for at least one
i, p; := oj|a;| 1. But this is a contradiction to our first result and we get wu € U.
uw € U is proved analogously.

Thus we have proved that O(lf (5))/~ is a TC-algebra. The same proof works,
mutatis mutandis, for commutative semigroups and (commutative) monoids. If
m: O(13(8)) — O(lf(S))/N is the canonical projection, then the TC-algebra
O(IT/S)/N has as elements 0 and the elements em(ds), € € K, || =1, s € S. And
an equation

Z a;m(z;) = em(ds),

(avj | i € I) € Q, holds, if for every ¢ with oy # 0 7(x;) = g;w(ds) and > aye; = €.
A

Moreover, the product is given by

e1m(0s,)e1m(0sy) = €162 (0s,55)

and all other products are 0. O

If one applies this, for a set X # ¢, to the free semigroup F*(X) generated by
X, the quotient O(l‘f(X )/~ is called the totally convex algebra of monomials in
X and is denoted by KM{X}. The analogous construction for abelian semigroups
yields the commutative TC-algebra KM[X] of commuting monomials in X. If one
considers the case of monoids resp. abelian monoids one gets the unital TC-algebra
KM, {X} resp. the commutative, unital TC-algebra KM, [X| of monomials in X.
For a group the above construction yields a TC-field.

The above results remain valid for finitely totally convex algebras, mutatis mu-
tandis.

2. The tensor product.

The tensor product of totally convex spaces, which is the canonical generalization
of the projective tensor product of Banach spaces, was introduced in [6, (5.3)]. As
in the classical case this tensor product in TC induces a tensor product of TC-
algebras.

(2.1) Proposition. Let A, B be TC-algebras. Then:

(i) There is a unique multiplication in A® B, which makes A® B a TC-algebra,
s.th. (ag ® bg)(a1 ® b1) = (aga1) ® (bgb1), a; € A, b; € B, i = 0,1. This
TC-algebra is again denoted by A ® B and called the tensor product of A
and B.

(ii) If A and B are commutative, resp. unital resp. *-TC-algebras, then so is
A®B.

(iii) If A and B are unital with unit elements e, resp. eg, then the mappings
in:A— A®B,ig: B — AQ® B, defined by is(a) :=a®epg, ig(h) :=
eA®b,a € A, b€ B, are unital TC-algebra morphisms and the subalgebras
ia(A) and ig(B) of A ® B commute elementwise.
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Proor: (i): To simplify the notation, we will often denote the underlying TC-
space |A| of a TC-algebra also by A. With the canonical isomorphism Ay g 4 B :
(A®B)® (A®B) — (A® A) ® (B ® B) we put pu := (44 ® 4B)AA,B,A,B-
pa: AR A — Aresp. ug: B® B — B is the multiplication of A resp. B. It is
easily verified that p fulfills (i).

(ii): In the commutative resp. unital case the assertion follows immediately from
the definition of u. For *-TC-algebras A, B, the easiest way to turn the TC-algebra
A ® B into a *-TC-algebra is as follows (oral communication by R. Borger). For
a TC-algebra A define another TC-algebra A°? on the same underlying set by
putting

o0 o0
(%) > e = dja;,
i=1 i=1

fora; € A, i € N, and (o | 1 € N) € Q (cp. [6, §2]). The left side of (*) denotes the
effect of (a; | 7 € N) on the “new” totally convex space |A°P|, the right side is the
operation of (&; | i € N) on A, where ¢; is the complex conjugate of o; € K, i € N.
|A°P| becomes a TC-algebra AP, if one defines pgop : |[AP| ® |AP| — |AP| by
paop(a®b) = pa(b® a).

A *-TC-algebra A is then a TC-algebra A together with a morphism sy : A —
A°P in TC-Alg, which is an involution. It is customary to write a* := s4(a) for
a € A. One may identify (A ® B)°P = A°P ® B for TC-algebras A, B. Now, it is
routine to check that, for *-TC-algebras A, B, s4 ® sp: A® B — A°? ® B is
again a *-TC-algebra.

(iii) is obvious. O

(2.2) Proposition. The tensor product of two unital, commutative TC-algebras
Ag, A1, resp. of two unital, commutative *-TC-algebras is the coproduct in the
category TC“-Alg resp. in the category TC®“*-Alg of unital, commutative *-TC-
algebras. The injections i, : A, — Ay ® A1, v = 0,1, of the coproduct are given
by ig(ag) := ag®eq, i1(a1) := eg ® a1, with the unit element e, € A, and a, € A,
v=20,1.

The proof is carried out in complete analogy to the proof in the classical case
of real or complex algebras. (2.2) gives a description of finite coproducts with the
tensor product in the two subcategories. The universal property expressed in (2.2)
remains valid for not necessarily commutative, unital TC- and *TC-algebras rela-
tive to morphisms f, : A, — X, v = 0,1, satisfying f1(a1)f2(a2) = f2(a2)f1(a1)
for any a, € Ay, v =0,1.

The infinite tensor product of unital TC-algebras can be described, as in the
classical case, as the inductive limit of the finite partial tensor products. This
infinite tensor product has the usual properties and yields the infinite coproduct
in the category of unital, commutative TC-algebras resp. *-TC-algebras (cp. [2]).
The investigation of the structure of coproducts of non-commutative or non-unital
TC-algebras might meet considerable difficulties in view of the difficulties one has
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with the structure of the coproduct of general K-algebras. In TC;,-Alg all the
results of this section hold, mutatis mutandis.

As S : TC — Ban; is left adjoint to O : Ban; — TC ([6]), it preserves the
tensor product of totally convex spaces. In [10, (1.1)], it was shown that the (lifted)
open unit ball functor O : Ban; — TC is left adjoint to S, hence O preserves the
(projective) tensor product in Banj. Both statements remain true for TC-algebras.
The proof, however, is different, because the tensor product in Bani-Alg as well
as in TC-Alg is no longer a left adjoint functor.

(2.3) Proposition. S: TC-Alg — Ban;-Alg and O : Ban;-Alg— TC-Alg,
the open unit ball functor, preserve finite tensor products.

