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. TWO-SIDED SOLUTIONS OF LINEAR INTEGRODIFFERENTIAL
EQUATIONS OF VOLTERRA TYPE WITH DELAY
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Summary. For the system x = A(t) x+ ¢ £  R(t — s) x(s) ds + & [{_ 1 P(t — 5) x(s) ds,
0 < T < oo, where A(t) is either a constant or a periodic matrix, the existence of two-sided
solutions with x(0) = x, is studied in connection with the behaviour of the solutions of the
unperturbed system for ¢ = 0. A Floquet type theorem for the periodic case is also proved.
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Consider the integrodifferential equation

(1) d)fT(:) = Ax(t) + sJ.t

-0

t

R(t = 5) x(s) ds +J P(t — 5)x () ds ,

t=T

here x e R", ¢ > 0 is a parameter, A is a constant n X n matrix, 0 < T < o0, and
the matrix functions R, P satisfy the conditions

(I) R(?) is continuous and

(2 [R®)] s e for t>0,

where a. y are positive constants, 0 < o < 1 and ||B] is the euclidean norm of
a matrix B; .
(I1) P(z) is continuous on the interval [0, T].

Definition. 4 solution x,(t) of the equation (1) is called two-sided if
1. x, is defined on the interval (— oo, o0),
2. lim ||x, — x|, = O for any L> 0, where |x, — x|, = max |x,(t) — x(t)| and
-0 ‘ -LStsL
x is a solution of the equation
dx

(3) 5=Ax.

Remark. The above definition inciudes also the case of a matrix solution of (1)
i.e. either x,(t), x(t) e R or x,(t), x(t) € M(n), where M(n) is the set of all n x n
matrices.
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We study the problem of existence of two-sided solutions of the equation (L).
We also study the case when the matrix A is nonconstant and periodic. Yu. A.
Ryabov [2] proved a sufficient condition for the existence of a two-sided matrix
solution of the equation (1) without the second integral term, i.e. when P = 0, and
has formulated a sufficient condition for the existence and uniqueness of a two-sided
solution of this equation.

Theorem 1. Let the conditions (I), (I1) be satisfied and let the eigenvalues Ay, 2, ...
.oy A, of the matrix A satisfy the condition
(4) min Re 4; > —y.
j -
Then there exists an ¢¥ > 0 such that the following assertions are valid:
(a) For any e€(0, €*] there exists a two-sided matrix solution of the equation (1)
of the form

(5) X:(t) = eDta
where D = D(e) is a matrix independent of t and lim D(e) = A, i.e.
lim |D(s) — Af| = 0. &0
adY

(b) For any €€ (0, e*] and x, € R" there exists a unique solution x,(t) of the equation
(1), satisfying the condition x,(0) = x, and x,e U; = {z e C°((— 0, ), R"):
z(t) e” < oo for all te (—o0, 0]}, where & is a constant and 0 < § < y.

The assertion (a) of this theorem concerning the case P = 0 has been proved
by Ryabov in [2], where the existence of the matrix D is proved by the method of
matrix series. The proof of the assertion (b) is not given in [2]. We prove both
assertions of Theorem 1 using the Banach fixed point theorem.

We need the following lemma.

Lemma 1. Let 0 < 7 < o0, ue C%[0,7], R) be a nonnegative function, a = 0,
b=0,k=0,p >0 constants and

©) u(t) < a + kﬁj’:u(z) de ds + bf;f:(s — 2P u() de ds,
te[0,7]. Then

(7 u(f) < aexp {IEC *+

b g .
ﬂ_—(ﬂ+l)t }, te[0,7].

