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CONTINUOUS DEPENDENCE ON A PARAMETER OF SOLUTIONS 
OF GENERALIZED DIFFERENTIAL EQUATIONS 

; \ . DANA FRAKKOVA, Praha 

(Received June 9, 1986) 

Summary* In the theory of generalized differential equations an interesting convergence effect 
occurs which was described by J. Kurzweil as the R-emphatic convergence. Using the notion of 
a generalized differential equation with a substitution, so called convergence under substitution 
will be defined and will appear to be very similar to the R-emphatic convergence. A sequence of 
equations which is convergent under substitution can be transformed to another sequence of 
equations which converges to its limit equation in a classical way, i.e. with the uniform conver­
gence of solutions and of right-hand sides of these equations. 

Keywords: generalized differential equation, generalized differential equation with a substitu­
tion, continuous dependence on a parameter, R-emphatic convergence, convergence under 
substitution. 
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INTRODUCTION 

If we study the behavior of solutions of a sequence of ordinary differential equations 

dx 
— =f(x,t) + g(x)cpk(t) 

where the functions cpk "tend to the Dirac function", we find that the classical con­
tinuous dependence theorems cannot be used. J. Kurzweil investigated this problem 
in 1958 in his paper [K2] and introduced the so-called R-emphatic convergence of 
the right-hand sides of generalized differential equations 

• ^=DFk(x,t), 
dr 

which ensures the pointwise convergence of solutions of these equations. 
In this paper an auxiliary notion of the generalized differential equation with a sub­

stitution 

d r 
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is defined; it enables us to give an effective approach to the concept of the R-emphatic 
convergence. 

1. THE GENERALIZED DIFFERENTIAL EQUATION WITH A SUBSTITUTION 

1.1. Let N denote the set of all positive integers, let RN (N e N) be the N-dimension-
al Euclidean space with the norm | • j , Rl = R. The symbol (#„)*=.„0 denotes a sequence. 

1.2. If a function g:\_a, b]-+ RN, —co<a<b< 4- oo, is of bounded variation, 
it can be written as a sum of its continuous and jump parts; these will be denoted 
by gc, gJ, respectively. We assume that gc(a) = g(a), gJ(a) = 0. 

We will write g(t —) = lim g(r), g(t + ) = lim g(T), if the limits exist. The symbol 
t-+t- t-*t+ 

g(v(t + ) +)denotes the same as g(s + ) where s = v(t + ) . If vis an increasing function, 
then evidently g(v(t4-) +) = lim g(v(x)) provided the left-hand side has sense. 

t-+t+ 

1.3. A function x: [a, b] -+ RN is called regulated if the onesided limits x(t —) 
and x(t+) exist and are finite for all te(a,b] and r e [a, b), respectively. Since 
every regulated function x: [a, b] -» RN is bounded, we may denote ||x|| = 
= sup{|x(t)|; te[a,b]}. 

Let us denote by ^ [ a , b] the normed linear space of all regulated functions from 
[a, b] to RN with the norm || • ||. 

Then $N[a, b] is a Banach space. For information about regulated functions see 
[F2]. 

1.4. A set si c MN\a, b] is called equiregulated if it has the following property: 
For every e > 0 and t0 e [a, b] there is 5 > 0 such that 
(i) if x esi,t'e [a, b] and f0 - 5 < f < *0, then |x ( f 0 - ) - x(t')| < 8, 

(ii) if x e si, t" e [a, b] and f0 < t" < t0 4- 5, then |x(t") - x(r0 + )| < e. 
In [F2], Th. 2.18 it is proved that for a set si c= 0tN[a, b] the following condi­

tions are equivalent: 
(i) si is relatively compact in 3#N[a, b]; 

(ii) si is equiregulated and for every t e [a, b] the set (x(r); x e si} is bounded; 
(iii) the set (x(a); x e si] is bounded and there is an increasing continuous func­

tion Y\\ [0, co) ~> [0, OD), rj(0) — 0 and an increasing function K: [a, b]-+R such 
that 

\x(t2) - x(lx)| ^ rj(K(t2) - K(*i)) for every x e i , a g r 1 < r 2 g b . 

1.5. In this paper we will use the generalized Perron integral, which was introduced 
by J. Kurzweil in [ K l ] . A treatise of this integral which is sufficient for our purposes 
can be found in [SI] . We will use the notation from [SI], 
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A finite sequence of numbers A = {a0, xu <xl9..., ak_l9 Tk9 <xA} is ca\\e(^ a partition 
of the interval [a, b] if 

a = a0 < ccx < . . . < a^ i < ak = b and a|._l = Ti = a . , j = 1,2, . . . , fc , 

Given a function 8: [a, b] -> (0, oo), we denote by s/(8) the set of all partitions A 
such that 

[ * I - I > « I ] c [T. ~ <KT*)>Ti + ^(Ti)] f o r ' = 1,2, . . . , k . 

The symbol 5^[a, b] denotes the system of all sets S c [a9 b] x [a, b] satisfying 
the following condition: For every T e [a9 b] there is <5(T) > 0 such that (T, t)e S 
for every t e [a, b] n [T — <5(T), T + <5(T)]. 

Let SeSf[a9 b]9 assume that a function U: S -> RN is given. If 3 is a function on 
[a, b] which corresponds to S then for every partition A e s4(8), A = {a0, Tl9 a1 ? . . . 

k 

• ••>a*-i- T*> ock} the finite sum 5(1/, A) = £ [^(T,-, a.) — U(T(, O^-I)] is defined; 
i = l 

s(U9 A) is the integral sum corresponding to the function U and the partition A. 
A function U: S -> RN

9 Se Sf[a9 b] is called integrable over [a9 b] if there exists 
y e RN such that for every e > 0 there exists <5: [a, b] -> (0, 00) such that for every 
A e s/(d) the inequality \s(U9 A) - y\ < e holds. The element yeRN is called the 
generalized Perron integral of U over the interval [a9 b] and will be denoted by 
J* DI / (T, t). If ft DU (T , t) exists then we define ft DI / (T, t)= -ft D U ( T , f). We set 
ft DI / (T, r) = 0 if a = b. 

In [Kl ] , Def. 1,1,1 and Def. 1,1,4 an equivalent definition of the generalized 
Perron integral is given (the equivalence is proved in Th. 1,2,1 in [Kl]). This defini­
tion can be formulated as follows: 

The function U: S -> R, Se£f[a, b] is integrable over [a9 b] and has the integral 
y e R if for every e > 0 there is 8: [a, b] -> (0, 00) and functions m9 M: [a9 b] -> R 
such that y — 8 < m(b) — m(a) ^ M(b) — M(a) < y + e. and (t — T) [m(t) m(x)] ^ 

-S (* - T ) [tf(T> 0 - ^(T> T ) ] = 0 - T ) t M ( 0 - M ( T ) ] f o r e v e r y (T> 0 e S such that 

lT - <l < <%)• 
This definition will be convenient for proving the following lemma: 

1.6. Lemma. Let a function U: S -> R9 Se!f[a9 b] be given, assume that there 
is a nondecreasing function h*: [a9 b] -> R which has zero continuous part, is 
left-continuous on (a, 6] and such that \U(T9 t) — U(T, T)\ ^ \h*(t) — h*(T)\ for 
every (T, t) e S. Then the function U is integrable over [a9 b] and 

Í DU(т,í)= Z [U(t,t+)-U(t,Щ 
a<;t<b 

Proof. For every t e [a9 b) the limit U(t91+) exists because \U(t9 s") - U(t9 s')\ ^ 
^ h*(s") - h*(s') if (t9 s')9 (t9 s") eS9 t < s' < s\ Denote a, = U(t91+) - U(t9 f). 
Owing to the estimate |a f | g h*(t + ) - h*(t) the series ]T a* *s absolutely conver­
gent; let its sum be denoted by y. a<.t<b 
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Let e > 0 be given. There are points a = tt < t2 < ... < tk+i = b such that 
k 

i m+) - h*(t)-\ = i ih*(tl+1) - /,*(/,+)] < i 
fe[a,b)\{fi fk) i=l 2 

Define <5(T) = min {|T - f,|, i = 1,2, ...,fc + 1} for T e [a, 6] \{tl9 t2,..., ffc}; 

<5(f,.) = min (|f; - f,-|; J = l , 2 , . . . , f e + 1, i * j} for j == 1, 2 , . . . , k . 

If we define x(t) = £ [**(s + ) ~~ ft*(s)]> ' 6 [fl> &] t h e n t h e function x is 
-,e[aif)\{*i tk) 

nondecreasing and x(b) — x(a) < e/2- --et u s define functions 

m(t)= £ a s - 2 / ( f ) , M(t)= £ as + 2 *(*), f e [ a , b ] . 
ogs<f ags<f 

Then 
m(b) - m(a) = y - 2[/(b) - /(a)] > y - e ; 

M(6) - M(a) = y + 2[X(b) - X(a)] < V + e. 

If the pair (T, f) belongs to S and T < f < T + <5(T) then none of the points ti912,..., tk 

belongs to the interval (T, f). Hence /(f) — X(T) = h*(t) — h*(r) provided T £ 
£{*i> *2> •••> '*} a n d x(0 - /(T) = h*(t) - /T*(T+) provided T = tj for some / e 
e {1, 2 , . . . . k). We have the inequality 

17(T, r) - 17(T, T) = [17(T, T + ) - U(T, T)] + [1/(T, t) - l/(T, T + ) ] ^ 

= at + [fc*(r) - fc*(T+)] = at + X «* + 2[fc*(f) - * * ( T + ) ] = 
T < S < f 

^ I «s + 2[Z(0 - X(T)] = M(«) - M(T) . 

Similarly it can be proved that if (T, t) e S and T — <5(T) < t < T then 

U(T, T) - U(x9 r) = **(T) - ft*(t) = M(T) - M(t) . 

The inequality 

(t - T) [m(f) - m(T)] = (* - T) [U(T, f) - £/(T, T)] , (T, t) e S, |T - t\ < <5(T) 

can be verified analogously. 

1.7. In [SI], [S2] we can find basic results concerning the generalized differential 
equation 

(1.1) ^ = DF(x,t). 
dT 

The function F on the right-hand side of (1.1) is a vector-valued function from G 
to RN

9 where G is a subset of RN+*. 
An N-vector valued function x is a solution of the equation (1.1) on an interval 

I c R9 if (x(f), t j s G for all f e / and if for every si9s2el the identity 
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(1.2) x(s2) - x(s.) = p D r W r ) , 0 

holds. The integral used on the right-hand side of (1.2) is the generalized Perron 
integral of the function U(x, t) = F(x(x), t). 

Assume that I, V are intervals of the form [t0, t0 + a], [t0, t0 + cr'] or [t0, t0 + o), 
\jo, t0 + a'). Let x, y be solutions of the equation (1.1) on the intervals I, V, respec­
tively. The solution y is called a continuation of x if / c V and if x(t) = y(t) for 
every t e I. If / # / ' then the solution y is called a proper continuation of the solu­
tion x. 

Solutions to which there is no proper continuation are called maximal solutions 
of (1.1). • 

1.8. Throughout this paper let T > 0 be a fixed number and Q c RN a fixed open 
set. Denote G = Q x (~T,T). 

Assume that h, k, I: [-*T, T] -+ R are nondecreasing functions which are con­
tinuous from the left on (— T, T] and continuous from the right at the point — T, 
and let co: [0, oo) -» [0, oo) be a continuous increasing function such that co(0) = 0. 