ProOF: For C, D € TC-Alg define the morphism A : S(C)®S(D) — S(C ® D)
in Banj-Alg by Moo (c) ® op(d)) : = oogp(c ® d). Conversely, the bi-morphism
B:C x D —0(S(C)2S(D)), given by B(c,d) := oc(c) ® op(d), induces a TC-
morphism « : C ® D — O(S(C)®S(D)) and this, in turn, a Banj-morphism ¢ :
S(C® D) —S(C)®S(D). A routine computation shows ¢ to be the set-theoretical
inverse of A, i.e. A is an isomorphism in Ban;-Alg.

For A € Banj-Alg, A = S(O(A)) holds in Ban;-Alg. Hence, for A, B € Ban;-
Alg, we get with the first assertion

A® B =~S(0(A) ®S(0(B)) = S(0(4) ® O(B)),

or, with the analogue of [10, (1.1)],

O(A® B) = 0(A) ® O(B),
i.e. the second assertion. O

As isomorphisms in Banj-Alg automatically preserve unit elements, S also pre-
serves the tensor product of unital TC-algebras. Moreover, an analysis of the above
proof shows that S preserves finite tensor products of *-TC-algebras and O finite
tensor products of Banj-Alg. As left adjoint functors, S and O preserve infinite
tensor products in all cases, in which an infinite tensor product is an inductive limit
of finite tensor products.

3. Strongly aspherical algebras.

In [6, §6], a norm was defined for all elements of a totally convex space X. It
satisfies the inequality ||az|| < |al||z| for all « € O(K), z € X, with the equality
attained for || = 1 or ||z|| < 1. There are examples of totally convex spaces, in
which the above inequality is strict for some elements = and all a with |a] <1 (cp.
[10, §5]). Totally convex spaces, for which ||az| = |a|||z|| for all @ € O(K) and all
x € X are called normed (cp. [7, §13]). We will show here that the above inequality
can be strengthened to an equality for arbitrary totally convex spaces.

(3.1) Proposition. Let X be a totally convex space. For x € X, x # 0, put
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Then s(x) is the unique real number, 0 < s(z) < 1, such that for any « with
0<|a|]<landz € X, x #0,

llozl| = |als(z) ]

PROOF: Let z € X, z # 0 and ||z|| < 1. Then, because o x restricted to the interior
X is an isometry, we have s(z) = 1 and ||az|| = |a|||z||. For the same reason, for
any r € X and 0 < |a] < 1,
lez|| = llox (ax) || = [efllox ()],
hence, for x # 0,
lloz|| = [as(@)]|]-

To show uniqueness, let ¢ : X\{0} — [0, 1] be a mapping with ||az|| = |a|t(z)|z||
for 0 <l|a|] <1,z € X,z #0. Then, for any z # 0,

32|
t(z) = 12 = s(z).
3l
O
In order to have s defined on all of X, we put s(0) := 1. For a totally convex

space X, the subspace T4(X) < X of all spherical elements of X was introduced in
[7,12.5). If 2 € T4(X), x # 0, then $2 =0 and
s(x) = lox (@)l _ 227 lox (@) _,llox(2"1a)]

= 0.
] ] ]

Conversely, s(z) = 0 implies ||%:1:H =0, ie. %x =0 resp. v € T4(X). Hence,

(32) Ts(X) = s~ ({0}) U {0}

holds.

(3.3) Corollary. Let A be a totally convex algebra. Then, for a,b € A with ab # 0
s(ab)|[ab]| < s(a)s(b)]alll|b]

holds. In particular, Ts(A) is a subalgebra, even a left- and right-A TC-space.

PRrROOF: One has

loat@)l, o
A labll = loa(@oa)]

<lloa(@)llloa®)|l = s(a)s@)llall[|o]]-

s(ab)||abl| =

O

(3.2) shows that a totally convex space X is aspherical, if $(X) does not contain
0 or, equivalently, ox(9(X)) does not contain 0 for the boundary 9(X) = {z |
|lz]] = 1}. This leads to the following stronger notion (cp. [12, 3.5]).



218

D. Pumpliin, H. Réhrl

(3.4) Definition. For a totally convex space X
nx = inf{s(z) |z € X}

is called the norm factor of X, 0 < nx < 1. X is called strongly aspherical, if
nx > 0. Obviously X is normed, if and only if nx = 1.

This notion is a natural generalization of the norm quotient in [12, 3.5], and
a special case of the following concept.

(3.5) Definition. For a morphism f : X — Y of totally convex spaces we define
the norm factor of f

1/ (@)l

]|

n(f)::inf{ |£C€X7,T7é0}.

f is called homometric, if n(f) > 0 holds.

Obviously, a totally convex space X is strongly aspherical, iff o x : X —O(S(X))
is homometric and, in this case, nx = n(ox). Moreover, because s(z) = 1 for
llz|| < 1, it suffices to verify |lox(x)|]] > n > 0 for some n > 0 and all z € X
with ||z|| = 1 in order to see that X is strongly aspherical. For |a| < 1 one defines
&: X — X by é&(z) = ax. Then & is a TC-morphism and n(&) = |a|nyx. And
a subspace Y of X is norm-equivalent in the sense of [12, 3.5], iff the inclusion in:
Y — X is homometric.

(3.6) Proposition. For a totally convex space X the following implications hold:

(i) If X is normed, then it is strongly aspherical.
(ii) If X is strongly aspherical, then it is aspherical.

ProoF: Obvious. O

(3.7) Proposition. Let A be a strongly aspherical TC-algebra. If a,b € A satisfy
s(a)s(b) < ny then |ladb]| < n4.

PRrROOF: For ||ab|| = 0 the assertion is trivial. Hence, assume ||ab|| # 0. Then (3.3)
implies

s(ab)[|lab]| < s(a)s(®)[[all[[b]] < s(a)s(b) < na.

|lab]] = 1 would lead to the contradiction n4 < s(ab) < n4, hence we get ||ab|| < 1,
i.e. s(ab) =1 and ||ab]| < na4. O

For finitely totally convex spaces (3.1) is valid, too, but one has to give a different
proof, because, for a finitely totally convex space X, ox restricted to the interior
X is, in general, not an isometry. For regular finitely totally convex X (i.e. for any
z € X ||z|| = 0 implies x = 0, cp. [7, (13.5)]), however, all proofs remain valid
verbatim, because oy /X is an isometry, i.e. 1.5 in [9] holds.
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(3.8) Proposition. Let X be a finitely totally convex space. Then, for every
x € X with ||z|| # 0 there is a unique s(z), 0 < s(x) < 1, s.th. for any o with
0<l|o| <1

loz|| = |afs(z)|l«]
holds.
PRrROOF: The uniqueness statement is shown as in (3.1). If, for x € X, ||z| # 0,
llax| = |a|l|z| for any a with |« < 1, then put s(z) := 1. If |az|| < |a|||z|| for some

a, for every \, with |jaz| < A < |a], there is a y € X with az = Ay = a(Aa"1y).
Due to [6, (4.1)], this implies vy = y(Aa~1y) for all v with 0 < |y| < 1, or