Proof. From the Fubini theorem it follows that the inequality (6) is equivalent to
u(t) < a + f [k(t _0 4 %(r - r)”]u(t) de

and applying [1, Theorem 1.4,] we obtain the inequality (7).

t

0
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Proof of Theorem 1. Let D be a constant n X n matrix. The matrix function
X,(t) = € is a matrix solution of the equation (1) if and only if

t t

R(t — s)ePds + s'[ P(t — s) e ds.

t—T

DeP' = Ae®* + sf

Let us look for the matrix solution of this equation in the form D = 4 + Q, where Q

is an unknown matrix. Putting ¢t = 0 in this equation we obtain the following equa-
tion for Q:

© T
(8) 0= sJ’ R(©) e~ 4+29 4@ + GJ‘ P(@) e~ 1*9° 4o .

0 0
Using the substitution s = ¢ — © in the integrals on the right-hand side of (8) one
can show that if Q is a matrix solution of (8) and D = A + Q then e is a matrix
solution of the equation (1). Therefore it suffices to solve the matrix equation (8).

The condition (4) implies that there exists 4, —y < p < min Re 4; and a constant

k > 1 such that J
9)° e 4| < ke™*®, @20,

Let ¥, = {QeM(n): |Q| < x}, where M(n) is the set of all n x n matrices and
0 < % <y + pu. Define the mapping

FoV,-> M), F,(0)= g'[ R(O) e~ “*®8 40 +

0

T
+ ej P(@) e4+20 40

0

Lemma 2. There exists an ¢* > 0 such that the mapping &, is contractive for
e€ (0, e*].

Proof. If Qy, @, € ¥, then using the inequalities (2), (9) we obtain

(10) HyS(Ql) - fs(Qz)” <e (k-[m@“'le"(‘“‘l‘)@”e"(ll@ _ e—Q;s” do +

0

Tk J "4 p(0)] =2 — =09 d@).

0

The mean value theorem implies that
o0 — 0] 5 sup [e2°] 0,6 ~ 0:6] = 0|0, - 0]
Q€V s

for any ©. Using this inequality and (10) we have

[7.(0)) — #.Q,)] £ ¢k (J'we'w@“ do +

0

+ [[odemepo)] a0) o - eif

0
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where { = y + u — ». If we put s = {@ in the first integral then the above inequality
takes the form

|170,) = #.Q)] < ek[T™* I« + 1) + €],

where C = [J @e*®°|P(0)] dO < 0. Since 0 <a+1<2 we have 0<
< I'(x + 1) < oo. Therefore if

(11) 0<e<eg:=vk[**'T(x+1)+C]",
where 0 < v < 1, then

”‘g’—e(Ql) - y:(Qz)u = V”Q1 - Qz” >

i.e. the mapping &, is contractive.

Lemma 2 implies that if ¢ € (0, ¢,), where ¢, is defined by (11), then the mapping %,
has a unique fixed point Q € V,. This matrix is a unique solution of (8) belonging to
the set V,. From (8) we have that lim Q(¢) = 0 and so lim D(e) = 4, i.e.

£=0 £=0

lim | D(¢) — A|| = 0, where D(¢) = A + Q(e). It remains to prove the assertion (b)
Y

of Theorem 1. We shall prove that for any x, € R" there exists a unique solution x(r)
of the equation (1) satisfying the conditions x(0) = xo and sup |x(1)] €’* < oo,
—0<t=s0

where
(12) 0<é<y, u+6>0

and p is the number from (9). Since u + y > 0 there exists a number & satisfying
(12). Define the subspace

B, = {xe C°((—0,0], R"): sup |[x(t)] e < o} .
-~ <t=z0

The set B; with the norm |x||, = sup [x(¢)| ¢ is a Banach space. Define the
mapping ~w<t£0
G,: B; » C°((—», 0], R"),

(G.x) (1) = sl: J' oAt ( f in(s — ) x(d) dr +

0
+J. P(s—r)x(t)dr)ds], —0<t=Z0.
s—=T

We shall prove that G,(B;) = B; and G, is contractive for &¢ > 0 sufficiently small.
If xe B;and —o0 < t < 0 then