We will be concerned with the class <£(G, k, I, co) of functions F occurring on the 
right-hand side of (1.1). 

Definition. A function F: G — RN belongs to the class <P(G, k, /, co) if 

(1.3) |F(x, t2) - F(x, tx)\ = \k(t2) - k(t,)\ for all (x, tt), fx, t2)eG, 

(1.4) |F(x, t2) - F(x, tx) - F(y, t2) + F(y, tx)\ = co(\x - y\) \l(t2) - l(t,)\ 

for all {x9t1)9(x9t2)9(y9t1)9(y9t2)eG. 

We denote &(G, h, co) = <P(G, h, h, co). 
Whenever the symbol #(G, k, I, co) or !F(G, h, co) is used in this paper, it will be 

assumed that the set G and the functions h,k,l,co have the properties described 
above. 

1.9. Remark, (i) In [Kl], [K2] and [SI], [S2] the set &(G, h, co) is used except 
Chap. 5 in [S2]. For one function F this is not important since if F e 4>(G, fe, /, co) 
and we denote h(t) = k(t) + l(t) then F e ^(G, h, co). Nevertheless, to distinguish 
the two functions k and / is of importance when one is concerned with an infinite 
set of such functions F. 

(ii) The continuity at the endpoints of the interval [— T, T] of functions h, k, I is 
assumed only for technical purposes. Since we will work on the set G = Q x (— T, T), 
nothing changes if e.g. a function h is only left-continuous on (—T, T); it can be 
re-defined by the value /i((- T) +) at the point - Tand by h(T-) at T. 
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1.10. Remark. It follows from (1.3) that for every x e Q the function F(x, •) has 
bounded variation on (— T, T). If a function x is a solution of (1.1) on [a, b\ then 

|x(/2) - x(tx)\ = k(t2) - k(tt), a ^ tx < t2 g b 

according to Lemma 2.6 in [SI]; hence the function x has bounded variation. 

1.11. Let us denote by V" the set of all increasing functions v: [— T, T] -> [— T, T] 
which are continuous from the left on ( — T, T] and continuous from the right at 
the point - T, t;(- T) = - T, u(T) = T 

By yl let us denote the set of all functions k: [ -T, T] -> [ -T, T] which are 
continuous and increasing on [-T, T], --l(-T) = - T , /1(T) = T. 

1.12. Definition. Assume that functions H e <P(G> fc, /, co) and veV~ are given, 
let 7 c ( - T, T) be an interval. 

(i) An N-vector valued function x is a solution of the generalized differential 
equation with a substitution 

(1.5) x(t) = y(v(t)) , ^ = DH(y,t') 

on the interval/, if there exists an interval J c (—T9T) and a solution y of the gener­
alized differential equation 

(1.6) £ = DH(y, 0 
dT 

on the interval J such that the equality x(t) = y(v(t)) holds for every t e I. 
(ii) We say that the solution x is a maximal solution of (1.5) if it has no proper 

continuation (defined as in 1.7). 
(iii) Let x be a solution of (1.5) on [f0, c\ and let v(c) < v(c+). We say that x 

disappears at the point c if x(f) = y(v(t)) holds on [f0, c] for some maximal solution y 
of (1.6) which is defined on an interval J such that its right endpoint belongs to 
[v(c)9 v(c+)\ and v(c) e J. 

1.13. Remark. It is possible that a solution x disappears at a point c but it can be 
continued to the right. This situation occurs when there are two solutions yl9 y2 

of (1.6) on intervals Jl9 J2, respectively, such that Jx J [v(t0)9 v(c+)\, J2 = [u(f0), d\ 
or [v(t0),d) where d e (v(c), v(c+)\9 y2 is a maximal solution of (1.6) on J2 and 
x(t) = yi(v(t)) = y2(K0) f o r eve ry te[t09c\. 

1.14. Example. Assume that T = 2, H(y, t) = yt; v(t) = t for f e [ - 2 , 0 ] and 
v(t) = 1 + f/2 for t e (0, 2]. By [SI], Chap. 4A the equation with substitution (1.5) 
x;an be written in the form 

(1.7) x(t) = y(v(t)), ^ = y 
ds 

and its solutions are the functions x(t) = x0e\ t e [—2, 0], x(t) = x0e1 + f/2, t e (0, 2]. 
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1.15. Definition. Assume that Fe <P(G, k, I, co), veA are given. A function 
H: G -* RN is called the prolongation of the function F along v, if 

(1.7) H(x, v(t)) = F(x, t) for every (x,t)eG. 

1.16. Proposition. Assume that F e <P(G, k, I, co) and veA are given, let the 
function H:G->RN be the prolongation of F along v. Then H e4>(G,koV~x» 
I o iT1, co). 

The proof is evident. 

1.17. Theorem. Assume that functions F e <P(G, k, I, co) and veA are given, let 
H e <P(G, kr, V, co) be the prolongation of F along the function v. Then the equations 
(1.1) and (1.5) have the same solutions. 

Proof. First assume that x is a solution of (1.1) on / and define J -= {v(t); vel}» 
y(t') = x(iT *(*')) for every t' e J. For every au (j2 e J we have 

ro-H*i) 
y(°i) - A?i) = x(v-l(a2)) - xf iT1^)) = T>F(x(x), t). 

Jv-H'O 
By Th. 1.24 in [SI] we conclude that 

DF(x(x), t) = DF(x(v-\x)), v-*(t)) = DH(y(x), t) . 
J p - - ( f f l ) J <Tl J tTl 

This means that the function y is a solution of (1.6) on J and consequently the 
function x is a solution of (1.5) on I. 

On the other hand, if the function x is a solution of (1.5) on I then there is a solu­
tion y of the equation (1.6) on J such that x(t) = y(v(t)) for t el. Th. 1.24 in [SI] 
implies that 

rv(t2) 

x(h) - *(h) = Mh)) - M*i)) = D % ( T ) , t) = 
Jc(f i ) 

tx,t2el. = tt2DH(y(v(r)),v(t))= pDF(x(T), t) for every 
J ri J *i 

1.18. Let functions H e $(G, k, I, co) and v e V be given. By R{fttV) we denote the 
set of all pairs (x, t)eG with the following properties: 

(i) If v is continuous at t then x + H(x, v(t) + ) , - H(x, r(f)) e Q; let us denote 
p(x, t) = 0. 

(ii) if v(t) < v(t+) then there exist 8 > 0 and a unique solution >> of the initial 
value problem 

(1.8) ^ = DH(y,t'), X«<0) = * 
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on the interval \y(t), v(t + <5)]. Moreover, 

(1.9) there exists £ > 0 such that zeQ for any zeRN satisfying 

\z — y(s)\ < Q for some s e \y(t), v(t + <5)] . 

Denote p(x, t) = y(v(t+) +) - x. 

1.19. Proposition. Assume that functions H e <P(G, fc, J, co) and u e F are given. 
Then 

(i) \p(x, l)| = k « r + ) +) - k(v(t)) for every (x, t) e R(HtV); 
(ii) /or every (x, t) e G the series 

£ [p(x, s) - H(x, v(s+) +) + H(x, v(s))] 
-T<s<t 

(X,S)-R{H,V) 

is absolutely convergent. 

Proof, (i) Using Lemma 2.5 in [SI] we get the estimate 

\p(x, t)\ = \y(v(t+) +) - x| = lim \y(v(s)) - x\ = lim |f%if()<T'), t') 
M-t+ S^t+\Jv(t) 

= lim [k(v(s)) - k(v(t))] = k(v(t+) +) - k(v(t)). 
S-M + 

(ii) Since the composition fc 0 v is a nondecreasing function, the set of all its 
points of discontinuity is at most countable. Hence there is a sequence (s/)*--. x of 
pairwise different points from (— T, T) such that k(v(t+) +) = k(v(t)) for every 
/ 6 (— T, T) \ {su s2,...}. For every (x, t) e R^n,v) we have 

|p(x, t) - H(x, v(t+) +) + H(x, v(t))\ = 

= \p(x, t)\ + \H(x, v(t+) +) - H(x, v(t))\ = 2[k(v(t+) +) - k(v(t))~] ; 

hence 
X |j>(x, s) - if(x, v(s+) +) + H(x, v(s))\ = 

= 2 S [fe«,+) +) - k(v(s))-] = 2 f [%(s ;+) +) - fc(i<s,))] ^ 
- r < s < r y= i 

^2[k(t)(r))-fc(K-r))]. 

1.20. Definition. Assume that functions H e «P(G, fc, /, co), t> 6 V~ are given. The 
function 
(1.10) F(x,t) = H(x,v(t)) + 

+ E [p(x,s)-H(x,v(s+)+) + H(x,v(s))-], (x,t)eG 
-T<s<t 

(x,s)eH(H,v) 

is called the reduction of the function H by the function v. 
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1.21. Proposition. Assume that the function F:G -> RN is the reduction of a func­
tion H e &(G, k, l,oS) by a function veV~. Define 

h(t) = 2 £ [k(v(s+)+)- k(v(s))l t e [ - T, T]. 
- r < s < f 

v(s)<v(s + ) 
Then 

(1.11) |F(x, t2) - F(x, tt) - H(x, v(t2)) + H(x, <^))| ^ 

-S K<2) - *('i)| for every (x, tt), (x, t2)eG. 

Proof. The proposition follows immediately from the proof of Prop. I.19L 

1.22. Example. Let us return to Example 1.14. In this case the reduction of the? 
function H by the function v will have the form F(x, t) = xt for t e [—2, 0], F(x, t) = 
= x(e - 1 + tj2) for t e (0, 2]. 

1.23. Lemma. Let functions H e $(G, k, I, oS) and veV~ be given, assume that F 
is the reduction of the function H by v. Assume that the function y: \y(a), v(tij] -* RN 

( — T < a < b < T) satisfies the following conditions: 
(i) (y(v(t)), t) e RiHiV) for every te[a, b); 
(ii) the function y o v is regulated; 
(iii) the integral J^}

+)
 DH(J;(T'), t') exists for every s e [a, b). •: 

Then the integralsjb
aDF(y(v(x)), t) and $$> DH(y(x'), t') exist and the equality 

fb fv(b) r 

(1.12) DF(y(v(x)), t) - DH(y(x'), .') = . £ F(y(v(s)), s+) - F(y(v(s)), s) -
J a J v(a) fl^s<bL 

- [V5+)DH(y(T'),t') - H(y(v(s+)),v(s+) +) + H(y(v(s+)), <*+))] 
Jv{s) J 

holds. 

Proof. Since the function H(x, v(t)) obviously belongs to ^(G, h, <o) with h(t) = 
= k(v(t)) + l(v(t)), the existence of the integral J* DH(y(v(z)), v(t)) follows fromi 
Corollary 2.11 in [SI]. 

