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ON OSCILLATION CRITERIJA FOR SELF-ADJOINT LINEAR
DIFFERENTIAL EQUATION OF THE FOURTH ORDER
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Summary. The paper presents sufficient conditions on the coefficients of the fourth order
differential equation (py”)” 4 gy = 0 for this equation to be oscillatory at a finite or infinite
singular point. No sign restrictions on the function g are imposed.
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1. INTRODUCTION

We consider the self-adjoint linear differential equation of the fourth order

(1 (p(x)y") + a(xjy =0,

where p(x) e C*(I), g(xje C(I), p(x) > 0, xel = (a, b), —0 < a < b < o. There
exists extensive literature dealing with the oscillation properties of the fourth order
equations. Recall the books [3, 4, 6, 9, 10], the papers [2, 5, 7] and the references
given there.

Recently, Miiller-Pfeiffer [8] has proved that equation (1) is oscillatory at oo if
either

i) [ p7'(x) dx = oo and there exists a number x, € R such that

§Z a(x) (x = xo)?dx = — o, cel,
or
i) [?x*’p"(x)dx = o0 and [2 g(x)dx = —oo.
Note that these criteria require no sign restrictions on the function q(x). Their

proof is based on the application of the Courant variation principle to the quadratic
functional

() I(y; a, b) = [ (p(x) y"*(x) + q(x) y*(x)) dx,

which corresponds to (1).
The principal concern of this paper is to generalize these criteria using the concept
of the principal solution of the linear Hamiltonian system corresponding to (1).
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The method used offers a unified approach to the study of oscillation properties of
(1) near a finite or infinite singularity.

Two points x4, x, €I are said to be conjugate relative to (1) if there exists a non-
trivial solution y(x) of this equation for which y)(x,) = 0 = y®¥(x,), i =0, L.
Equation (1) is said to be oscillatory at b if for every ¢ € I there exist x, x, €(c, b)
which are conjugate relative to (1). In the opposite case (1) is said to be nonoscillatory
at b. Oscillation and nonoscillation of (1) at a is defined in a similar manner.

Self-adjoint equations of even orders are closely related to linear Hamiltonian
systems (LHS). If y is a solution of (1) then the 2-dimensional vectors u = (y, '),
v = (~(py"), py") are solutions of the LHS

(3) u' = Au + B{x)v, v =Cx)u— AT,

where -
01 00 (g0
@ a=(go) 2-(05n) <= (30)
We shall say that the solution (u, v) of (3) is generated by the solution y of (1).

Simultaneously with (3) we shall consider the matrix system

(5) U =AU + Bx)V, V' =C(x)U - A"V,

where U,V are 2 x 2 matrices. A self-conjugate solution (U,, ¥;) of (5) (i.e.

Us(x) Vy(x) = V;(x) Uylx)) is said to be principal at b if the matrix Uy(x) is non-

singular in a left neighbourhood of b and lim [{* U; '(s) B(s) U; ~'(s) ds] ™! = 0.
x=b~

Two solutions y,, y, of (1) are said to be principal at b if the solutions (uy, v,),
(u3, v,) of (3) generated by yy, y, form the columns of the principal solution (Uy, V3)
of (5). Note that the principal solution at b of (5) exists whenever equation (1) is
nonoscillatory at b.

2. STATEMENT OF THE RESULTS

Theorem. Let y,, y, be the principal solutions at b of the equation
(6) (p(x) y")" = 0.
If there exist ¢ = (cy, ¢,) € R? such that
‘l_l'l:’l- fia(x)(cy y1(x) + ¢z ya(x))?dx = —o0, del,

then equation (1) is oscillatory at b.
To compare the statement of this theotem with the criteria of Miiller-Pfeiffer,
consider the case b = oo. If [¥ p7!(x)dx = oo then y; =1, y, = x form the

principal solutions at oo of (6). Ind.eed, ifU = ((1) T) , then
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ot an] = ([ 7)rwe]
([rrefre-
(o)) ([ 2)e