0] 5 o[ [ o[ eremnts = oy oe +
+ I ‘ 1P = 1001 dr) ds] < ek(1,(1) + L() |xls»

s—
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where

* 0 s
I(t) = J e‘”(“"(J e 17T (s — 7)*7 1 dr) ds,
t -0
0 'S
L(t) - I e<(J' 1P(s — )] e dr) ds .
t s—=T

The function I,(t) can be written in the form

0

I,(f) = e | e~ (w*on (J e 7HEN(g _ g)r=l dr) ds,
- 00

Ji

and using the substitution u = (y — §) (s — t) we obtain

r0 00
I(f) = e e"(“”)‘(J. (y — 8) % “u="1 du) ds =
t 0

0
=TI (-9 e”'J e~ WHs g —

t
=T(x)(y — 8)™ (1 + 8) ™' e(e”®*P* — 1),
The function I,(t) can be written in the form

1) = '[ :’e-w-»( J "|P(6)] & ao) e“"‘) ds =

0

= eﬂﬂ(JTuP(@)u e*® d@) (p+ 0) "t (emteroxr — 1),

0

Therefore we have the inequality
[Ge x(1)]] € £ k(K + Kj) e®* (et — 1) x|,

where K; = I'(®) (y — 8) ™ (u + 8)™* > 0, K, = (7 |P(©)] ¢?® dO) (u + 6)"* >
> 0. Since p + 6 > 0 we obtain

sup |G, x(1)] € < ek(Ky + K,) ||x|ls < o0, ie. Gxe B,
—w<t<0
and therefore G,B; = B;. Since G, is linear we have

”Gsxl - Gex2"6 = ”Ge(xl - xz)"a = Bk(Kl + K3) ”xl - sza

for any x,,x, €B; and thus the map G, is contractive for any ¢ e (0, &), where
&=k '(K, + K;)"'. From now on we assume ¢ ¢ (0, ). Then the map G, has
a unique fixed point ¢, € B;. Since this map is linear and 0 € B; we conclude that
®o = 0. ‘ .
Let ¢,, ¢, be two solutions of the equation (1) satisfying the condition ¢,(0) =
= 0,(0) = x5, sup |lp(t)] € < 0, i =1,2 and let ¢(t) = ¢,(t) — ¢,(t). Then
—o0<t=z0
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sup |(?)]| € < . The mapping @ e C°((— o0, 0], R"), &(t) = ¢(t), —o0 <

—0<t<0
<1 <0, is a fixed point of the map G, and therefore ®(t) = 0. Thus if there is
a two-sided solution of (1) belonging to B, then it is uniquely defined on the interval
(— o0, 0]. We prove that such a two-sided solution does exist and it is also uniquely
defined on the interval [0, o0).

The function ¥(t) = e®'x, is a two-sided solution of the equation (1) satisfying
the initial condition ¥(0) = x,. If ¢ > 0 is sufficiently small then the condition (4)
and the equality lim D(g) = A imply that the eigenvalues v, v,, ..., v, of the matrix

ad ]
D(e) satisfy the condition min Rev; > —y. Therefore there exists a constant f,

J ~
—7 < jfi < min Re v; and a constant k > 1 such that
j
e *@®| < ke™™, © 20 or [ <ke, t=<0.
Since # + & > 0, where u is the number from (9), we have g + & > 0 for ¢ suf-
ficiently small. Therefore for such ¢ > 0 we obtain
sup  [[e®@x,| € < sup (ke“‘”"”x ) = &[xo] < oo
—0<t=<0 - <
This means that the two-sided solutlon Y’(t) = eP?®x, belongs to the set B;. It
suffices to prove the uniqueness of two-sided solutions of the equation (1) belonging
to the set B, on the interval [0, o0).
Let ¢ (1), @,(f) be two-sided solutions of the equation (1) belonging to the set B,,
and satisfying the condition ¢,(0) = ¢,(0) = x,. Let ¢ = ¢; — @,. Since we have
proved that ¢,(t) = ¢,(t) for all t & (-- 00, 0], by (2) we obtain for ¢ = 0:

le(d)] =& f ;e““”( J:R(s — ) p(7)dr +
+ J :_TP(s ~ 9 o(r) dr) ds

s efefeen([eewnts - oy ol oe + K [ Totn ) ds],

where v > max Re 4;, ¢ > 0 (||e*'| < ce” for all t = 0) and K = max | P(t)[.
j 0LtsT