A
vzl < vl
o]
and thus H H
ax
vzl < |vl=—= < izl
o]

for v # 0. This means that we may interchange the roles of a and v and get

vl = Iy lllecell
Therefore o]
ax
s(x) ==
|||
satisfies (3.8). O

Again one defines s(0) := 1. The other results of this section carry over to the
finitely totally convex case, mutatis mutandis. For example, the characterization of
Ts(X) for finitely totally convex X is

Ts(X) = N(X)Us~'({0})

(cp. [7, (14.10)]) and identical to (3.2), if X is regular. And the characterization of
the interior X by s is given in the

(3.9) Corollary. Let X be a finitely totally convex space. Then, for x € X with
lz]| <1, s(z) =1 holds.

ProOOF: For 3 with ||z|| < 8 < 1, we have z = Jy with some y € X. As |ly|| # 0,
we get for any o with 0 < |a] < 1,

o]l = lleByll = |l Byl = | =l

hence s(z) = 1. O
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4. Unitization.

The unit element e of a unital TC-algebra A is unique. If A # {0}, then |le| =1
holds. For, assume |le]| < 1, then, for any n € N, |le|| = ||€"|| < ||e||"* follows, which
implies |le]| = 0, i.e. e = 0 (cp. [6, (6.9)]) and hence the contradiction A = {0}.
The unit element of a TC-algebra may be spherical, as it is shown by the example
of the Linton algebra L(K) in (0.5). Obviously, e is spherical, iff A is spherical (see
also (5.2)).

(4.1) Proposition. Let A be a unital, not spherical TC-algebra, then A # {0}.
Moreover, u € A satisfies au = ae for some o € K with 0 < || < 1, if and only if u
acts as a unit element on A. If A # {0}, then such an element u satisfies ||u|| = 1.

PrROOF: For a € A there are b € A and |a|| < 8 < 1 with @ = b. Moreover,
au = ae implies yu = e for all v with |y| <1 ([6, (4.1)]). Hence,

a = Bb=(Be)b = (Bu)b=u(fb) = ua.
Similarly, we obtain au = a. The last assertion follows from (1.4). O

TC"-Alg is a subcategory of TC-Alg, which is not full (cp. (0.7)). The embed-
ding functor will be denoted by E : TC%-Alg — TC-Alg.

(4.2) Theorem. E has a left adjoint U : TC-Alg—TC"-Alg, called the uniti-
zation functor.

PROOF: One possible proof consists of a simple application of the Adjoint Functor
Theorem. However, we wish to give a more explicit description of U, hence we
construct U(A), A € TC-Alg, with the coproduct of totally convex spaces.

For A € TC-Alg, let ji : |O(K)| — |O(K)| T |A| and j4 : |A] — [O(K)| 1T |A]
denote the canonical injections into the coproduct |O(K)| II |A| of the underlying
totally convex spaces (cp. (0.3) and [9]). Given a € A, we define a morphism in TC

g(a) : [O(K)| IT[A] — [O(K)[ IT |A]

by the equations 9(a)(jx (p)) = j4(pa), 9(a)(a(b)) = ja(ab) for p €O(K), b < A.
A routine computation (cp. [6, §5]) shows that this defines a TC morphism

g+ |A] — Hom(JO(K)| LT |A], |O(K)| LT |A]).

Moreover, A . .
[+ 10(K)| — Hom(JO(K)[ I |A], |O(K)| IT [A]),

defined by f(M\)(z) := Az is trivially a morphism in TC. The equations fijgx =
f, ija = g define a morphism

i+ |O(K)| 1T |A] — Hom(JO(K)| LT |A[, [O(K)| LT |A])

in TC. Via the canonical adjunction isomorphism between tensor product and in-
ternal hom-functor (cp. [6, §5]), we get a morphism

pe (IO T [A]) ® (I0K)| T |A]) — |O(K)| 1T |A]
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in TC, which makes |O(K)| II |A| a TC-algebra U(A). For z,y € |O(K)| II |A]
one has explicitly u(z ® y) = fi(z)(y). As any element z of |O(K)| IT |A| can be
written in the form z = ajg(\)+3ja(a), where aX and Sa are uniquely determined
by = (cp. [9]), we get for the product of two elements, which we denote as usual by
juxtaposition:

(aj(N) + Bia(@) (@ jr(p) + B'5a(b))

=p((ajr(N) + Biala)) ® (& jr(p) + B'5a(b)))

=p((ajr(N) + Biaa) (@ jx(p) + 85 (0)))
=afi(jx (M) (@' jk (p) + 8'54(1)) + Bi(ia(a)) (e jr(p) + B'5a(b))
=af(M\)(a'jk(p) + '74(0)) + Bg(a)(a’jx (p) + B'ja(D))
=aad’ Ajk (p) + af'Nja(b) + &' Bja(pa) + 56 ja(ab).

(4.3)

This shows that U(A) is a unital TC-algebra with unit element e := jg (1) and
that j4 : A — U(A) is a morphism of TC-algebras. In order to see that U(A)
induces a left adjoint of E resp. a reflection of TC-Alg into TC“-Alg, we prove that
ja is areflection morphism. Let () be a TC-Alg morphism and C' € TC%-Alg in the
diagram (+). The TC morphism ¢+ |O(K)|11|A| — |C] is defined by the equations
Uik = o, hja = 1, where C |O(K)| — |C| is given by 7(\) := Xec, e the
unit element of C. We get ¢(e) = (jx(1)) = 7¢(1) = ec, i.e. ¢ preserves the
unit element. As v preserves the product, (4.3) immediately implies that the same
holds for ¢, i.e. ¢ is a TC%-Alg morphism making (*) commutative. Obviously ¥
is uniquely determined by v and z/AJ j4 = 1, because any TC%-Alg morphism must

satisfy ¢jg = 7¢. Hence, (4.2) is proved. O
A JA E(U(4))
()  E()
* )
y
E(C)

U describes the universal method of adjoining a unit element to a TC-algebra. Its
construction is analogous to the one used in classical algebra theory.