Denote
D(x) = det ({5 U~ "(s) B(s) UT~'(s) ds)
= [is? p7'(9)ds [ p7!(s)ds — (fisp™'(s) ds)?
D(x) = p(x) fi(x — 5 p!(s) ds,

hence

lim D(x) = lim {5 p~'(¢) {5(t — s)> p~'(s)ds dt =

X2 » Pandes

It follows that

fim D~(x) 5 5% p~(5) ds = lim (D'(x))* x* p™(x) =
- [}m (15 (x = 5 p~'(5)ds) ! x* = 0.
similarly o
lim D™ (x) [Fsp '(s)ds =0, limD '(x)[jp~'(s)ds =0, i.e.
fim [f5 U™(5) Bls) UT(5) 45 = 0

By the same method one can verify that y, = 1, y2 =x {7 p '(s)ds —
- [i(x—=ys) "(s)ds if [$p7'(s)ds < oo, [P s*p '(s)ds = o0 and
=02 =-xp! s)ds yvo = |2(s — \)sp '(s)ds if 7 s*> p~'(s)ds < oo form
the principal solutions at o0 of (6). Thus, we see that the criteria i) and ii) take into
consideration only polynomial solutions of (6).

Now let us investigate the oscillation properties of (1) near a finite singularity,
e.g. near the point a = 0. Then similarly as in the case of an infinite singular point
one can verifly that the principal solutions at @ = 0 of (6) are of the form

(1,x) if f§x*p (x)dx =00, 6>0,

(6 fap '(x)x?dx — [2(t — x) p~ (1) dr) if [§x? p(x)dx < o0
and [% p7!(x)ds = o,

(Js(x=1p(r)dr, [s(t—=x)tp ' (t)dr) if [§p '(x)dx < .

Using Theorem we can now formulate the corresponding criteria for (1) to be oscil-
latory at 0.

(y1, y2) =
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3. AUXILIARY RESULTS

In this section we give several auxiliary statements which we shall use in the proof
of Theorem. The main idea of this proof is described in the following statement.

Lemma 1. If there exists a function ye W3(I), suppy = I, = [c,d] = I such
that I(y; ¢, d) < O then there exist at least two points x,. x, € I which are conjugate

relative to (1).

Proof. [8]
Note that the Sobolev space W3(I) consists of all real-valued functions whose

generalized derivatives up to order 2 belong to L,(I).
We shall also need the following statements.

Lemma 2. Let equation (1) be disconjugate on an interval 1o < I, xy, x; €1,
dy,d, € R. Then there exists a unique solution y(x) of (1) for which y(x,) = d,,

Wxy) = d,.
Proof. [3, Chapter I]
Lemma 3. Let (U, V) be a self-conjugate solution of (5) such that the matrix U
is nonsingular for xel, < 1. Then
(Us(x). Vi(x)) = (U(x) 2 U™"(s) B(s) UT~(s) s, V(x)
JEUTY(s)B(s) U (s)ds + UT7(x)), cely,
is also a solution of (5) for x € 1,.

Proof. [3, Chapter IT]

Lemma 4. Let equation (1) be disconjugate on 1. If (U,,V,) is the principal
solution at b of the corresponding LHS, then the matrix Uy(x) is nonsingular on I.

Proof. [I1]

Lemma 5. Consider the differential equations
™ (Pi(x) ¥) + pox) y = 0,
(®) (Pi(xjw) + po(x)u = f(x).

where pi(x) >0, f(x) >0, xel, = [1. 1], f(x). po(x) € C(15). py(x)e C'(I,).
If there exists a solution u(x) of (8) for which u(t;) = 0 = u(t,) and u(x) has a zero
point on the interval (t, t,) then there exists a solution y(x) of (7) having at least

two zeros on I.
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Proof. Let y(x) be any solution of (7) and let u(x) be the solution of (8) from
Lemma. Muliiplication of (8) by y(x) and integration by parts from x, to x,, x;, X, €
€[ty 1,], gives