All assumptions of the Theorem in [Fl] being satisfied, the existence of 
J5 DH(y(v(x)), v(t)) implies that the integral JjgJ DH(J(T'), f) exists and the equality 

(1.13) \DH(y(v(T)),v(t))-\ DH(y(x'),t')= £ \H(y(v(s)), < S +) +) -
J a J»(«) «S»<*L 

f»(»+) 
- H(y(v(s)), v(s)) - DH(y(i'), t') - H(y(v(s+)), v(z+) +) + 

Je(s) 

+ H(y(v(s+)),v(s+))] 
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holds. Let us denote F*(x, t) = F(x, t) - H(x, v(t)) for (x, t) e G. By Proposition 1.21 
the assumptions of Lemma 1.6 are fulfilled for every component [F*(y(v(i;)), *)],- = 
= l/(^, t), j = 1, 2 , . . . , N of the vector-valued function F*(y(v(x)), t). Consequently, 
the integral j * DF*(y(v(x)), t) exists and we have 

(1.14) J DpW*)), 0 - H{y(v(,)), t>(.))] = j*DJ*0<*)). 0 = 

.- I [F*(#)) , S +)-P(#)) , S ) ]= I [-t><«<-)),-+)-

- F(j(v(s)), s) - H(y(v(s)), v(s+) +) + H(y(v(s)), v(s))~] . 

From the existence of the integrals J* DF*(y(v(x)), t) and J* DH(y(v(x)), v(t)) we con­
clude that the integral jb

aDF(y(v(x)), t) exists. Combining (1.13) and (1.14) we get 
the equality (1.12). 

1.24. Theorem. Let functions H e #(G, k, I, co) and veV~ be given, assume that 
the function F: G -> RN is the reduction ofH by v. Assume that a function x: [a, j3] -» 
-> RN (-T< oc < fl < T) is given such that (x(t), t) e R{FitV) for every t e [a, p). 

Then the function x is a solution of the equation ( l . l ) on [a, /?] if and only if it 
is a solution of the equation (1.5) on [a, /?]. 

Proof, (i) Let x be a solution of (1.1) on [a, /?]. By Lemma 2.6 in [SI] the function 
x is of bounded variation. Let us define a function y: \y(<x), v(P)~\ -> RN in the 
following way: 

For every G such that G = v(t) for some t e [a, /?] let us define y(a) = x(f). 
If t"e [a, P) is such that v(t) < v(t+), then (x(f), t) e R{H,V) by the assumption of 

this proposition, and therefore by 1.18 (ii) there exist St > 0 and an N-vector valued 
function yt which is a solution of the initial value problem 

£ « Di«>, o , X<0)-*(0 
dT 

on the interval [y(t), v(t + 5t)~\. By 1.18 (ii) we have p(x, t) = yt(v(t+) +) - x. It 
follows from (1A0) that F(x(t), t + ) - F(x(t), t) = p(x(t), t). Consequently, 

(1.15) F(x(t), t+) - F(x(0, 0 = yt(v(t+) +) - x(r) = lim r5)DH(yt(T% f) = 
S^t+Jv(t) 

rVit+)DH(yt(z'), f) + H(yt(v(t + )), v(t + ) +) - H(yr(^+)), v(t+)) 
lv(t) 

(here Th. 1.15 from [Si] was used). 
Now let us define y(a) = yt(a) for every G e [y(t), v(t+)]. 
Lemma 1.23 implies that for every su s2 e [a, J8] the integral f^jj DH(y(x'), t') 

exists. By (1.15) the sum on the right-hand side of the relation (1.12) is zero if a, b are 
replaced by s1? s2. Hence 

239 

•f 
J V{ 



(1.16) r2}DH(y(x% f) = rDfKXKt)). 0 = f DF(X(T), *) = 
J r(si") J «i • si 

= x(s2) - x(sA) = y(v(s2)) - y«S!)) . 

Assume that V(OL) ^ O^ < <J2 ^ v(P). Let us find si9 s2 e [a, ft] such that î s,) ^ 
^ (7f ^ -I(sj-r-), i = 1, 2. If s t = s2 then we have the equality 

(1.17) y(o2) - fa) = yfa) - yfa) = {'DH^'), t') = [ ' W ^ T ' ) , .') . 
J *2 J »1 

If sA < s2 then 

(1.18) • ,(<72) - fa) = (X„2) - y(v(s2))] + [y(v(s2)) - , « s . ) ) ] + 

+ IMK-l)) ~ Kffl)] = W ' - ) - .V„0<--))] + 

+ W*-)) - J<«<-I))] + l>«(«<-i)) - ^ K ) ] = 

- r DH(yJf),i') + p M ^ O - T Dfl(y.,(T'),/')=-
J t>(*2) J f(*l) J V(Si) 

= [ " D A (J{T'), 0-
J ffl 

From (1.16), (1.17) and (1.18) it follows that the function y is a solution of (1.6) on 
the interval [V(CL), v(fi)~]y and consequently the function x is a solution of (1.5) on 

[«,/a 
(ii) If the function x is a solution of the equation (1.5) then by Definition 1.12 

there is a solution y of the equation (1.6) on [v(<x), v(P)] such that x(t) = y(v(t)) 
for every t e [a, /?]. Analogously as in part (i) we conclude from Lemma 1.23 that 

/M-fc) [S2 

x(s2) - x(Sl) = y(v(s2)) - y(v(Sl)) = DH(y(x'), .') - DF(X(T), t) 
J v(si) J si 

for every s l 5 s2 e [a, JS], which implies that the function x is a solution of (1.1) on 

[«,/*]. 

2. CLASSICAL CONTINUOUS D E P E N D E N C E THEOREMS 

2.1. Lemma. Assume that a function F e #(G, fc, I, co) is given. Then for every 
two regulated functions x, y: [a, /?] -> _Q (— T < a < /? < T) fhe inequality 

(2Л) |J'D[Ғ(x(т),ř)-ҒW^0] š « ф - , | | ) (.(/?)-/(«)) 

holds. 
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Proof. The integral in (2.1) exists owing to Corollary 2.11 in [Si] . By (1.4) we have 

\t - T| |F(X(T), t) - F(y(x), t) - F(x(x), x) + F(y(x), x)\ ^ 

^(t-x) O(|X(T) - y(x)\) (l(t) - l(x)) < (t - x) o(||x - y\\) (l(t) - l(x)) 

for every T, t e [a, /?]. Corollary 1.18 in [SI] implies that 

^D[F(x(x), t) - F(y(x), f)]| ^ j*V|x - y\\) dl = eo(||x - y\\) (/(/?) - /(a)) . 

2.2. Lemma. Let a sequence of functions Fn e <P(G, k„, ln, co), n = 0, 1, 2 , . . . 
be given; assume that 

(2.2) there is c > 0 such that 

ln(T) - ln(-T) = c for every n = 0, 1, 2 , . . . ; 

(2.3) F„(x, t) -> F0(x, t) and Fn(x, t + ) -> F0(x, t+) for every (x,t)eG. 

If [a, b] c (— T, T) and if a function <p: [a, b] -* Q is constant on the open interval 
(a, b), then 

(2.4) lim [ DF„(<p(z), t) = f DF0(<p(x), t) . 
J a J a 

Proof. Assume that cp has a value d on (a, b). From Th. 1.15 in [SI] we conclude 
that 

(2.5) f T>Fn((p(z), t) = Fjd, b) - Fn(d, a +) -f- Fn(q>(a), a -f-) - F„(<Ka), *) 

for n = 0,1, 2, . . . . From (2.3) we then obtain (2.4). 

2.3. Lemma. Assume that functions Fne<P(G,kn, ln,co), n = 0,1,2,... satisfy 
(2.2), (2.3). Then (2.4) holds for every finite step function q>:[a,b]-+ Q(-T < a < 
<b <T). 

Proof. Assume that cp has the form (p(x) = d{ for T G (i^-i, tt), where a = t0 < 
< tx < ... < tm = b. Since 

f DFW((̂ T), f) = £ T DFn((p(T), r) for every n = 0 ,1 ,2 , . . . , 
Ja i = 1 J t , - i 

the relation (2.4) follows from Lemma 2.3. 

2.4. Theorem. Assume that a sequence of functions Fne<P(G,kn,ln,oS), n = 
= 0,1, 2, . . . satisfies (2.2), (2.3). 

Let [a, jS] cz (— T, T). For any ne N, let xn be a solution to the equation 

(2.6)„ ^ = DF„(x,.) 
dT 
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on [a, P\. Furthermore, let us assume that xn tend uniformly on [a, j5] to such 
a function x 0 that x0(t) e Q for any t e [a, ff\. 

Then the function x0 is a solution of the equation 

(2.7) 

on the interval [a, ji\. 

^ = DҒ 0 (x, í) 
dт 

Proof. Since the functions x,, have bounded variations by [SI], Corollary 2.7, 

the function x 0 is regulated on [a, jS]; hence the integral J{| D F 0 ( X 0 ( T ) , t) exists for 

every tu t2 e [a, /?]. By definition of solutions of (2.6)n we have 

If we prove that 

we obtain the equality 

n(t2) - *,,(<i) = J ^>Fn(xn(z), t) for every n . 

lim f 2DFn(xn(T), t) = f 2DF0(x0(T), t) , 
Jr. Jd 

*o(<2) ~ *o('l) = [2DF0(X0(T),0 
J*. 

for every tl912 e [a, /J], which implies that x 0 is a solution of (2.7). 
Let e > 0 be given; let us find X > 0 such that o(X) < £. Since the function x0 

is regulated, there is a finite step function cp: [a, ff\ -• Q such that | x 0 — <p\ < A/2. 
Let nx be such an integer that ||xn — x0|| < X\2 for every n ^ nt. By Lemma 2.3 
there is n2e N such that 

Г D Ғ ^ T ) , t) - Г D Ғ 0 ( Ф ( T ) , f) < e 

for every n ^ n2. Denote n0 = max (ni9 n2). 
For arbitrary n = n0 the inequality ||xn - <p\ < X holds; using Lemma 2.1 we get 

f2DFn(xn(T), t) - pDF 0 (x 0 (T), t) = f2D[Fn(xn(T), r) - FJL<P(T)9 t)\ + 
Jr. J.i J *i 

+ pDF^T), 0 - T D F ^ T ) , t) + rD[F0(^(T),r)-F0(x0(T),l)] <: 
J f 1 J tt J ti 

= 0>(||xn - Cp\\)(ln(t2) - /,,(*,)) + £ + C0(||(p - X0l!)(/0(t2) - l0(tt)) ^ 

g 2co(rj) c + £ < fi(2c + 1) . 

2.5. Theorem. Assume that a sequence of functions Fn e &(G, fcn, /„, <y), n = 
= 0 , 1 , 2 , . . . satisfies (2.2); 
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(2.8) there is a continuous incresing function r\: [0, oo) --> [0, oo), n(0) = 0 and an 
increasing function K: [— T, T] -> ff which is left-continuous on (—T,T], 
K(-T) = K((-T)+) and such that 

K(t2) - kn(tt) = >/(K(*2) - K(^)) for every neN, -T^tl<t2 = T; 

(2.9) Fn(x, r) -> F, (x, t) for every (x,t)eG. 

(i) If for any ne N xn is a solution of (2.6)„ on [a, jS] and fhe set (xn(a), neN} 
is bounded, then the sequence (xn)n=l contains a subsequence which is convergent 
uniformly on [a, j8] to a function x0 e fflN[<x, /?].. 

(ii) If x0(f)e Q for every te [a, /?], then the function x0 is a solution of (2.7) 
on [a, j3]. 