(4.4) Corollary. For any TC-algebra the following hold:
(i) U(A) is not spherical.
(ii) ja: A — E(U(A)) is an injective isometry.
(iii) Every element of U(A) can be written as \e + aja(a), for some a € A,
A € O(K) and |a| + |A| < 1. Both A\ and aa are uniquely determined by
e + aja(a).
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PRrROOF: (i): ae = 0 implies ajg(1) = jg(a) = 0, i.e. & = 0. (ii) is proved in [9,
(2.1), (ii)], and (iii) follows from [9, (2.1), (i)], by applying the canonical projections
of the coproduct. O

For separated totally convex spaces the direct sum is the coproduct ([9, (2.7)]).
Hence, for a separated TC-algebra A we have, up to isomorphism,

U(A) = {(\aa) [ [\l +|af < 1,a € A}
with the product
(A1, a1a1)(Ag, aga2) = (M A2, A1agas + a1dea; + ajagaias).
In particular, for a Banach algebra B, we get
U(O(B)) = {(Ab) | (\,b) € K x B, |A| + ||| < 1}.

The construction of U implies that, for a morphism f : A — B in TC-Alg,
U(f) = |O(K)| IT f holds. Hence, we get the

(4.5) Corollary. U preserves monomorphisms. In particular, for a separated TC-
algebra A, U(o4) : U(A) — U(O 0 S(A)) is injective.

PrROOF: Let m : A — B be a monomorphism in TC-Alg, then U(m)(Ae +
aja(a)) = Ae + ajp(m(a)). Hence U(m)(Ae + ja(a)) = 0 implies Ae = 0 and
ajp(m(a)) = jp(m(aa)) =0, i.e. A =0 and aa = 0, resp. Ae + ajs(a) = 0. O

As has been mentioned before, the unitization functor U is the analogue of the
unitization functor in classical algebra theory. We are now going to give an exact
description of the connection between both functors. The unitization functor of Ba-
nach algebras, which we denote by Up : Bani-Alg — Ban{-Alg is left adjoint to
the canonical embedding Eg : Ban}-Alg — Ban;-Alg. For a Banach algebra B,
one has |Ug(B)| = K& |B|, where @& denotes the direct sum resp. l1-sum of Banach
spaces (the coproduct in Banj). eg = pg(1) will turn out to be the unit element
of Ug(B) and every element of |[Up(B)| has a unique representation Aeg + aupg(b),
M a €K, be B, where ug : K — |Ug(B)|, pup : |B] — |Up(B)| are the canonical
injections. |Ug(B)| becomes a unital Banach algebra Ug(B) with the product

(Meg + arpp(b1))(Aaeg + azpp(b2))
=A1A2e0 + Magup(b2) + atdopup(b1) + arazpup(bibz)
=M daeg + pp(Aasbs + g daby + aganbibs).

pp : B — Eg(Ug(B)) is the unit of the adjunction and an isometric injection.

For the moment, let us denote the comparison functor for unital Banach algebras
by O : Ban{-Alg — TC"-Alg (cp. (0.7)), its left adjoint by S* : TC"-Alg —
Ban{-Alg and the unit by o4 : C — 0%(s¥(C)), C € TC*Alg.
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(4.6) Theorem. There is a natural isomorphism S* o U 22 Ug o S.

PROOF: Obviously O o Eg = E o O% holds. S% o U and Ug oS are both left adjoints
of O o Eg hence must be naturally isomorphic. 0

(4.7) Corollary. For an element Ae + aja(a) € U(A), A a TC-algebra, the fol-
lowing hold:
(i) llxe +aja(a)|l <1 implies [|Xe + aja(a)|l = [A] + [laall;
(i1) ||Ae + aja(a)|| =1 implies ||Ae + aja(a)]] = |A| + |@| and ||a|| = 1, provided
a # 0.
PrROOF: If 7: S¥0o U — Ug o S denotes the natural isomorphism of (4.6), the
complete statement of (4.6) actually is

O(us(a))oa = (0 0 Eo)(Ta)E (s 4))ia

(i): If A =0, then ||aal|| < 1; if A # 0, then, because of |A| + |a| < 1, |a] < 1, i.e.
also ||aa|| < 1. Hence,

[Ae + ajala)ll = llogray(Ae + aja(a))ll =
[Aeo + o ayiala)ll = llxeo + oy ayialea)|| =
AL+ llograydalaa)ll = A+ [laall.

(iD): 1= [[Aetaga(a)ll < [Al+|allal] < A +|af <1, ie. |Ae+aja(a)l| = A +]a]
and |ja]| =1, if a # 0.

5. Inverses.

As we are going to investigate inverses, all T'C-algebras in this section will be
assumed to be unital and the unit element of a unital TC-algebra A will be denoted
by e 4 or simply by e. For technical reasons all unital TC-algebras A in this section
are assumed to be not trivial, i.e. A # {0}.

(5.1) Definition. Let A be a unital TC-algebra. a € A is called invertible, if
there is a b € A with ab = ba = e; b is called an inverse of a. a € A is called
weakly invertible, if there is a b € A and a p € O(K), s.th. ab = ba = pe # 0; b is
called a weak inverse of a. Similarly one defines left resp. right (weakly) invertible
elements and left resp. right (weak) inverses.

As for the unit element e of a TC-algebra A # {0} |e]| = 1 holds, a left resp.
right invertible element a of A clearly satisfies ||a|| = 1. Also, an element that is
both left and right (weakly) invertible is (weakly) invertible. Finally the inverse of
an element a is uniquely determined and as usual denoted by a~!. Weak inverses
of a are not uniquely determined in general: If b is a weak inverse of a, so is ab for
0<|al <1.

The set of invertible (weakly invertible) elements of A forms a group (monoid)
under the multiplication of A; it is denoted by IN(A) (WIN(A)). Obviously A —
IN(A) (A — WIN(A)) is the object function of a functor IN : TCU4-Alg —
Grp(WIN : TC*-Alg — Mon). For any A, IN(A) C WIN(A) holds.
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(5.2) Proposition. Let A be a unital TC-algebra. Then the following are equiv-
alent:

(a) A is spherical,

(b) e is spherical,

(c) IN(A) = WIN(A).
PROOF: (a) <= (b) is trivial (cp. [7, (12.5)]). If (b) holds, and a € WIN(A), then
there is a b € A and p € O(K) with ab = ba = pe # 0, which implies |p| = 1, i.e.
a € IN(A). (c) yields %e =0, i.e. e spherical. O
(5.3) Proposition. Let A be a unital, not spherical TC-algebra. If a € WIN(A)
and 0 < |p| < 1, then also pa € WIN(A). In other words, WIN(A) is a cone
(without vertex) in A.