/() y(x) dx = [py() (w/(x) w(x) = wx) ()T -

Let yo(x) be the solution of (7) satisfying the initial conditions yo(t;) = 0, yo(t,) = 1.
Then po(x) > 0 in some right deleted neighbourhood of t,. Let ¢ € (l,. 1,) be such
that u(c) = 0. First, let us consider the case u'(¢) = 0. Then [f, f(x) yo(x) dx = 0,
hence yo(x) must change its sign on (1,. ¢} (since f(x) > Oon /). If u( + 0, suppose
that yo(x) > 0 on (1,.1,]. In thc case u'(c) € 0 we have [¢ f(x) yo(x)dx = p(c).

.u'(¢) yo(c) < 0, a contradiction. If u( ) > 0, there exists 15 € (c. l] such that

u(t3) = 0 and u'(1;) £ 0. Then [ f(x) yo(x)dx = p(t5) u'(t3) yo(t3)
— pleyu'(c) yo(c) = 0 and we have again contradiction.

4. PROOF OF THEOREM

Let yy, y, be principal solutions at b of (6} and let (U,, V,) be the principal solu-
tion at b of the corresponding LHS generated by y, and y,. Dencte h(x) = ¢, y,(x) +
+ ¢, ya(x). The transformation y = h(x} u transforms cquation (6) into the equation

(9; (Px)u")" + (Q(x)u') =0,

where P = ph®, Q = 2[h(ph’) + hph” — ph'*], sce e.g. [1]. Since any solution
of (6) has at most 3 zeros on I, there cxists d € I such that h(x) + 0 on I = (d. b).
We shall show that the second order equation

(1) (PLgwy + Qx)w =0

is disconjugate on I,. To do it, it suffices to find a solution we(x) of this equation
which does not vanish on I,. Let wy = (y,/h) if ¢, # 0 and wy = (y,/h) il ¢; =0
(then. of course, ¢; =+ 0). Then

wo = h™2(yih — yih') = c;h 2 (yiy, — yyys) = c;h7? det Uy(x) £ 0
in the case ¢, #+ 0 and
wo = —cyh 2detUyx) £ 0 if ¢, =0.
We shall show that w, is a solution of (10). Let ¢, # 0, then
wo = (yi/h)" = h™'y} — 20721y, — h ™2y h" + 2073y h'?
and
(PWA)’ + Qw, = (phyl) = 2(pyih') = (ph"y,) + 2(ph™"h%y,) +
+ 2k~ Ty — W2y ) (W phy + hph” — ph'?) =

”r ".,r

= Wpy; + hpyl) — 2yi(ph’y = 2h'pyy — yi(ph") —
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— yiph" = 2ph™2h3y, + 2h~'(ph') h'yy + 2ph™'h'h"y, +

+ 2ph™'h'2yy + 2y5(ph’) + 2ph"yy — 2phT'y k' —

— 257 W'(ph’y y, — 2ph™'Wh"y, + 2phT2h"y, =

= h(pyl) — W'pyi — yi(ph") + yiph" = cx(va(pyl) — vapyi —

— ni(pys) + yipy3) = Cze;(U;er —~ViU)e, =0, ¢ = (Lo)T,
e; = (0, 1)7, since the solution (U, V;) is self-conjugate. Similarly (Pwy) + Qwo = 0
if ¢; = 0. Consequently, equation (10) is disconjugate on I,.

Let t,,1,€l,, t, < t,. As equation (6) is disconjugate on I, there exists a unique
solution §(x) of this equation for which

() FO%y) =), 3()=0, i=0,1.