Proof, (i) By [SI], Lemma 2.6 we get from the assumption (2.8) that |xn(f2) — 
- xJih)] = kn(t2) - kn(tx) = t](K(t2) - K(tt)) for every neN, a = tt < t2 = J?. 

According to Theorem 1.4 about equiregulated sets the functions x 1 , x 2 , . . . are 
contained in a compact subset of fflN[ct, ft]; hence there is a subsequence (x„l)^L1 

which converges uniformly on [a, j3] to a function x0 e MN[ct, /}]. 
(ii) Since |FM(x, t2) - Fn(x, tt)\ = kn(t2) - kn(tx) = rj(K(t2) - K(tt)), we get by 

1.4 that for every x e Q the functions F„(x, •) uniformly converge to P0(x, •). This 
implies that (2.3) holds; now Theorem 2.4 can be used. 

2.6. Theorem. Assume that functions Fn e <P(G, kn, ln, oS), n = 0 ,1 , 2 , . . . satisfy 
(2.2), (2.8) and (2.9). 

Let an N-vector valued function x0 be a solution of (2.7) on [a, /J] c: (-T, T) 
which has the following uniqueness property: 

(2.10) If x is a solution of (2.7) on [a, y] c [a, /?] such that x(a) = x0(a), then 
x(t) = x0(t) for every t e [a, y]. 

Assume further that 

(2.11) there is Q > 0 such that if yeRN, se [a, /?] and | j / — x0(s)| < g >hcn y e Q. 

Assume that a sequence (yn)„°=i <-- RN is given such that limyn = x0(a). 
n-+oo 

Then there is an integer n0 such that for every n _ n0 there exists a solution xH 

of (2.6)n on [a, /?], xn(a) = yn, and lim x„(r) = x0(f) uniformly on [a, £J. 

The proof is in fact the same as the proof of Theorem 2.4 in [S2], but under our 
assumptions which are somewhat more general it should rely on Theorem 2.5. 

2.7. Corollary. Assume that functions Fn e 4>(G, kn, ln, co), n = 0 ,1 , 2 , . . . satisfy 
(2.2), (2.8) and (2.9). Let x0 be a solution of the equation (2.7) on [a, p] c ( - T , T) 
such that (2.10), (2.11) hold. Then for every e > 0 there is n0e N and a > 0 such 
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that it holds: If x is a solution of the equation (2.6)w on [a, P]for some n ^ n0 and 
if |x(a) — x0(a)| < a, then ||x — x0|| < e. 

Proof. Assume that there is such e0 > 0 that for every k e N there is nk ^ k 
and such a solution xk of (2.6)W(c on [a, /?] that \xk(cc) — x0(a)| < 1/fc and ||xk — x0|| ^ 
^ e0. Then xk(a) -> x0(a); by Theorem 2.6 the sequence (xk) converges to x0 uni­
formly on [a, ff]> which is a contradiction. 

3. THE R-EMPHATIC CONVERGENCE AND THE CONVERGENCE 
UNDER SUBSTITUTION 

3.1. The concept of R-emphatic convergence of right-hand sides of generalized 
differential equations 

(3.1), ^ = DFn(x,t) 
dr 

was introduced by J. Kurzweil in [K2]: 
Let a set R c G be given. Assume that for every n = 0, 1, 2 , . . . a function Fn e 

e &(G9hn9(jo) is given. The sequence (F„)*=i converges R-emphatically to the 
function F0, if the following conditions are fulfilled: 

(3.2) lim sup [hn(t2) — Kiti)] ^ h0[t2) — h0(tt) if the function h0 is continuous 
n-*oo 

at tx and tl9 - T < tx < t2 < T; 

(3.3) there is a function F*: G -• RN such that 

|F*(x, t2) - F*(x, tt)\ fg \h*(t2) - h*(rO| for (x, tt), (x, t2) e G 

where h* is the jump part of the function h0 and lim F„(x, t) = F0(x, t) + 
n-+co 

+ F*(x, t) if (x, t)eG and t is a point of continuity of h0; 

(3.4) for every (x0, t0) e R the element x0 + F0(x0, t0+) — F0(x0, t0) belongs to Q; 
if, moreover, h0(t0+) > h0(t0)9 then for every e > 0 there is 8 > 0 such that 
for each 8' e (0, 8) there is n0 e N with the following property: if x is a solution 
of (3.1)B on [t0 — 5'9 t0 + 8'] for some n ^ n0 and if |x(f0 — 5') — x0 | ^ 5, 
then 

W'o + *') - *('o - <*') - [F0(x0910 + ) - F0(x0, r0)]| < e. 

The definition of /^-emphatic convergence was invented so as to cover the problem 
of pointwise convergence of solutions of (3.1)„ to a solution of a limit equation 

(3.5) ^ = DFo(x,0-
d t 

In this chapter another type of convergence will be defined which will cover 
a similar convergence effect. 
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3.2. Definition. Assume that functions Fn e #(G, fc„, ln9 co) are given for every 
ne N. Let functions H:G -> RN and veV~ be given such that H(x9 •) is left-
continuous on (—T, T] and right-continuous at — T. 

We say that the functions Fn converge under substitution to the pair (H9 v) if there 
exists a sequence of continuous increasing functions vne A, ne N such that the 
following conditions hold: 

(i) vn(t) -• v(t) for every t e ( - T , T) such that i;(t) = !>(*+); 
(ii) there is c > 0 such that ln(T) - /„ ( - T) = c for every neN; 

(iii) there is a continuous increasing function Y\: [0, OO) -> [0, oo), i/(0) = 0 and 
an increasing function K: [— T, T] -* 0? which is left-continuous on (—T, T ] , 
right-continuous at — T and such that 

(3.6) fc,,^;1^)) - K(K\S,)) = n(K(s2) - K(s,)) for every n e N , 

- T = sx < s2 = T; 

(iv) for every n e N let us denote by Hn the prolongation of the function Fn along 
the function vn; then 

H„(x, t) -> H(x, f) for every (x, f) e G . 

3.3. Proposition. Let a sequence Fn e 4>(G, kn9 ln9 oS)9 neN converge under 
substitution to a pair (H9 u). Then there are functions x9 X such that H e <P(G9 x9 A, oS) 
and * 

(3.7) x(s2) - x(st) = f/(K(s2) - K(Sl)) if -T^Si<s2 = T9 

A ( T ) - A ( - T ) = c . 

Proof. Denote xn(s) = fc^^s)) - fc„(-T), AB(s) = / ^ ' ( s ) ) - / „ ( -T) ; then 
x„(—T) = Xn( — T) = 0 and from (3.6) we get the inequality xn(s2) — xn{

si) ;= 

= *f(K(s2) - K(sO) for n e /V, - T = s t < s2 = T. 
As was stated in 1.4, this inequality implies that the sequence (xn)ns=1 contains 

a subsequence (x„k) which converges uniformly on [— T, T] to a function x\ the rela­
tion (3.7) obviously holds. 

Since the functions Xn are nondecreasing and bounded by the constant c, by 
Helly's Choice Theorem the sequence (Xnk)k*= t contains a subsequence, for simplicity 
denoted again by (Xnk)9 such that X„k(s) -+ /(s) for every s e [ - T, T] . Define X(s) = 
= / f s - ) for s e ( - T , T] , A(-T) = x ( ( - T ) +). Obviously A is nondecreasing, 
X(T) - X(-T) ^ c. 

Since H„ e 4>(G, ^w, A„, co) for every ne N9 we have |H„k(x, s2) - HWjc(x, s^j g 
.= ^«k(

s2) — ^nk(
5i) f ° r every fc e lV and — T < sx < s2 < T, X e Q. Passing to infinity 

we get the inequality |H(x, s2) - H(x9 Si)\ ^ x(s2) - x(st). 
Similarly |H(x, s2) - H(x9 sx) - tf(y, s2) + H(y9 sx)\ = co(\x - y|) (*(s2) - /(s,)) 

provided x, >> e Q9 — T < sx < s2 < T. If the function / is left-continuous at the 
points sx and s2 then A(sx) = x(si)> KS2J = *(s2)> hence the inequality 
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3.8) \H(x, s2) - H(x, 5t) - H(y, s2) + H(y, Si)\ = co(\x - y\) (A(s2) - % ) ) 

holds. Since the-functions H(x, •), H(y, •), A are left-continuous on (— T, T] and 
right-continuous at — T, we conclude that (3.8) holds for arbitrary sl5 s2, —T ^ sx < 
< s2 ^ T. 

3.4. Proposition. Assume that a sequence Fne <P(G, kn,ln,co), neN converges 
under substitution to a pair (H, v). 

For every (x,t)eG let us define F(x,t) = H(x,v(t)). Then Fn(x,t)-+ F(x,t) 
for every (x, t)e G such that the function K o v is continuous at t (the notation from 
Definition 3.2 is used). 

Proof.-If the function K o v is continuous at t then v is continuous at t and K 
is continuous at v(t). 

Let e > 0 be given. There is £ > 0 such that co(£) < e, further there is 8 > 0 
such that |K(s) - K(v(t))\ < £ for every s e [-7*, T] such that \s - v(t)\ < 8. 

There is an integer n0e N such that \vn(t) — r(f)| < S and |H„(x, v(f)) — 
— H(x, v(t))\ < e for every n ^ n0. 

We have the estimate 

\Fn(x, t) - F(x, r)| = \Hn(x, vn(t)) - H(x, v(t))\ = 

^ lif^x, ^(r)) - Hn(x, v(t))\ + IH^x, v(t)) - H(x, <0)| < 

< rj(\K(vn(t)) - K(^r))|) + e < i](£) + £ < 2e for n = n0 . 

3.5. Proposition. Assume that a sequence Fne <P(G,kn,ln,co), neN converges 
under substitution to a pair (H,v). Define F(x,t) = H(x, v(t)) for (x,t)eG. If 
F0: G -+ RN is the reduction of the function H by v and F*(x, t) = F(x, t) — 
— F0(x, t)for (x, t) e G, then there is a nondecreasing jump function h: [— T, T] -> 
-> R such that 

(3.9) \F*(x, t2) - F*(x, tt)\ ^ \h(t2) - h(tt)\ for (x,..), (x, t2) e G 
and 
(3.10) h(t2) - h(tt) = 2rj(K(v(t2)) - K(v(tl))) , - r ^ ^ ^ T . 

Proof. By Proposition 3.3 the function H belongs to $(G, x, X, co) where the 
function x satisfies (3.7). Then the function h(t) = 2 £ [x(v(s+) +) - KKS))] 

- r<s<r 
I;(S)<I?(S + ) 

satisfies (3.10) and the relation (3.9) follows immediately from Proposition 1.21. 

Remark, (i) h is the jump part of the function 2x o i;. 
(ii) (3.10) implies that if the function K o v is continuous at t then h is as well. 

3.6. Theorem. Assume that a sequence Fn e 4>(G, kn, ln, co), neN converges 
under substitution to a pair (H, v). Let F0: G -> RN be the reduction of the function 
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H by the function v, denote R = R^H,vy Then the sequence Fn satisfies (3.3), (3.4) 
and 
(3.11) there is a continuous increasing function r\\ [0, oo) -#• [0, oo), n(0) = 0 

and an increasing function h0: [—T, T\-> R which is left-continuous on 
(-T, T] and such that 

lim sup [feM(r2) - fc„(f0] = ^0(^2) - M'i)) 
n-»oc 

1/ the function h0 is continuous at t{ and t2, —T ^ tt < t2 ^ T. 