PRrROOF: Obvious. O

(5.4) Proposition. Suppose that A is a unital not spherical TC-algebra. Then
a € A is weakly invertible, if and only if o 4(a) € S(A) is invertible.

PROOF: As A is not spherical, S(A) # {0} holds, s.th. ba = ab = pe # 0 in
A implies g 4(a)(p~toa(b)) = (p~ 1UA(b)) A( )=1#0in S(A). Conversely, if
oala)r = :EUA( ) = 1in S(A), then y := 2” Ml ® satisfies [ly| = 3 L and o4(a)y =

yoa(a) = 2”96” 1. As 04 maps A isomorphically onto O(S(A)) (cp. [9, (1.5)]),

there is a unique b € A with 54 (b) = y. Thus o 4(ab) = g4(ba) = o4 (2 |1x”e) and

therefore ab = ba = ==e. O
2|l

In [8] a distance function was introduced for totally convex spaces X by putting
d(z,y) = ||%x — %yH, z,y € X.

(5.5) Lemma. Let A be a totally convex algebra. Then, for all a,b,z,y € A
d(zy, ab) < M(2d(x,a)d(y,b) + [lalld(y, b) + [[bl|d(z, a)),

provided that one of the following conditions is satisfied:

(i) at least one of the four points a,b,x,y € A has norm < 1, in which case
M =1.
PR 81(1}}7 A is strongly aspherical, in which case M = 7721.

1
2\ 9% T WY TR T Y TR T 5T T g
11 1 1 11 1 11
S(Cay — —ab— —ay + —ab) + =(=ay — —ab b Lap
5(3%Y — %0 — gt gab) + g (Gay = gab) + 4 (b = Sab) =
11 1
S(Zay — —ab
(3%~ 30

(cp. [6, (2.4), (ii)]). In case (i)

1 1 1 1
I52y = 5abll < Slielllyll + S llalllo] <1,
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whence

1 1 1
137 — 5a)l = Jdtay,ab) < sd(r,a)d(y, D) + {lalldy.) + § bld(z, )

N =

resulting in M = 1.
In case (ii),

1
II—( Ty — —ab)l\ > nad(zy, ab),
due to (3.1) and (3.4), whence

1 1 1 1
_nAd(‘Tyu ab) d(,ﬁC, a)d(yu b) + Z HaHd(yv b) + Z HbHd(‘ru G),

2
ie. M = 772 . 0
(5.6) Lemma. Let a,b € IN(A), then d(a~!,b~1) = d(a,b).
Proor: d(a=",071) = [|za™" — 367 = lla= (30 - 3a)b7"| <
la=[|d(a, ) [b=1|| = d(a, b). O

This distance function d induces a topology on A. In the following, if we refer to
the notion “topology”, we will always mean this topology.

(5.7) Proposition. Let A be a unital TC-algebra. Then:

(i) If A is not spherical, then A N'WIN(A) is a regular topological semigroup.
(ii) If A is strongly aspherical, then WIN(A) is a regular topological monoid
and IN(A) is a topological group.

PROOF: (i): AN WIN(A) is a topological semigroup because of (5.5), (i). To show
that it is regular, assume ab = ac with a,b,c € AN WIN(A). Asda =ad =pe #0
with suitable d € WIN(A), p € O(K), pb = pc follows and hence b = ¢ (cp. |7,
(11.6)]). This shows AN WIN(A) to be a left regular semigroup, right regularity is
proved analogously. One may omit the assumption that A is not spherical, because
for spherical A (5.2) implies A N WIN(A) = 0.

(i1): (5.5), (ii), and (5.6) imply the second assertion, while the first one follows
from (5.5), (ii), alone.

(iii): As “separated” implies “strongly aspherical”, the assertions follow from (ii)
with the exception of regularity, which is proved as in (i). O

(5.8) Lemma. Let A be a unital, not spherical TC-algebra. Then, for any a € A,
any A\, € O(K) with |u| + |A\ <1 and |p| < |A], Ae — pa is weakly invertible.

PrROOF: With p := 1 — [uA71, Z lp(5)" '| < 1 holds and a routine computation
using [6, (2.4), (ii)], shows

(e —pa) ) p(%)iai = Ape # 0.
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(5.9) Proposition. For a unital, not spherical TC-algebra A, WIN(A) is an open
cone of A.

PROOF: Let a € WIN(A) and ab = ba = pe # 0 with 0 < p < 1. Put ¢ := 4. Then
we claim that {z | z € A, d(z,a) < ¢} C WIN(A) holds. For an element z with
d(z,a) < e we have, due to [6, (6.1)], that

1a — l:v =e
2" Tt T
for some y € A. Hence
1 1 ( 1 ) 1 €
—x=-a—=(za—=x)=-a— =
2 2 2
and therefore
1 p P 3 2 1
—br=<-e— <by = -p(=e— =by).
e L e E
By (5.8) there is a ¢ € A, such that c(%e - %by) = %e, hence
1
(Zcb)x = ge.
Similarly there is a ¢/ € A, such that
1
x(zbc/) = ge.
Thus « is weakly invertible. 0

(5.10) Definition. Let A be a TC-algebra, then a € A is called a left (resp. right)
topological zero divisor, if inf{ ||az|| | % < |lz|| < 1} = 0 (resp. inf{ ||za|l | % <
|z[| < 1} =0). a is said to be a topological zero divisor, if inf{ ||az| + ||za|| | 3 <
|z <1} =0.
(5.11) Proposition.
(i) A spherical TC-algebra does not have left (resp. right) topological zero
divisors.
(ii) For a not spherical TC-algebra every spherical element is a topological zero
divisor.
PRrROOF: (i): Clearly, A is spherical, iff there is no z € A with % < ||z|| < 1. Hence,
the infima in (5.10) are +oo0.
(ii): Let a be a spherical element and % < ||lz]] < 1. Then z = py, where
lz]| < p<1andy e A is suitably chosen. Hence

ax = a(py) = (pa)y = 0y = 0. O

(5.12) Theorem. Let A be a unital, not spherical TC-algebra and let a € Bf;(/iﬂ
WIN(A)). Then a is a topological zero divisor.