Let w = (§/h)'. Then Ww\1;) = 0 = W(t,) and W is a solution of the equation

(12) (PW) + Qw =k,

k being a real constant. Indeed, the function j/h is a solution of (9), hence W is a solu-
tion of (12). If k = 0, then W is a solution of (10) with two zeros on I, which con-
tradicts disconjugacy of this equation, hence k # 0. Suppose that there exists
13 € (14, 1) such that W(t3) = 0. Then by Lemma 5 there exists a solution of (10)
having two zeros on I, a contradiction, hence the function w = (§/h)' does not

vanish on (1, 1,).
By Lemma 3 the pair of 2-dimensional vectors

(u, v) = (Uy(x) [2 Uy '(s) Bs) Uy ~'(s) ds(fi: Uy *(s) B(s) Uy ~'(s) ds) c.,
(Vo(x) [2 Uy Y(s) B(s) Uy ~'(s)ds — U ~'(x)).
([ Uy '(s) B(s) Uy ~'(s) ds) ¢)

is a solution of the LHS corresponding to (6), hence the function z = elu is a solu-
tion of (6). One can easily verify that z(x) satisfies the boundary condition (11)
(with z instead of J). As the boundary value problem (6), (11) has unique solution,
z(x) = j(x). Further, we have

Ji 377 dx = fi2oTBo dx = 2 (¢ — w7 odx = [uToJ5 —
AT+ o) dx = [T — fuT(ATe — ATo)dx = el =
= —u'(ty) ofty) .

Denote B(x) = U, '(x) B(x) U; ~'(x). Then
W) o(t) = — ([l B! 2 Bax UL() (%(n) [2 B dx -
= U7 (1) (2 Bdx)™" e = —cTU(t)) Vi(t)) ¢ + (2 Bdx) ™' c.

Now, let x, € I be arbiirary, let § > 0 be such that x, + & € I and let ¢(x) be any
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function of the class C* for which ¢(x,) = 0, ™(x,) = h'(x,), i =0,1,x, =
= Xo + 0. Denote K = I(¢; xo, x;) + [h(ph") — h'ph"] =y, As

lim [£ g(x) h*(x) dx = — oo, there exists x, €I such that [} q(x) h*(x)dx < —2|K]|
t—b-

whenever 7 € (x,, b). Moreover, since every solution of (6) has at most 3 zeros on I,
x, can be chosen in such a way that h(x) % 0 on [x,, b). Further, according to the
definition of the principal solution at b of (5) there exists x; € (x,, b) such that
¢"[f, Uy '(s) B(s) U3~ "(s)ds] ™" ¢ < |K| whenever e(x3, b)
Define
0, for xe(a,xq),
o(x), for xe[xq,x,),
wx) =1n(x), for xe[xy,x3),
J(x), for xe[xyx;),
0, for xe[xs,b),

where §(x) is the solution of (6) satisfying (11) with t; = x,, {, = x3. We have
I(y; a, b) = 1(y; xo, x3) = [ (p(@")* + q9*)dx +
+ [ (p(h")* + gh?) dx + 33 (p(5")* + q57%) dx =
= I(p; Xo, x;) + [W'ph" — h(ph"y ]3> +
+ [2gh*dx + ([ U, '(s) B(s) Uy ~'(s)ds) ™" ¢ = ¢TU(x,) V,,(x2 Je=
o K4 ([ U ) B UL () ds) e+ 2 b dx + 7

As the function (§/h) is monotonic on (x,, x3) (since (§/h)' # 0 on (x,, x3)), by the
second mean value theorem of integral calculus we have [ gj* dx =

= |2 qh*(5[h)* dx = [}, gh* dx, where & e(x,,x;). Consequently, I(y; xo, x3) =
=K+ c([2U; ' (s)B(s) Uy ""(s)ds)™* ¢ + [5, gh* dx < K + |K| — 2|K]| < 0.
The proof is complete.

Remark. A natural question to ask is, how to modify the above given proof to
be applicable to the equation

(13) (=1 (p(x) y™)™ + g(x) y = 0.