Proof. We use the notation from Definition 3.2; let us define F(x, t) = H(x, v(t)), 
F*(x, t) = F(x, t) - F0(x, t) and h0(t) = K(v(t)) + 2x(v(t)), where x has the same 
meaning as in Prop. 3.3. 

If the function h0 is continuous at tv and t2, —T ^ tt < t2 <^ T, then the function v 
is continuous at tl912 and the functions K and x are continuous at v(tt), v(t2). As in 
the proof of Prop. 3.3 let us put xn(s) = kn(v^1(s)) ~" k„( —T) for b e IV and se 
e [-T, T]. Then k,.^) = xj(vn(ti)) + fc„(-T) (i = 1, 2) and by (3.6) we have 

lim sup [kn(t2) - fcn(^)] = lim sup [xn(vn(t2)) - *„(u„(f 1))] = 
« - * 00 n ->oo 

g lim^(v„(t2)) - K ^ J =- iKi-W'2)) " *(«<'.)) ^ #o( t 2 ) " lto(ti)) • 
n->oo 

If h has the same meaning as in the proof of Prop. 3.5 (i.e., h is the jump part 
of 2x o v), then by Prop. 3.5 we have 

|F*(x, t2) - F*(x, tx)\ = h(t2) - h(tt) = h*(t2) - h*(tt) for x e Q , 

— T < *! < f2 < T, where h* is the jump part of the function h0. This completes 
the proof of (3.11). 

The condition (3.3) follows from Propositions 3.4 and 3.5. 
Let a pair (x0, t0)e R = R{H,V) be given such that h0(fQ+) > ^o('o)- Let e > 0 be 

given. 
In case that v(t0) = v(t0 + ) , let us find such A > 0 that r}(K(v(t0) +A) -

— K(v(t0) +)) < e/24. There is such an integer nt that 

(3.12) \Hn(x0, v(t0)) - H(x0, !<*0))| < e/8 and 

\H„(x0, v(t0) + A) - H(x0, v(t0) +A)\ < e/24 for every n = Wl . 

Then |ifw(x0, t;(f0) +) - H(x0, v(t0) +)\ ^ \Hn(x0, v(t0) + A) - fl(x0, v(t0) + A)\ + 
+ 2n(K(v(t0) + A) - K(u(f0) +)) < e/8. 

In case that v(t0) < v(t0+), by the definition of R{HtV) in 1.18 there is a > 0 and 
a solution y0 °f the equation 

(3.13) ^ = DH(y,t) 
at 
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on [u(f0), v(t0 + (j)] such that y0(v(t0)) = x0. By Corollary 2.7 there is nt e N and 
a > 0 such that, i/ a' e (0, a] and y is a solution of the equation 

(3.14). *Z~DHn(y,t) 
dr 

on the interval [v(f0), i>(fo + <*')] f°r s o m e n = n i a nd ^ l-K f̂'o)) — yo(K*o))| < a> 
then 
(3.15) |y(s) - y0(s)\ < a/4 for 5 e [v(f0), v(f0 + a')] . 

There is r e (0, e/2) such that a>(r) c < e/4; in case v(f0) < v(f0 + ) let us assume 
that also r ^ a. There is Q > 0 such that 

n(K(v(t0+) + Q)- K(v(t0 + ) +)) < r /2, n(K(v(t0)) - K(v(t0) - Q)) < r /2 . 

There is such <5 e (0, r/2) that the function v is continuous at the points t0 — <5, 
t0 + <5 and v(t0 + <5) - v(t0 + ) < e/2, v(f0) - v(/0 - <5) < o/2. 

Let <5' G (0, <5) be given. Find <5" e (0, <5'] such that the function v is continuous 
at t0 - <5", t0 + <5". 

Then un(f0 - S") -> v(t0 - <5"), vn(t0 + 5") - v(tc + <5"); since v(r0 + <5") > 
> v(t0 + <5"/2) > v(t0) > v(t0 — 8"), there is an integer n2 ^ nx such that 
vn(t0 + <5") > v(t0 + <5"/2) > v(t0) > vn(t0 - <5") for every n ^ n2. Consequently 
W ' o M ' o + ) ] c M ' o - &"), "fa + S"))forn Z n2. Since vn(t0 - <5") --> v(f0 - 5") 
and vn(t0 + <5") -> v(f0 + <5"), there is n0 ^ n2 such that v,,^ — <5) — v(t0 — 8) > 
> -Q\2 and vn(t0 + <5) - v(t0 + <5) < Q\2. For n ^ n0 we have 0 < K(tf(f0)) -
- K(vn(t0 - 5')) :g K(v(t0)) - K(v(r0 - <5') - o/2) ^ K(v(r0)) - K(v(t0) - C); 
hence 

(3.16) tj(K(v(t0)) - K(vn(t0 - d'))) = n(K(v(t0)) - K(v(t0) - Q) < r /2 . 

Similarly it can be proved that 

(3.17) n(K(v„(to + 6')) - K(t<'o + ) + » = l(K(v(t0 +) + a) - K(v(t0+) +)) < r/2 

for every n = n0. 
Let xn be a solution of (3.1)„ on [f0 — <5', f0 + <5'] for n — n0 such that 

Wto - »') - *o| = 5. 
If we define y„(t) = xn(v~1(x)) for T e [i>„(f0 — S'), v„(t0 + <5')], then by Theorem 

1.17 the function y„ is a solution of (3.14)„ on [v„(t0 — <5'), vn(t0 + 5')]. 
Denote y„ = y„(r(f0)), « ^ «0. Then 

(3.18) \y„ - x0\ = \y„(v(t0)) - x0\ = \y„(v(t0)) - yn(v„(t0 - «5'))| + 

+ W(t0 -5)- x0\ <. n(K(v(t0)) - K(v„(t0 - 5'))) + 5 < r. 

a) Assume that t<f0) = v(t0+). Using Lemma 2.8 in [Si ] for functions yn, H„ and 
for s = v(t0), we get the equality 

yn(»(to) +) - }'n(v(to)) = ^(s + ) ~ .V»(-) = 

= #„(>-,,(«), s + ) - tf,,(>>,,(s), s) = H„(y„, v(t0) +) - H„(yn, v(t0)) . 
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Lemma 2.6 in [Si] implies that 

\yn(s2) - yn(s,)\ ^ xJts2) - xn(Sl) ^ r/(K(s2) - K(Sl)) 

holds for st < s2; hence for st -* v(t0) +
 a nd s2 = vn(t0 + 8') we get the inequality 

\yn(v„(tc + S')) - yn(v(t0) +)) < r^K(vn(t0 + 8')) - K(v(t0) +)) ; 

similarly for s, = t>n(f0 — 5') and s2 = v(t0) we have 

\yn(to)) - yn(Vn(to - <5'))l = ri(K(v(to)) - K(vn(t0 - 8'))). 

From (3.12), (3.16), (3.17) and (3.18) we get the inequality 

|x(f0 + 8') - x(t0 - 8') - [F0(x0, to +) - fo^o. to)]| = 

= |y„Wto + *')) - yn(v„(to - *')) - [H(x0, v(t0) +) - H(x0, v(t0))]\ = 

= \bn(vn(to + S')) - y„(v(t0) +)] + [H„(y„, v(t0) +) - H„(y„, i<r0))] + 

+ bn(v(to)) - yn(vn(to - <5'))] - lH(x0, v(t0) +) - H(x0, v(t0)j]\ g. 

= \yn(vn(t0+ *')) - yn(v(to) +)\ + Hv(t0)) - y„(vn(tc, - 8'))\ + 

+ \Hn(yn, v(t0) +) - H„(y„, v(t0)) - H„(x0, v(t0) +) + H„(x0, v(t0))\ + 

+ \H„(x0, v(t0) +) - H(xa, v(t0) +) | + |H„(x0, v(t0)) - H(x0, v(t0))\ g 

=g tl(K(v„(t0 + 8')) - K(v(t0) +)) + *(K(v(t0)) - K(v„(t0 - 8'))) + 

+ a(\y„ - x0\) (A„(i<f0) +) - X„(v(t0))) + s/8 + £/8 < 

< r/2 + r/2 + co(r) c + E/4 < s. 

b) Assume that v(t0) < v(t0+). For n 2: n0 the function y„ is defined on 
[v(t0), v(t0 + <5"/2)] and according to (3.18) the inequality |yM(u(f0)) — x0| < r g a 
holds; then (3.15) is satisfied for y = y„ and a' = <5"/2. We have the inequality 

\xn(t0 + S') - xn(t0 - 8') -[F(x0, t0+) - F(x0, .0)] | = 

= |W«>,,(to + *')) - yn(vn(t0 - <5'))] - [y0(v(t0+) +) - y0(v(t0))-\\ <. 

= |>*„Wto + <5')) - yn(v(t0 +) +)\ + \y*(v(to+) +) - yo(v(to+) +)\ + 

+ KMto)) - yn(v(t0))\ + \yn(v(to)) - yn(v„(to - t'))\ ^ 

£ ti(K(v„(t0 + 8')) - K(v(t0+) +)) + n(K(v(t0)) - K(vn(t0 - 8'))) + 

+ 2\\y„ - y0\\ < r/2 + r/2 + 2 . e/4 < e. 

Consequently, the condition (3.4) is verified. 

Remark. Taking into account that (3.11) is a certain "generalization" of the con­
dition (3.2) and the function F0 need not belong to &(G, h0, a>), we can say that 
the sequence (F„) in Theorem 3.6 "converges i?-emphatically to F 0" in a little more 
general setting. 
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3.7. Lemma. Let a sequence of functions Hne <P(G, xn9 Xn, a), neN be given 
such that 

(3.19) there is such c > 0 that Xn(T) - Xn(-T) = c , neN ; 

(3.20) there is a continuous increasing function r\: [0, oo) -> [0, oo), rj(0) — 0, 
and an increasing function K:[—T, T ] - > R which is left-continuous on 
( - T , T] , right-continuous at —Tand such that xn(s2) — xjjsx) = 

= */(K(s2) - K(st)) for every n e AV, - T = sx < s2 = T; 

(3.21) there /s such <r e ( - T, T) fhaf H„(x, o) = 0 for every xeQ,neN. 

Then (Hn)n
x>

=i contains a pointwise convergent subsequence. 

Proof. For every n e N let us define a function #„: Q x [K ( -T) ,K (Tj ] -+ R^ 
in the following way: fin(x, T) = Hn(x91) for every xeQ and Te(K ( -T) ,K (T)) 
having the form x = K(t). If t e ( - T , T) is such a point that K(t) < K(t + ) then 
-#„(x,K(f-{-)) = Hn(x9t+) and the function fin(x, •) is defined linearly on \_K(t), 
K(f+)] (in terms of the notions from [F2], the function fijx, •) is the linear pro­
longation of the function Hn(x, •) along the function K). 