It suffices to show that for any 0 < 7 < o0, ¢(f) = 0 for all ¢ € [0, {]. From the
above inequality we obtain

lo()] < S[CMﬁ,.ﬁ(s ot (o)) deds + CKJ;J:”q)(r)” de ds].

Applying Lemma 1 to this inequality we obtain ¢(t) = 0 for all t € [0, {].

We have shown that for ¢ > 0 sufficiently small and any x, € R" there exists
a unique solution x, of the equation (1) satisfying the condition x,(0) = x, and
defined on the interval (— oo, o). This solution has the form x,(t) = ¢”®*x,, where
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D(e) = A + Q(e), llm 0(e) = 0. It remains to show that x, has the second property

of a two-sided solutlon i.e. lim |x, — x| = O for any L > 0, where x(t) = e*'x,.
e—0

If X,(t) = ¢®* and X(t) = e’ then

|X.(1) = X(1)] = [le*[2@* — E]|| < [le*] 2" — E] .

The mean value theorem implies that for any L > 0

max o2 — £ £ max (10() )} 5 LCW] QG

—L<t=<L

where C(L) = max [e?®"|. Therefore we have
—L=<t<L

lim [x, — x|, = hm ma:x [[x() = x(t)] < Lc(L) []x0|| 11m [I 0(e)]| =0

£—~0

and the proof of Theorem 1 is complete.
Let us consider the integrodifferential equation

(13) "_’(‘9 — A x(1) + ¢ .[ '

—

R(t — s) x(s)ds + eJ“ P(t — s) x(s) ds,

t—T

where R, P, T are as above and A(t) is a continuous t-periodic matrix function on
(=0, @), 1> 0.

If X(¢) is the normed fundamental matrix of the linear system
dx
14 — = A(t) x
0 o

then by the Floquet theorem
(15) X(1) = o(1) e,

where A is a constant matrix and &(f) is a continuous t-periodic matrix function.
Introducing a new variable y = ®~'(t) x the equation (13) becomes

(16) 9—2(7" — Ay(0) + c07'(1) j R(t = ) 0(s) y(s) ds +

rea(n) j P(t — 5) 9(s) y(s) ds .

Let us look for the matrix solution e” of the equation (16), where D = 4 + @,
Q is an unknown matrix. This is a solution of (16) if and only if

t
(17) DeP = Ae” + sdi'l(t)j R(t — s) &(s) e ds +

-~

+eo(1) J' P(t — 5) &(s) > ds.

t—T
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Putting ¢t = 0 in this equation we obtain the equation for Q:
o

0
Q0 =c¢ R(—s) ¢(5) A+ 4o 4 EJ p(_s) (D(S) A+ Qs 4o
J -0 -T

Introducing the substitution —s = ¢ this equation becomes

(18) 0=: MR(o‘) B(—0) e+ 97 45 EITP(J) P(—0) e+ 97 dg .