PRrROOF: (5.4) and [9, (1.5)], imply that o4 maps A N WIN(A) homeomorphically
onto IN(S(A)) N O(S(A)). Hence [1, Theorem 14], leads to our assertion. O

A unital TC-algebra B is called an extension of the unital TC-algebra A, if A
is a unital subalgebra of B and a norm-equivalent subspace of B (cp. [12, (3.5)]).
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(5.13) Definition. Let A be a unital TC-algebra. Then a € A is called singular
(strongly singular), if it is not invertible (weakly invertible) in A. a € A is called
permanently singular, if a is strongly singular in any extension of A.

Obviously, every strongly singular element is singular. The set of singular el-
ements of A is denoted by SING(A), the set of strongly singular elements by
SSING(A).

(5.14) Proposition. Let A be a unital TC-algebra. Then every left (resp. right)
topological zero divisor is permanently singular. In particular, every element of
0 A(/i N WIN(A)) is permanently singular.

PROOF: Let B be an extension of A with norm quotient > 0 ([12, (3.5)]) and let
a € A be a left topological zero divisor. For « € A let ||z||; denote the norm in B.

Then there is a sequence z, € A, n € N, with % < |lzn|l <1 and lim |laz,| = 0.
n—oo
Suppose furthermore that a has a weak inverse b € B, i.e. ab = ba = pe # 0. As
lzn|l < 1, we have ||pzn|| = |p|||zn|| and hence
nellznll = nllpznll < llpzally = llbaznllz < [16]l 5 llazn||
contradicting the assumption % < |lzpn]|- The assertion for right topological zero
divisors follows analogously and the last assertion is implied by (5.12). ([

(5.15) Corollary. Let B be an extension of A. Then
(i) ANWIN(4) C BN WIN(B),

(i) 0:(ANWIN(A)) € d5(BNWIN(B)).
PROOF: (i) is obvious. As for (ii), (5.14) implies 8;1(;1 N WIN(A)) C SSING(B).
On the other hand, for a € 8A(A N WIN(A)) and every € > 0 there is an element
a' € ANWIN(A) € BNWIN(B), s.th. d(a, ') = | 3a—1d'|| < e. Hence, dp(a,a’) <
d(a,a’) < € implies (ii), where dp is the distance function of B. O

As the left regular representation L : A — End(]4|) (cp. Section 1) is an
isometry, End(]A|) is, via L, an extension of A for A a unital TC-algebra.
(5.16) Corollary. Let A be a unital TC-algebra. Then

(i) a € SING(A), if and only if L, € SING(End(]A|)).
(ii) If A is commutative and not spherical, then

a € SSING(A) , if and only if L, € SSING(End(]A)|)).

PROOF: (i) is proved as in [1, p. 15].

(ii): “«<=" is obvious. If a € SSING(A) and L, were weakly invertible, there
would be a ¢ € End(|A|), s.th. Lo oo = po Ly = pidga # 0. This would imply
a € WIN(A), i.e. a contradiction. O
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6. Quasi-inverses.
(6.1) Definition. Let A be a TC-algebra and =,y € A. One defines

1 + 1 1
oy = - -y — -TY.
Toy 3x 3y 317y

x is called a left quasi-inverse of y and y a right quasi-inverse of x, if xoy = 0 holds.
For o € K with |a| < % one defines

T Ooq Y = axr + ay — ary.

x is called a weak left quasi-inverse of y and y a weak right quasi-inverse of x, if
zoqy = 0 holds for every « with |a| < % A (weak) quasi-inverse of x is an element,
that is both a (weak) left and a (weak) right quasi-inverse of x.

Obviously the operation “o,” is trivial for &« = 0. Moreover, to see that y is
a weak right quasi-inverse of x it is enough to verify z o, y = 0 for one «a # 0:
(6.2) Lemma. Let A be a TC-algebra and x € A. Then any right quasi-inverse y
of x is a weak right quasi-inverse of x. If there is an o with |a| < % and x o,y =0,
then y is a weak right quasi-inverse of x.

PrROOF: For o, € Klet 0 < |8] < |af < %, then

ie. B(xoay) = alx °B Y)-

Hence, for o = %, 18] < %,x oy = 0 implies %(z ogy) =0, ie xzogy =0, because

|z ogyll < 1 holds. Similarly, if |af,|3| < % and x oy y = 0, the above equation
implies oz ogy) = 0 and again x ogy = 0 follows. Obviously the analogue of (6.2)
for (weak) left quasi-inverses holds, too. O

(6.3) Corollary. If A is an aspherical TC-algebra, y is a left (right) quasi-inverse
of z, if and only if y is a weak left (right) quasi-inverse of x.

PROOF: Let y be a weak left quasi-inverse of z, i.e. y o x = 0 for (any) a with
0 < |a < % The equation in the proof of (6.2) then implies a(y o ) = 0, ie.
yox =0, because A is aspherical. d

(6.4) Proposition. Let A be a TC-algebra. Suppose that © € A has a (weak)
left quasi-inverse z and a (weak) right quasi-inverse y, then vy = vz, for all v with
|v] < 1. In particular, if A is separated, then x is (weakly) quasi-invertible.

ProoF: For o, € K with |a| < %, 18] < % the following formulae are easily
verified:
r0oq0=004 = ax,
zoq (xogy) = az + afr + afy — afry — afze — afzy + afBzry,
(zoaz)ogy = afz+afr — afzx + By — afzy — afry + afzzry.

A straightforward computation now leads to our assertion. O
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(6.5) Proposition. Let A be a unital, not spherical TC-algebra. If x € A has y
as weak left quasi-inverse, then, for any 0 < |a| < %, ae — ay is a weak left inverse
of %e — %x

PRrROOF: For any 8 with |3] < % one has

1 1 1 1 1
Plze— gu)lge — 30) = (37~ S(yos ) = P(z0)
Hence, [6, (4.1)], leads to
A ALl 1 A
Ge-gnge—gn =3¢
for all [A| < 1, whence our claim follows. O

(6.6) Proposition. Let A be a TC-algebra and let x,y € A. Then y is a weak
left quasi-inverse of x, if and only if, in U(A), Be — Bja(y) is a weak left inverse
of Be — Bja(x) for all 0 < |B] < % If, in addition, A is aspherical, then y is a left

quasi-inverse of x, if and only if, in U(A), %e - %jA(y) is a weak left inverse of

ie—3ja(z).