By [F2],Prop. 1.22 there is a continuous concave increasing function fj: [0, y] -• 
-> [0, oo) where y = K(T) - K(-T), such that fj(0) = 0 and rj(r) = //(r) for every 
r G [0, y]. Then for every n e N9 x e Q the inequality 

\Hn(x9 t2) - Hn(x, tx)\ = K„(*2) - x ^ ) = /?(K(r2) - K(O) , -T<tt<t2<T 

holds. From [F2], Prop. 2.9 it follows that 

(3.22) \fin(x9 T2) - fin(x9 xt)\ = fa - Tt) 

for every x e Q9 K(- T) < TX < T2 < K(T), n e AV. 
The inequality (3.22) implies that the limits fin(x9K(-T) +), fin(x9K(T) - ) 

exist for every x e Q, neN. Let us define fin(x9 K(-T)) = lim fin(x, T), 
T-+K(-r) + 

#n(x,K(T)) = lim # , . (X,T) . Then the inequality (3.22) holds if K(-T) = 
T - » K ( T ) -

g TX < T2 ^ K(T). 
Let f e ( - T, T) be given, denote T = K(f). For every x, y e Q, n e N we have 

\fin(x9 T) - fin(y9 T)| = \Hn(x9 t) - Hn(y91)\ = 

= |H/x, t) - H„(x, <r) - Hn(y91) + Hn(y9 o)\ = co(\x - y|) |Art(f) - X„(CT)\ = 

= a>(|x - y\) (Xn(T) - A„(- T)) = oQx - v|) c . 

If K(i*0) < K(t0+)9 then passing to the limit with t -> t0 + we get the inequality 

(3.23) |B„(x, T) - tin(y, T)| £ a(\x -y\)c 

also for T = K(t0+). Since (3.23) holds for T = K(f0) and for T = X(J* 0 +) and the 
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function &n(x, •) is linear on the interval [K(t0),K(t0+)~\, the inequality (3.23) 
holds for every TG [K(t0),K(f0+)]. Consequently,(3.23) is valid for every r e 
e [ K ( - T), K(T)], xeQ,nsN. From (3.22) and (3.23) we get 

\6n(x, T2) - #„(y, T l)| £\BJixt T2) - £„(*, T l)| + 

+ \fin(x, TO - dn(y, TX)\ = //(T2 - Ti) + w(|x - y\) c for x j e f l , n e i V , 

K^T)^x1<x2^K(t); 

hence the functions #„ are equicontinuous on Q x [ K ( - T), K(T)]. By (3.21), (3.22) 
we have \fin(x, x)| = \(tn(x, T) - #„(x, K(a))\ = fj(\x - K((i)|) = /}(K(T) - K(- T)), 
hence the functions ftn are bounded. It follows from the Arzela-Ascoli Theorem that 
for every compact subset A of Q the sequence (ftn)n=i contains a subsequence which 
is uniformly convergent on A x [K(— T),K(T)\; using the diagonalization we can 
find a subsequence (#Mk)r=i which converges pointwise to a function {I: Q x 
x [K(-T),K(T)]-+RN. If we define H(x, t) = #(x,K(t)) for every (x,t)eG, 
then Hw(x, t) = #,.(x, X(r)) - #(x, K(t)) = H(x, t). 

3.8. Lemma. Let functions F0, F: G -+ RN be given such that 
(i) there is a nondecreasing left-continuous function h: [— T, T] -* ff whfc/i has 
zero continuous part, such that 

\Fo(x, t2) - F(x, t2) - F0(x, tt) + ^(x, tt)\ = fc(r2) - fc(rj) 

for every xeQ, - T < / 1 < r 2 < T ; 

(ii) there is a set R c G such that for every (x, t)e R the identity F0(x, / + ) — 
- Fc(x, t) = F(x, t+) - F(x, t) holds. 

If x: [a, jS] -> RN, [a, 0] c ( - T, T) is such a function that (x(t), t)eR for 
every t e [a, p), then 

P DF0(X(T), 0 = (t2DF(x(z), t) 
J ti J ti 

Jor every ti912 e [a, /J] provided at least one of the integrals exists. 

Proof. Let us denote N(x, t) = F0(x, t) - F(x, t), (x, t) e G. Then 

(3.24) |N(x, t2) - N(x, tx)\ = h(t2) - /i(.x) for every x e Q , 

- T < rj < t2 < T; 

(3.25) N(x, t+) - N(x, f) = 0 for every (x, f) e ft . 

Assume that a ^ tt < t2 ^ /?. 
By Lemma 1.6 we have 

í DN(x(z),t)= £ [ І V ( X ( S ) , S + ) - J V ( . X ( S ) , S ) ] 

251 



Since (x(s), s) e .8 for every se[ti912)9 (3.25) implies that N(x(s), s + ) - N(x(s)9 s) =-
-= 0. Consequently 

PD[F0(X(T), r) - F(X(T), *)] = pDN(x(T), 0 = 0. 

The rest of the Lemma follows from [SI], Th. 1.6. 

3.9. Theorem. Assume that a sequence of functions Fn e fF(G9 hn9 co)9 ne /V 
converges R-emphatically to a function F0: G -* RN. Then 

(i) there is a subsequence (F„k)k
x>

=i which converges under substitution to a pair 

(", v); . 
(ii) if we denote by F the reduction of the function H by the function v, then for 

every xe Q the continuous part of the function F0(x, •) — F(x9 •) is constant and 
for every (x, if) e R n R{H,v) tne identity F0(x, t+) — F0(x, t) = F(x, t+) — F(x, t) 
holds; 

(iii) let [a, j5] c ( - T, Tf, a function x: [a, 0] -> RN swcft */ia* (x(f), t) e R n -R(//,y> 
/o r euery f e [a, /}) is a solution of the equation (3.5), if and only if it is a solution 
of the equation 

(3.26) — = DF(x, t) 

on the interval [a, /?]. 

Proof, (i) By [F2], Th. 1.21 there is a subsequence (h„k)k
x>

=l for which there exists 
a sequence of continuous increasing functions (vk)k=t c A and an increasing function 
D G T such that vk(t) -* v(t) for every te(—T9 T) at which v is continuous, and the 
functions h„k o vk* are equiregulated. 

Since the functions hnkoV~l are equiregulated, by the property 1.4 there is an 
increasing continuous function n: [0, oo) -> [0, oo), n(0) = 0 and an increasing 
function K: [— T9 T] -* R which is left-continuous on (— T9 T] and right-continuous 
at - T so that 

hjpu '('a)) - hnk(v: \s,)) <L n(K(s2) - K(st)) for every fc e N , 

- T = sx < s2 = T. 

Then the inequality (3.6) is satisfied provided kn9 vn are replaced by h„k9 vk. 
Fix such a point t0 e (— T, T) that the functions ft0, v are continuous at t0 and K 

is continuous at v(t0). Let Hfc: G -> RN be the prolongation of the function FMfc 

along i?fc, denote Hk(x9 T) = Hfc(x, T) — Hk(x9 v(t0)) for every (x, T) G G. 
By Lemma 3.7 there is a subsequence of (H'k) which for simplicity will be denoted 

again by (H'k)9 such that Hfc(x, T) -* H'(x, T) for every (x, T) e G. Define H(x, T) =-
= H'(x9 T) + lim Fn(x, r0). 

w-*oo 
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By (3.3) for every e > 0 there is such an integer fc0 that \Fnjc(x910) - lim F„(x, t0)\ < 
n-*co 

< e for every k ^ fc0. For k 3; k0 we have \Hk(x, i>(f0)) — lim Fn(x, t0)\ = 

= \Fjx, ^\v(t0)) - lim Fn(x, t0)\ <. \Fjx, v^\v(t0)) - F„k(x, t0)\ + \Fjx, t0) -

- lim F„(x, t0)\ < e + "hjv^(v(t0)) - hjt0) g e + r,(\K(v(t0)) - K(vk(t0))\). 
n->oo 

Since v is continuous at t09 we conclude that vk(t0) -> v(t0); further K(vk(t0)) -• 
-* K(v(t0)) because K is continuous at v(t0). Consequently Hk(x91) -> H(x, f), (x, t) e G, 
and the subsequence (Fnk) converges under substitution to (H9 v). 

(ii) By (3.3) there is a function F(x, t) = F0(x, t) + F*(x, t) which is left-con­
tinuous in t and such that Fn(x, t) -> F(x, t) for every xeQ and t e (—T, T) at which 
the function /i0 is continuous. Proposition 3.4 yields that F(x, t) = H(x9 v(t))9 

(x, *) 6 G. 
By Proposition 3.5 there is such a jump function h that (3.9), (3.10) hold when 

F*(x, t) is replaced by F*(x91) = F(x, t) - .P(x, t)- Then 

|[F0(x, t2) - .P(x, t2)] - [F0(x, r4) - F(x9 tt)]\ = 

= |[F*(x, t2) - F*(x, t,)] - [F*(x912) - ^*(x, r03l = 

= [h*(r2) - fc*(rO] + [h(t2) - fc^O] = K(t2) - fi(it) 

where /i(t) = h*(t) + /i(f). 
If (x, t) e R then the value F0(x, t + ) - F0(x, f) is evaluated by (3.4). Since the 

subsequence (F„k) converges R-emphatically to F0 and K(H5t7)-emphatically to F9 

we have 

F0(x91+) - F0(x, t) = F(x, t+) - ^(x, r) for every (x, t)eRn R(H,V). 

Part (iii) is an evident consequence of Lemma 3.8. 

3.10. Theorem. Assume that a sequence Fn e $(G, kn, ln, cu), n e N converges 
under substitution to a pair (H9 v), let F0: G -> RNbe the reduction of the function H 
by v. Assume that the function K o v is continuous at a, fi — T < a < jS < T. 

(i) / / xM is a solution of the equation (3.1)M on [a, /?] for every n e N and if the 
:set {xn(oi)'9 ne N} is bounded, then there is a function x0: [a, fi] -> RN with bounded 
variation and left-continuous on (a, fi], and a subsequence (x^)*^ such that 
xnjf) -* x0(t)for every t e [a, fi] at which the function K o v is continuous (notation 
from Def. 3.2 is used). 

(ii) Assume that x0(a) e Q. Then either the function x0 is a solution of the 
generalized differential equation with a substitution 

(3.27) x(t) = y(v(t)) , Jj-l - Dfl(>, 0 
d i 

on the interval [a, fi]9 or there is such fi e(a, fi] that x0 is a maximal solution 
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on [a, ft') or [a, /T], or there is such jS" e (a, /J) ffeaf x0 is a solution of (3.27) 0n 
[a, j?"] and disappears at j5". 

(iii) / / (x0(f), 0 e .R(Hfl.) /0r every t e [a, /?], then the junction x0 is a solution 
of (3.21) on [a, /?], as well as of the equation (3.5). 