Jo 0

Let Q be a solution of (18). Then

DePt = AePt + 8_[ R(o) #(—0c) e " do. e +
0
T
+ 8.[ P(o) #(—0) e P?do . e,
0

where D = A + Q. If ¢ = t — s then the above equatioh becomes

t
(19) DeP' = Ae®* + sj R(t — s) d(s — t)e P49 ds. P +

— 0

t
+ aJ. P(t —s) (s — 1) e P9 ds . Pt

t-T
If the conditions
(20) &()R(t — s) (s — 1) = R(t — s) P(s) forall t,seR,
(21) O(1)P(t — s) (s — 1) = P(t — s) &(s) forall t,seR
are satisfied then the equation (19) is equivalent to the equation (17). If A(f) = A
is a constant matrix then these conditions are trivially satisfied.
Since the matrix functions @~ '(¢), #(t) are continuous and periodic they must be

bounded. Therefore using the same procedure as in the proof of Theorem | we are
able to solve the equation (18) and to prove the following theorem.

Theorem 2. Let A(t) be a continuous, t-periodic matrix function on the interval
(— o0, ) and let the matrix functions R, P satisfy the assumptions of Theorem 1.
Let &(t), A be the matrices defined by (15), let the eigenvalues x4, %5, ..., %, of A
satisfy the condition

minx; > —y
J
and let the conditions (20), (21) be satisfied. Then there exists an ¢* > 0 such that
for any ¢€(0, e*] the following assertions are valid:
(a) There exists a two-sided matrix solution of the equation (16) of the form

}’s(t) — eDt ,
where D = D(¢) is a matrix independent of t and lim D(g) = A..

£=0
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(b) For any yo € R" there exists a unique two-sided solution y(t) of the equation
(16) satisfying the initial condition y,(0) = y, and y,€ Uy = {z € C°((— o0, o0),
R": ||z(t)] € < oo for all te(—o0,0]}, where & is a constant and 0 < § < y.

(c) There exists a two-sided matrix solution X, of the equation (13) satisfying the
condition X,(0) = E, where E is the unit matrix. This matrix solution has the
form X (1) = &(t) e®®*, where &(t) and D(¢) are as above.

(d) For any x, € R" there exists a unique two-sided solution x, of the equation (13)
satisfying the initial condition x,(0) = x,, x,€ U, = {z € C°((— 0, ®), R"):
[z(t)] " < oo for all te(—o0,0]}, where y is a constant, 0 < n <y
and x,(t) = ®(t) e®®'x,, &(t), D(e) being as above.

The assertion (c) is a generalization of the Floquet theorem.
The author would like to thank Professor V. Seda for his careful reading of the
manuscript and kind remarks on this matter.
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Sahrn

OBOJSTRANNE RIESENIA LINEARNYCH INTEGRODIFERENCIALNYCH
ROVNIC VOLTERROVHO TYPU S ONESKORENIM

MILAN MEDVED
Pre systtm x= A(t)x+ e[l R(t— ) x(s)ds+ e [i_p Pt — ) x()ds, 0< T< ©
kde A(t) je bud konStantna, alebo periodickd matica, je Studovana existencia obojstrannych

rieSeni pre malé hodnoty parametra ¢ > 0.V pripade, ked je matica A(t) periodicka, je dokazana
veta Floquetovho typu.

Pe3ome

JABYCTOPOHHME PEMIEHUS JIMHENMHBIX UHTEI PO-JUPOEPEHLIVAJILHBIX
YPABHEHUY TUITA BOJITEPA C 3AIIA3JILIBAHUEM

MILAN MEDVED
Hccnenyercst Cym:CTBOBaHME ABYCTOPOHHUX pemieHuil ¢ ycnoBueM x(0) = X, I CHCTeMBI
x(t) = A(t) x(£) + € [L o R(t — 3) x(s5) ds I+ & [i_7P(t — 5) x(5) ds B CBA3M C IOBEAeHMEM pelIIe-
HHil HEBO3MYIIeHHOMN cucTeMsl At ¢ = 0, rae 0 < T'<< 0 u A(¢) — NOCTOAHHAA WM IEPHOIH-

yeckas mMaTpuua. IIpuBeNeHO TaKXke AOKA3aTeJbCTBO TeOPeMbI THIA (IIoKe s NEPHOAUYECKOTO
ciyvas.
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