PROOF: Similarly to the proof of (6.5) we obtain, for 0 < |3| < % and o = 1[_3252,
(Be — Bia(y))(Be — Bia(x)) = B%e — (1= 5)ja(y oa x).
Hence, if y is a (weak) left quasi-inverse of z, the weak left invertibility follows from

(4.4), (i). Conversely, if Se — 84 (y) is a weak left inverse of Se — 854 (), then, for
some 0 < |p| <1,

FPe— (1= 3%)jaly oa ) = pe
holds. Hence, (4.4), (iii), implies that y o « is spherical. But, for |3| < %, we have
lly oo z|| < 1 and therefore y oo x = 0. For 8 = % o= % holds, i.e. yox =0, if A is
aspherical. O
Obviously, the assertions of (6.6) remain true, if one replaces “left” by “right”.

(6.7) Corollary. Let A be a TC-algebra and let x € A with ||z| < % Then x is
weakly quasi-invertible. If, in addition, A is aspherical, then x is quasi-invertible.
PROOF: Since ||z| < % we have z = %y for some y € A. Hence
1 1. 1 1.
56 - §JA($) = 56 - Z]A(y)-
By (5.8) this has as a weak inverse the element
1 1. . s . .
LNt iy _ ., = N 7
> 5(3)aW) = 5¢ = 53 (3)al),
1=0 i=1
Therefore the assertions follow from (6.6). O

The set of (weakly) quasi-invertible elements of a TC-algebra A is denoted by
(WQIN(A)) QIN(A). Obviously, QIN(A) C WQIN(A).
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7. The spectrum of an element.

(7.1) Definition. Let A be a complex unital TC f;,,-algebra and let a E A. Then
SSpa(a) (resp. Spa(a)) is the set of all A € C such that 1+\>\| - 1+\>\|

SING(A) (resp. SSING(A)). Spa(a) is called the spectrum of a in A, SSp(a) is
called the strong spectrum of a in A. Whenever the context is clear we drop the
subscript “A”.

a is in

(7.2) Lemma. For all a € A, Sp(a) C SSp(a). Moreover, A is spherical if and
only if SSp(a) = Sp(a), for all a € A.

ProOOF: Straightforward. 0

(7.3) Lemma. Let A be a complex, unital, not spherical TCy;y,-algebra. Then,
for all a,b € A, Sp 4(ab)\{0} = Sp 4(ba)\{0}.

PROOF: Suppose ab has x as a weak inverse, i.e. let

A
TN € 1+|,\\
A 1 A 1

_ b) = —
x(1+|x|e 1+|A|“) (1+|/\|e T+ |\

ab)x = pe # 0.

Put .
1+ Al p_

= and = .

S W I P

Then a simple computation shows

A 1 A 1
T e Y T TN T T
B A
TP

(cve + Bbza)(

ba)(ae + pbxa)

which proves our assertion. O

(7.4) Lemma. Let f : A — B be a unital homomorphism of complex, unital
TCy;p-algebras. Then, for all a € A,

(i) SSpp(f(a)) € SSpa(a),
(i) SSpEna(j))(La) € SSpa(a).

PRrROOF: Obvious. O

(7.5) Lemma. Let f : A — B be a unital homomorphism of complex, unital,
not spherical TC y;,-algebras. Then for all a € A,

(i) Spp(f(a)) € Spa(a),
(i) SPEnd(j4))(La) € Spa(a).

Proor: Obvious. O
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(7.6) Theorem. Let A be a complex, unital, not spherical TC-algebra. Then for
alla € A,

(i) Spa(a) C{z]z€C,|z| <|a] } CO(C),
(i) Spa(a) = Spg(a)(ca(a)).

PRrROOF: (i): Let ||al]| < p < 1. Then

A e — 1 a= A e — 1 b
TR Y R I Y e I D R I Y

for some b € A. By (5.8) this element has a weak inverse provided |£| < 1, that is,
if |p| < |A|.- Hence our assertion follows in case |la|| < 1. In case ||a|]| = 1, choose
p =1 and b = a in this argument.

(ii): Suppose that 0 ¢ Sp(a) and a is spherical. Then a is weakly invertible.
Hence, for some 0 < |p| <1 and b € A, ab = pe. However,

0# 3pe = 5(ab) = (3o

which is a contradiction. Thus 0 € Sp(a) for spherical a. Now let 0 # X\ € C. Then

1 ( A 1 ) A 1 (1 ) A
—e e— a) = e— Za)=—— ¢,
2 1A T4 204+ A 14X 2 2(1+|A)
whence %P\\ jEw Ma is weakly invertible, and thus A ¢ Sp(a). Therefore, for a

spherical, Sp(a) = {0} = Sp(ca(a)).
Now suppose that a is not spherical and A ¢ Sp(a). Then thereis a 0 < [p| <1
and b € A such that

A 1 A 1
e - T = e - T At
Hence
A 1 A 1
- b) = oAb - = 0.
UA(1+|/\|€A 1+|/\|G)O’A() oa( )UA(1+|/\|€A le|/\|a) pes(a) 7

This means that

A 1 A 1

UA(1+|)\|€A_ 1+|A|“): 1+ NS T T

oa(a)

is invertible and therefore A ¢ Spg(4)(ca(a)). Conversely, assume that A ¢
Spg(a)(ca(a)). Then there exists an z € S(A) with

A 1 A 1

(TWS(A) - mUA(a))x = I(mesm) - mUA(a)) = €s(A)-
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Since y := satisfies ||y|| = 2, there is a b € A such that o4 (b) =y and ||b]| = 5

2|| I
The last equation renders
A 1 A 1 1
UA(l T |)\|€A 1+ |)\|a)UA( ) UA( )UA(l T |)\|8A 1+ |)\|CL) 2”:6”88(14)
or,
A 1 A 1 1
— b) = b — = —e4).