The main difficulty consists in proving the monotonicity of the function (y/h) on
(x2, x3) in order to justify the use of the second mean value theorem of integral
calculus. In our Theorem we have proved this monotonicity via disconjugacy of
equation (10) which implies that every solution of (12) has at most two zeros on 1.
Following this idea in the higher dimensional case, it is not difficult to prove that
the (2n — 2) order equation arising from (13) after the transformation y = h(x) u
is disconjugate on I, (i.e. there exists no nontrivial solution of this equation having
two different different zeros of multiplicity (n — 1) on I, but this disconjugacy is not
sufficient for monotonicity of the function (y/h). To prove this monotonicity we
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need disconjugacy of a linear differential equation introduced by Leighton and
Nehari. By their definition a linear differential equation of the n-th order is dis-
conjugate on an interval I if no nontrivial solution of this equation has more than
(n — 1) zeros on I, every zero counted according to its multiplicity. However, to
prove this disconjugacy is, in general, more difficult then to prove disconjugacy
defined by means of conjugate points. Our method works for fourth order equations
since for the second order equations the disconjugacy in the sense of Nehari coincides
with the disconjugacy defined by means of conjugate points.

References

[1] C. D. Ahlbrandt, D. B. Hinton, R. T. Lewis: The effect of variable change on oscillation and
disconjugacy criteria with applications to spectral theory and asymptotic theory. J. Math.
Anal. Appl. 81 (1981), 234—277. .

[2] J. H. Barrett: Oscillation theory of ordinary linear differential equations. Adv. in Math,
3(1969), 415—509.

[3]1 W. A. Coppel: Disconjugacy. Lecture Notes in Math. No 220, Springer-Verlag, Berlin—
Heidelberg 1971.

[4] I. M. Glazman: Direct Methods of Qualitative Spectral Analysis of Singular Differential
Operators. Davey, Jerusalem 1965.

[5]1 D. B. Hinton, R. T. Lewis: Oscillation theory at a finite singularity. J. Diff. Equations 30
(1978), 235—247.

[6] K. Kreith: Oscillation Theory. Lecture Notes in Math, No 324, Springer-Verlag, Nex Yrok
1973.

[7] R. T. Lewis: Oscillation and nonoscillation criteria for some self-adjoint even order dif-
ferential operators. Pacific J. Math. 51 (1974), 221—234.

[8] E. Miiller-Pfeiffer: Existence of conjugate points for second and fourth order differential
equations. Proc. Roy. Soc. Edinburgh 894 (1981), 281—291.

[9] W. T. Reid: Sturmian Theory for Ordinary Differential Equations. Springer-Verlag, New
York-Berlin—-Heidelberg 1980.

[10] C. A. Swanson: Comparison and Oscillation Theory of Linear Differential Equations. Acad.
Press, New York 1968.

[11] E. C. Tomastik: Singular quadratic functional of n dependent variables. Trans. Amer.
Math. Soc. 124 (1966), 60— 76.

Souhrn

OSCILACNI KRITERIA PRO SAMOADJUNGOVANOU LINEARNI
DIFERENCIALNI ROVNICI CTVRTEHO RADU

ONDREJ DoSLY, JAN OsiCKA
V préci jsou odvozeny dostatedné podminky pro koeficienty rovnice IV. tadu (py")” + gy = 0

zajistujici oscilatori¢nost této rovnice v blizkosti kone&ného nebo nekonedného singularniho
bodu. Tyto podminky neobsahuji Z4dnd omezeni tykajici se znaménka funkce g.
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Pe3rome

KPUTEPUU KOJIEBATEJIBHOCTU [JII CAMOCOIIPS)KEHHOI'O JIMHEMHOI'O
JUOOEPEHIIAJIBHOT'O YVPABHEHUA 4-OI'0 ITOPSAAKA

ONDREJ DoSLY, JAN OsICKA
B paboTe ycTaHOBISHBI JOCTaTOYHBIE YCIOBHA M KoehPUIMEHTOB ypaBHEHHs 4-0T0 MOPsAKA
(py")” + qy = 0, KOTOpbIE TapaHTHPYIOT KONeGATELHOCTh €r0 PELUEHMIt B OKPSCHOCTH KOHEYHOIH

MM OSCKOHEYHOM CHHIYJIIPHOM TOYKU. DTH YCIIOBMS HE COAEPXKAT HUKAKHM OrpaHuveHH# s
3Haka GyHKUMH q.
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