Proof, (i) By Corollary 2.7 in [SI] the function xn has bounded variation on [a, j8] 
for every n e N and 

varS xw ^ kn(P) - fcrt(a) ^ # „ ( / ! ) ) - K(^(a))) ^ r,(K(T) - K(-T)) 

for every n e AV. By Helly's Choice Theorem there is a function x: [a, /?] -* RN of 
bounded variation and a subsequence (x„k)£L t such that xnk(t) -• x(f) for every 
*e[a,j3]. ' 

Since |xWk(r2) - x^r^l g k„k(t2) - knk(tx) ^ n(K(vnk(t2)) - Kfofr) ) ) for every 
ke N, a £ tt < t2 ?ZJ}, passing to the limit with k -> oo we get the inequality 

(3.28) \x(t2) - x(tl)\ ^ r,(K(v(t2)) - X(>(..))) 

for every ti912 at which the function K o v is continuous, a ^ tt < t2 ^ ft. 
Let us define x0(a) = x(a), x0(f) = x(t—) for f e (a, /?]. Then the function x0 has. 

bounded variation and is left-continuous on (a, /?]. Since the function x has one-sided-
limits on [a, /}], the inequality (3.28) yields 

(3.29) |x(a+) - x(a)| ^ >/(K(i<a+) + ) - K«a))) = 0 ; 

|x(r) - x (* - ) | ^ rj(K(v(t)) - K(v(t-) - ) = 0 

for every f e (a, /?] at which K o v is continuous. 
If the function K o t; is continuous at t e [a, jS] then the function x is continuous, 

at t, which implies that x0(f) = x(t) = lim x„k(r). 
k-*oo 

(ii) For every t e [a, jS], n e AV we have the estimate |xn(f)| <; |xn(a)| + rj(K(T) — 
- K(-T)), hence there is d > 0 such that 

(3.30) \xn(t)\ ^ d for every t e [a, j8] , n e / V . 

For every k e N let us define ^ ( T ) = XnJ^Vv1))' T e [vnk(a), vnk(p)]. By Theorem 1.17 
the function yk is a solution of the equation (3.14)Wk on [v„k(cc), v„k(P)]. 

Since the function v is continuous at a, j?, we have v„k(<x) -> v(a), v„k(fl) -> r(j5). 
Hence for every [y, 5] c (v(a), i;(/})) there is such k0e N that [y, 5] c= [^(a), vnk(P)l[ 
for every fc ^ fc0. By Theorem 2.5 the sequence j k contains a subsequence which is 
uniformly convergent on [y, S]. By a diagonalization process we can find a function 
yo: vKa)» KP)) ~* ^N an(* a subsequence of (yk) — which will be denoted again 
by (yfc) - so that yfc =t y0 on [y, 5] for every [y, S] c (v(ct), v(fi)). 

From (3.2) and Lemma 2.6 in [SI] it follows that 

M'i) ' VM ^ <K('i) - X(50) > *JL*) ^*i<s2£ vnk(P) , k G N ; 
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then 

(3.31) \y0(s2) - y0(51)| .= rj(K(s2) - K(sx)) , v(<x) < st < s2 < v(p) . 

Let us define y0(t?(a)) = y0(v(a) + ) , y0(
v(P)) = ya(u(/0 "")• ^ ^ e function K o v is 

continuous at f G (a, jS) then 

MO - j'aMO)! ^ |xo(0 - *„„(')! + K W O ) - y<K(0)l + 
+ \yo(vJt)) - y0(v(t))\ ^ \x0{t) - x„k(t)\ + 

+ I K - -VOIU>-J.-(.>+'] + »K|J-W0) - ^(0)1) 
where 5 > 0 is so small that \y(t) — .3', t>(t) + <5] c: (t?(a), v(f})). The expression at 
the end of the inequalities tends to zero with k -• cc, hence x0(f) = yo(KO) f° r 

every t e (a, j5) at which the function K 0 v is continuous. Since the functions x0, >>0, v 
are left-continuous, the equality x0(f) = y0(t,(f)) holds for every fe(a , /?]. The 
continuity of K 0 v at a implies that the functions x0, t> are right-continuous at a 
and >>0 is right-continuous at V(OL). Hence 

(3.32) x0(r) = yo(i<0) f o r e v e r y ' G [*> P] • 

Since x0(a) =-- y0(u(a)) G (2 and the function y0 is right-continuous at V(OL), there is 
such 8 > 0 that J0(T) G Q for every T G [u(a), v(a) + 5]. 

If y0(x) e Q for every T G [u(a), u(j3)], by Theorem 2.5 the function y0 is a solution 
of the equation (3.13); then the function x0 = y0 © v is a solution of (3.27) on [a, /?]. 
Assume that there is such y e (V(OL), v(fi)] that y0(T) G fi for every T G [t?(a), y) and 
yc(y) £ >G. If y = t?(/T) for some j8' G (a, jS] then the function x0 is a maximal solution 
of (3.27) on [a, j8'). If there is such p" e (a, p) that y e (v(P"), v(P" + ) ] then the func­
tion x0 is a solution of (3.27) on [a, /J"] and disappears at ft". 

Finally, assume that there is such y G (V(OL), v(P)) that y0(T) G Q for every T G 

G [t;(a), y] but there is no s > y such that y0(T) G Q for every T G [tl(a), s]. Let us find 
such ft that y G [v(j5), V(/5 + ) ] . If v(j5) = v(/5+) then x0 is a maximal solution on [a, j5]. 
If v(/J) < v(/5+) then x0 is a solution on [a, /5] and disappears at p. 

(iii) If (x0(f), t) G -R(H,t) f°r every r G [a, ft) then J>0(T) G Q for every T G [t>(a), v(P)], 
hence the function x0 is a solution of (3.27). By Theorem 1.24 the function x0 is also 
a solution of (3.5) on [a, /?]. 

3.11. Theorem. Assume that functions Fn e &(G, kn, ln, co), ne N converge under 
substitution to a pair (H, v), let F0: G -* RN be the reduction of the function H 
by v. Assume that the function K 0 v is continuous at on, /?, — T < a < /? < T. 

Let x0: [a, j8] —> RN be a solution of the equation (3.5) on [a, /?] which has the 
uniqueness property (2.10) when (2.7) is replaced by (3.27). Assume that (x0(t), t) e 
G R{H,v) for every t e [a, /}). 

Assume that any solution y: [V(OL), V(P)] -* RN of the equation (3.13) such that 
y(v(oL)) = x0(a) satisfies 
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(3.33) there is such Q > 0 that if zeRN, s e [v(a), v(fi)] and \z - y(s)\ ^ Q then 
zeQ. 

Let a sequence (zw)r=i c -2 be given such that lim zn = x0(o). 

Then there is an integer n0 such that for every n _ n0 there is a solution xn of 
the equation (3.1)w on [a, ft] such that xn(o) = zn, and lim xn(t) = x0(f) for every 
t e [a, P] at with the function K 0 v is continuous. "~>c0 

Proof. We will use the notation from Definition 3.2. By Theorem 1.24 the function 
x0 is a solution of (3.27) on [a, ft], hence there is a solution y0 of the equation (3.13) 
on [v(o), v(P)] such that y0(v(t)) = x0(t) for every t e [a, /?]. 

If 8 e (v(o), v(p)] and y is a solution of (3.13) on [v(o), 5] such that y(v(o)) = x0(a), 
let us find such y e [a, jS] that 5 e [v(y), v(y+)] and define x(t) = y(v(t)), t e [a, y]. 
Then the function x is a solution of the equation (3.27) on [a, y] and by the uniqueness 
property (2.10) we obtain that x(t) = x0(t) for every t e [a, y]. 

For every T e [v(o), d] let us find such t e [a, y] that T e [v(i), v(t+)]. If T = v(t) 
then J(T) = x(t) = x0(f) = y0{i). If v(t) < v(t+) and T e(v(t),v(t + )], then the 
definition of the set R(HtV) in 1.18 implies that ^(T) = yo(T). We have proved that 

(3.34) if y: [v(o), 6] -> RN is a solution of (3A3) such that y(v(o)) = y0(v(o)) then 
yW = yot1), Te[v(a),c5]. 

Since the function Kovis continuous at a, there is such d > 0 that //(K(r(a) + d) — 
— K(v(o) — d)) < Q\2 (the number Q is taken from (3.33)). Since vn(o) -> i?(a) and 
zn -> x0(a), there is such an integer n0 that vn(o) e [v(o) — d, v(o) + d] and 
\zn — x0(o)\ < QJ2 for every n ^ n0. Let n ^ n0 be fixed. 

By A let us denote the set of all functions y from 0tN[v(o) — d, v(o) + d] satisfying 
|><T) - zn\ ^ r\(\K(T) - K(vn(o))\) for every T G [V(O) - d, v(a) + d]. The set ,4 is 
closed in $N[v(a) - d, v(o) + d] and y(vn(o)) = znfor y e A. H y e A then |>>(T) — 
- y0(v(o))\ = |J<T) - y(v„(a))| + \y(vn(o)) - x0(a)| ^ ^ | X ( T ) - K(y„(a))|) + 
+ |z„ - *o(a)| _ n(K(v(o) + d) - K(i>(a) - d) + QJ2 < Q for every T G [r(a) - d, 
i?(a) + d], hence >>(T) e .Q owing to (3.33). 

For every y e A the function 

Ty(o) = zn + T D % ( T ) , t), o e [v(o) - d, v(o) + d] 
J vn(<z) 

is defined. For j ? e i w e have 

(3.35) \Ty(o2) - T ^ ) ! ^ ^((72) - x ^ ) ^ n(K(o2) - K^)). 

i?(a) — d = t7t < cr2 = r(a) + d , 

consequently the set T(A) is relatively compact in 0tN[v(o) — d, v(o) + d] and 
T(.A) — A. According to Lemma 2.1 the operator Tis continuous. By the Schauder-
Tichonov fixed point theorem there is such a function yn e A that >^(T) = Tyf

n(z), 
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T e [y(a) — d, v(a) + d\. By Theorem 2.5 there is a subsequence (y„k) which con­
verges uniformly to a function y on [v(a) — d, v(a) + d\. Since |y„(t) — yo(Ka))| < 0> 
n ^ w0, we have |)>(T) - y0(V(a))| ^ £ f o r eve ry T e Wa) "" d> r(a) + <Q; the as­
sumption (3.33) implies that y(T) e Q. By Theorem 2.5 the function y is a solution 
of (3.13) on [v(a) - d, v(a) + d]. From (3.34) it follows that J(T) = y0(T) for every 
T e [i,(a), u(a) + d\, consequently yn z> y0 on [v(a), v(a) + d]. 

Since yn(v(a) + d) -• y0(v(ct) + d) and the solution y0 satisfies the assumptions 
of Theorem 2.6 on [v(a) + d, v(p)\, there is such n1 ^ n0 that for every n ^ nx 

there is a solution >!n of (3.14)n on the interval [v(a) + d, v(P)\ such that yn(v(a) + 
+ d) = yn(u(a) + d), and >;n =2 j>0 on [t?(a) + </, v(P)\. If we define J>„(T) =- ^ ( T ) , 

T G [u(a) - d, v(a) + d], then yn is a solution of (3.14)n on [i?(a), v(p)\, yn(vn(a)) = z„ 
and }>„ .=t jo on [v(a), v(p)\. 

Since y0(v(p)) e Q, yn(v(P)) -» )>0(v(/?)) and the function K o i; is continuous at P, 
it can be proved similarly as above that there are such d' > 0 and n2 ^ ni that the 
solutions yn can be continued on [v(a) — d, r(j?) + d'\ and un(/?) e [v(p) — d', 
f(/0 + d'\, n ^ n2. 

For every n ^ n2 let us define xn(f) = yn(u„(0)> * e [a> P]; by Theorem 1.17 the 
function xn is a solution of the equation (3.1)n on [a, /J], xn(a) = yn(vn(a)) = zn. 