Since o4 maps A injectively and since

A 1 1 A 1 1
— bl < = d [|b(——— S < =
we see that —l-if\lA\ eq — 1+\>\| a is weakly invertible and hence A ¢ Sp 4(a). O

Let A be a TC-algebra and let a € A. Then we define the spectral radius r(a)

of a by
r(a) :=r(oa(a)),
where (0 4(a)) is the usual spectral radius (see [1, 2.7]).

(7.7) Corollary. Let A be a complex, unital, not spherical TC-algebra. Then,
for all a € A, Sps(a) is a non-empty compact subset of O(C) and

r(a) = max{|A| | A € Spy(a)}.

PRrROOF: (7.6) and [1, Theorem 5.8]. O

(7.8) Proposition. Let A be a complex. unital, not spherical TC-algebra. Let
n . n

furthermore p(z) = > «;z" be a polynomial with > |a;| < 1. Then, for alla € A

=0 i=0
Spa(p(a)) = {p(A) | A € Spa(a)}.

PROOF: Same as for [1, Proposition 5.5], keeping in mind that for such a polynomial
p(z) with «y, # 0, having the roots A1, ..., An, the equation

o) =5 T2 L)

VT TN
holds, where
n
= (—1)"an [T+ M)
=1

and |B] > 1. 0
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(7.9) Theorem. Let A be a complex, unital, not spherical TC y;,-algebra. Then
(i) |la|| < 1 implies SSp(a) = C,
(i) Jlall = 1 and oa(a)] < 1 imply $Sp(a) =C,
(ili) |la|| =1 and ||oa(a)|| = 1 imply SSp(a) 2 C\R{ €™, for some ¢, and either
$Sp(a) 2 C\{0} or |45 en — rhyall = 1 and | EFes(a) — Thoa(@)l| =1,
for allt € R{.

PRrROOF: (i): Since

A 1 A [lal

e — al| < + <1,
||1+|/\| 1+|/\||

< T+ |A 1T+

for all A € C, 1+|)\\ 1+\>\|a fails to be invertible for all A € C.
(ii): Suppose A ¢ SSp(a). Then there is a b € A with

A 1 A 1

- b:b — = .
TR A VLS wry v VLA

Hence
A 1 A 1

(1+|,\|eS(A) - 1+|/\|UA(G))UA(b)—UA(b)(rwes(A) - 1+|/\|0A(a))
=e5(4)
and
1= legayll <llv—7 ! (@)[llea®) <
= |l€ — ———oala)l|l|lo

Sl = 1+|)\| ST TN A A=

Al ||UA( )i
+ <1,
T 14) 14 |)|

which is a contradiction.
(iii): For A # 0 and any pu € C we have

( A e — 1 a)( K e — 1 a) =
1+ LN U4 T+p
= e — a+ a
T+ADA+ph) @+ADA+ ) @4 ADA A+ |u])
and hence
A 1 [ 14 A+ p + [M|p
I a)( a)) < LA+ Al

e — .
A TR T 1+|M| (T4 AN+ [u])
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However, the latter is < 1 precisely, if u ¢ R"U\ in which case not both 7 +\ €

m 1+\u\ a are invertible. This proves the first claim in (iii). [10,

(2.7)], shows that either

tel? 1 te' 1 n
Hl—}—teA_ 1+ta|\ =1 and ||1—+teS(A)—1—+toA(a)H =1, forall teR{,
or
s 1 s +
H1—|—teA_1—|—taH:1 and ”1—|—tes(A)_1——|—toA(a)H<1’ for all t € Ry .
In the second case we have RS_ ¢’ C SSp(a), whence our assertion holds. O

7.10) Theorem. Let A be a complex, unital, spherical TC ¢;,-algebra. Then
fin~-alg

(i) SSp(0) = C and SSp(te) = C\{—t}R, for t € 3 (C).
(i1) |la|| = 1 implies SSp(a) 2 (C\Rg'ew, for some ¢, and

. tel® 1
either I e— al| =1, forall te RO
1+t 1+t
tel? 1
or e ——a=0, forall teR™T.
1+ t 1+1¢
PROOF: (i): Obvious.
(ii): Similar to the proof of (7.9), (iii). O
REFERENCES

[1] Bonsall F.F., Duncan J., Complete normed algebras, Springer, Erg. Math., Berlin-Heidelberg-
New York, 1973.

[2] Bourbaki N., Eléments de mathématiques, Algebre, chap. III, Hermann, Paris, 1970.

[3] Cohn P.M., Universal algebra, Harper & Row, New York-Evanston-London, 1965.

[4] Pelletier J.W., Rosicky J., Generating the monadic theory of C*-algebras and related cate-
gories, Categorical topology and its relation to analysis, algebra and combinatorics, Conf.
Proc. Prague 1988, World Scientif. Publ. Singapore, New Jersey, London, Hongkong (1989),
163-180.

[5] Pierce R.S., Introduction to the theory of abstract algebras, Holt, Rinehart and Winston, New
York, 1965.

[6] Pumpliin D., Rohrl H., Banach spaces and totally conver spaces I, Comm. Alg. 12 (1984),

953-1019.

] —, Banach spaces and totally convex spaces II, Comm. Alg. 13 (1985), 1047-1113.

] —, Separated totally convex spaces, man. math. 50 (1985), 145-183.

| —, The coproduct of totally convex spaces, Beitr. Alg. u. Geom. 24 (1987), 249-278.

]

]

, Congruence relations on totally convex spaces, Comm. Alg. 18 (1990), 1469-1496.
Pumpliin D., Regularly ordered Banach spaces and positively convex spaces, Results Math.
7 (1984), 85-112.

, The Hahn-Banach Theorem for totally convex spaces, Dem. Math. XVIII (1985),
567-588.




Totally convex algebras 235

[13] , Eilenberg-Moore algebras revisited, Seminarberichte, FB Mathematik u. Inf., Fer-
nuniversitat, 29 (1988), 97-144.
[14] Rickart Ch.E., General theory of Banach algebras, R.E. Krieger Publ. Co. Huntington, N.Y.,

1974.
[15] Tholen W., Relative Bildverzerlegungen und algebraische Kategorien, Ph.D. thesis, U. Miinster,
1974.

FB MATHEMATIK, FERNUNIVERSITAT, LUTZOWSTR. 125, 5800 HAGEN, GERMANY
9322 LA JoLLA FARMS RoAD, LA JoLLa, CA 92037, USA

(Received October 28,1991)



		webmaster@dml.cz
	2012-04-30T13:20:55+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