If the function K o v is continuous at f e (a, j?) and w ^ n2, then there is such 
n ' £ n 2 that rn(f) e [t;(a), v(p)\, n ^ n'. We have |xn(r) - x0(r)| = |yn(i?n(r))-

- y0(KO)l -S lynWO) - >>oM0)l + IMKO) - MK0)l ^ II*. - yolU),*,,)] + 
+ */(|K(t;n(f)) — K(t?(t))|); the last expression tends to zero with n -* oo. 

Let e > 0 be given; there is such 5 > 0 that *j(<5) < e. Find such t e (a, p) that the 
function K ovis continuous at t and K(v(p)) — K(v(t)) < 5/2. There is such n" ^ n2 

that 
IKM/0) - K(v(p))\ < <5/4 , |K(,n(0) - K(v(t))\ < 5/4 

and 
WO ~ xo(0l < 8 f°r every n = w" • 

Then 
HP) - x0(p)| ^ |xn(jg) - xn(r)1 + M O - *c(/OI + M O - *o(0l < 

< < K ( ^ ) ) - K(vn(t))) + ,,(K(r(/}) - K(v(t))) + e < 

< rj(K(v(p)) - K(t;(0) + 5/2) + f/(<5) + e < 3e. 

Consequently x„(f) -* x>(f) for every f e [a, P\ at which the function K o v is con­
tinuous. 

3.12. Example. Assume that functions F e ^(G, h, co), g: Q-* RH - and 
#n: [ - 7 ; r ] - * R , n 6 A/ are given such that 

(i) the function h is continuous on [— T9 T\ and the function g is uniformly 
continuous on Q; 

(ii) the functions <Pn, ne N are continuous on [— T, T\ and there is such c > 0 
that varLT #„ ^ c for every ne N; 
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(iii) for every e > 0 there is such S > 0 that 

\2LTZT+S &n + *aTT-d ^n < £ f°r every neN; 

(iv) there is a function # e £ V [ - T , T] which is left-continuous on (—T,T], 
right-continuous at — Tand such that <Pn(t) -> <P(t) for every f e [— T, T] at which <P 
is continuous (including — T, T). 

Our aim is to find a limit equation for the sequence of generalized differential 
equations 

(3.36). ^ = D[F(x,.) + fl(x) *„(.)] 
dT 

(see also [S2], Example 4.7). 
Denote c„ = 1 + (1/2T) varIT #n for neN, c = 1 + (1/2T) c. By (ii), for any 

ne N the inequality 1 ^ c„ ̂  c holds. 
For every n e AV let us define functions vn(t) = (l/c„) [t + T + varLT #„] — T, 

f e [— T, T]. Then vn e A. Since the functions vn, n e N are increasing and bounded, 
there is a subsequence (vnk) and a nondecreasing function v0: [— T, T] -> /ft such that 
vnk(t) -* »o(0 for every f e [ - T , T]. Evidently u 0 ( -T) = - T , v0(T) = T. 

Let us prove that v0 is continuous at the endpoints of [—T, T]. For e > 0 given 
let us find 8 e (0, e] by the assumption (iii). For any t e (— T, — T + 5] we have 

v0(t) - v0(-T) = lim [vnk(t) - t;„k(-T)] = 
fc 

= lim — (t + T + varl r <£„k) = (f + T) + lim sup varl r <P„k < 2e ; 
* Lcnk J * 

hence v0 is right-continuous at — T The left-continuity at Tcan be proved similarly. 
We have 

(3.37) t;„(r2) - ^(r,) ^ l ( f 2 - /,) ^ 1 (/2 - rx) for neN, 
cn c 

neN, - T = tt < t2 = T, 
and consequently 

»o('2) - 0o('i) = ~ ('2 - 'i) for - T £ f,. < la £ T. 
c 

Let us define t;(-T) = - T , i?(T) = T, v(t) = v0(t-) for f e ( - T , T). Then 
obviously veV~ and t;Wk(f) -> v(f) for every t e [— T, T] at which i? is continuous. 

Let us define ^ ( T ) = 0n(v; 1(T)) for T e [ - T, T], n e N. If - T = TX < T2 ^ T 
and TX = i>.,(fi), T2 — t;w(f2) for some neN, then 

|^(t2) - -'•Ml = |^(.2) - *„(*,)! g v < #„ g 
^ CntyAh) ~ f»(tl)) = C„(T2 - Tj) g C(T2 - Tj) . 
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Then the sequence (*Fn) is equicontinuous; it is also bounded, because \<P„(t)\ ^ 
= |^«V'Q)| + varLT <Pn and the sequence (<Pn(t0)) -

s convergent for some f0. 
By the Arzela-Ascoli Theorem the sequence (*P„k) contains a subsequence — which 

will be denoted again by (*Fnk) - such that VHk zj Y on [- T, T]. Evidently ¥(v(t)) = 
= #(f). From (3.37) it follows that the functions t;"1 are Lipschitzian with the con­
stant 1/c, hence they converge uniformly to the function u defined by M(T) = J if 
v(t) = T = v(t+) (see [F2], Def. 1.10 and Prop. 1.11). ' 

By Theorem 1.17 the equation (3.36) has the same solutions as the generalized 
differential equation with a substitution 

(3.38) x(t) = y(vn(t)) , £ = V[F(y, v„(t')) + g(y) Vtf)\ . 
dr 

Since the function u is continuous, we have F(x, ^ ( f ) ) -* F(x> M(0). -?or every 
xeQ, t e [— T, T]. It is simple to verify that the sequence of functions Fk(x91) = 
= F(x, t) + g(x) 0„(r) converges under substitution to the pair (H, v) where H(x, f) = 
= F(x, u(t)) + g(x) Y(t); then the equation with a substitution 

(3.39) *(t) = ><t<0) , ^-•DlF(y,u(t)) + g(y)nt)] 
dT 

is a limit equation for the sequence (3.36)„k. 
In case the functions <Pn satisfy the condition varl^ &n +

 v a rI n̂. ~* 0 for every 
<5 > 0, the function !F will be constant on [T, i;(0)) and on (u(0 + ), T], and the func­
tion v will have a unique discontinuity at 0; then the function u will be constant on 
[u(0), v(0+)]. The equation (3.39) has the form 

(3.40) x(t) = y(v(t)) , ^f = DF(y9u(t)) on [-T, t<0)] O [<0+), T] \ 

£ = D[^) y(r)] on |>(0),t<0+)]. _ 

Since the function !P is Lipschitzian, it is absolutely continuous and has a.e. a deriva­
tive W(t) = i//(f). Using Theorem 4A.1 in [SI] and the fact that the function v is 
continuous on [— T, 0) and (0, T], we find an equivalent form for (3.40): :

; 

^ = DF(x,t) on [ - T , 0 ) u ( 0 , T ] ; 
dT 

x(0) = y(v(0)) and x(0 + ) = y(v(0 + )), ^- = g(y)^(i). 
at 

Notice that the equation dy/dt = g(y) \J/(t) need not have the uniqueness property 
and the function i/> may depend on the subsequence (-Fnj.). 

Let us return to the former case of an arbitrary sequence (<Pn) satisfying the con­
dition (iii), moreover assuming that for every x e Q the ordinary differential equation 
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(3.41) y = g(y) 

has a unique maximal solution such that y(0) = x, and this will be denoted by x(t9 x). 
Denoting H(x91) = F(x9 u(t)) + g(x) \l/(t)9 let us describe the set R{H,V)'-

Let (x, t)eG be given such that v(t) < v(t+). Since the function u is constant 
on [v(t)9v(t + )]9 the equation dyjdx' = DH(y9t') will have the form dyjdt' = 
= 9{y) M*') o n [t>(0» K ' + ) ] ' (a^ solutions of the equation dy/dt' = DH(y, t') are 
continuous, consequently we do not need the solution y on an interval [v(t)9 v(t + 3)]). 
The function y(s) = x(¥(s) — *?(v(t)), x) is a unique solution of the initial value 
problem 

(3.42) • ^ = g(y)^(s), y(v(t)) = x ; 
ds 

the function y is defined on [iI(f)> K***")] ^ ^ e function #(•, x) is defined on the set 

{ T E I ? ; T = ¥(S) - Y(v(t)) for some s e [t;(f), v(t+)]} . 

If y is the unique solution of (3.42) on [v(t)9 v(t+)] then (x, t) belongs to R(H,V) a n d 
we denote 

P(x, 0 = *(V(i<f+)) - *(v(t))9 x) - x = x(*(t + ) - <*>(')> x) - x -

Then the reduction ^ of the function H by i; which is defined in (1.10) will have the 
following form: 

For every x e Q the continuous part of F(x9 •) is equal to F(x, •) + g(x) #c(*), 
and F(x9 t+) - F(x91) = x($(t+) - $(t\ x) - x , (x, t) e RiHtV). 

Let us mention that the set .R(n,„> can depend on the choice of the subsequence *F„h 

which converges to *P9 but the values F(x91+) — F(x91) do not. 
Let us denote by R the set of all pairs (x91) e G such that the function x(% x) *s 

defined on the interval [—c(v(t+) — v(t))9 c(v(t+) - v(t))]. Let us define 

F0(x9t) = F(x9t) + g(x)*c(t)+ X [x(<p(z+)-<p(T),x)-x]. 
- r < t < f 
(x,x)eR 

Then the sequence of functions FH(xf t) = F(x91) + g(x) <Pn(t) converges /?-ephati-
cally to the function F0. 
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Souhrn 

SPOJITÁ ZÁVISLOST ŘEŠENÍ ZOBECNĚNÝCH DIFERENCIÁLNÍCH 
ROVNIC NA PARAMETRU 

DANA FRAŇKOVÁ 

V teorii zobecněných diferenciálních rovnic se vyskytuje zajímavý konvergenční efekt, který 
byl popsán J. Kurzweilem jako R-emfatická konvergence. S použitím pojmu zobecněné diferen­
ciální rovnice se substitucí bude definována tzv. konvergence se substitucí, o níž se ukáže, že je 
velmi podobná R-emfatické konvergenci. Posloupnost rovnic, která je konvergentní se substitucí, 
se dá převést na jinou posloupnost rovnic, která ke své limitní rovnici konverguje klasickým 
způsobem, tj. se stejnoměrnou konvergencí řešení a pravých stran těchto rovnic. 

Резюме 

НЕПРЕРЫВНАЯ ЗАВИСИМОСТЬ ОТ ПАРАМЕТРА РЕШЕНИЙ 
ОБОБЩЕННЫХ ДИФФЕРЕНЦИАЛЬНЬЦС УРАВНЕНИЙ 

Б А ^ РкАNКОVА 

В теории обобщенных дифференциальных уравнений полявляется интересный эффект, 
который был описан Я. Курцвейлом как- / -̂эмфатическая сходимость. В статье при помощи 
понятия обобщенного дифференциального уравнения с подстановкой определяется так назы­
ваемая сходимость с подстановкой и показывается, что она очень похожа на Я-эмфатическую 
сходимость. Последовательность уравнений, которая сходится с подстановкой, можно пере­
вести на другую последовательность уравнений, которая сходится к своему предельному 
уравнению в классическом смысле, т.е. решения и правые части этих уравнений сходятся 
равномерно. 

АихНог'з аййгезз: ^и2^ска 1054, 250 82 1>а1у и РгаЬу. 

261 


		webmaster@dml.cz
	2012-05-12T17:06:46+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




