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CONTINUOUS DEPENDENCE ON A PARAMETER OF SOLUTIONS
OF GENERALIZED _DIFFERENTIAL EQUATIONS

DANA FrRANKOVA, Praha
(Received June 9, 1986)

Summary. In the theory of generalized differential equations an interesting convergence effect
occurs which was described by J. Kurzweil as the R-emphatic convergence. Using the notion of
a generalized differential equation with a substitution, so called convergence under substitution
will be defined and will appear to be very similar to the R-emphatic convergence. A sequence of
equations which is convergent under substitution can be transformed to another sequence of
equations which converges to its limit equation in a classical way, i.e. with the uniform conver-
gence of solutions and of right-hand sides of these equations.

Keywords: generalized differential equation, generalized differential equation with a substitu-
tion, continuous dependence on a parameter, R-emphatic convergence, convergence under
substitution.

AMS classification: 34A10, 34C20.

INTRODUCTION

If we study the behavior of solutions of a sequence of ordinary differential equations
dx
5, =Tt ) + 9(x) er)

where the functions ¢, ““tend to the Dirac function, we find that the classical con-
tinuous dependence theorems cannot be used. J. Kurzweil investigated this problem
in 1958 in his paper [K2] and introduced the so-called R-emphatic convergence of
the right-hand sides of generalized differential equations
dx
— = DF(x, 1),
dz
which ensures the pointwise convergence of solutions of these equations.
In this paper an auxiliary notion of the generalized differential equation with a sub-
stitution

() = (u(0). 3% = DHOLY)
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is defined; it enables us to give an effective approach to the concept of the R-emphatic
convergence.

1. THE GENERALIZED DIFFERENTIAL EQUATION WITH A SUBSTITUTION

1.1. Let N denote the set of all positive integers, let R (N e N) be the N-dimension-
al Euclidean space with the norm l i, R' = R. The symbol (a,,)f,‘;,,0 denotes a sequence.

1.2. If a function g: [a, b] » RY, —c0 < a < b < + 0, is of bounded variation,
it can be written as a sum of its continuous and jump parts; these will be denoted
by g€, g’, respectively. We assume that g%(a) = g(a), g’(«) = 0.

We will write g(t—) = lim g(t). g(t+) = lim g(t), if the limits exist. The symbol

L nd S

T t+
g(v(t+) +) denotes the same as g(s+) where s = v(t+). If v is an increasing function,
then evidently g(v(t+) +) = lim g(v(7)) provided the left-hand side has sense.
T=t+

1.3. A function x:[a, b] > R is called regulated if the onesided limits x(t—)
and x(t+) exist and are finite for all te(a, b] and te [a, b), respectively. Since
every regulated function x:[a, b] = R" is bounded. we may denote ||x|| =
~ sup {[~(0); t € [a, BT}

Let us denote by #y[a, b] the normed linear space of all regulated functions from
[a, b] to R" with the norm | -||.

Then Zy[a, b] is a Banach space. For information about regulated functions see

[F2].

1.4. A set o = Ry[a, b] is called equiregulated if it has the following property:

For every ¢ > 0 and t, € [a. b] there is § > 0 such that

(i)if xe s, t'ea,b]and 1, — & < t' < 1o, then |x(t,—) — x(t')| < e,

(ii) if xe o, t"e[a,b] and 1, < 1" <t + 8, then |x(t") — x(to+)| < &.

In [F2], Th. 2.18 it is proved that for a set o/ = #,[a, b] the following condi-
tions are equivalent:

(i) o is relatively compact in Q?N[a b];

(ii) & is equiregulated and for every t € [a, b] the set {x(1); x € &/} is bounded;

(iii) the set {x(a); x € o} is bounded and there is an increasing continuous func-
tion n: [0, ) - [0, o0), #(0) = 0 and an increasing function K: [a, b] > R such
that

|x(t2) = x(t;)| < n(K(1;) — K(t;)) forevery xesol, a<t, <t, £b.

1.5. In this paper we will use the generalized Perron integral, which was introduced

by J. Kurzweil in [K1]. A treatise of this integral which is sufficient for our purposes

can be found in [S1]. We will use the notation from [St].

231



A finite sequence of numbers 4 = {ag, Ty, ®y, ..0p Yo ys Tpo %} is called a partition
of the interval [a, b] if

a=0y <oy <.<og_; <ou=>b and S =S«, i=1,2 ..k,

Given a function d: [a, b] = (0, ), we denote by &/(8) the set of all partitions 4
such that
[d,_l, a;] c [‘Ei - (S(Ti), T + 6(15)] fOl' i= ], 2, ooy k .

The symbol #[a, b] denotes the system of all sets S = [a, b] x [a, b] satisfying
the following condition: For every 7€ [a, b] there is &(t) > 0 such that (t,1)e S
for every te[a, b] n [t — &(7), = + &(7)].

Let S € #[a, b], assume that a function U: S — R" is given. If é is a function on
[a, b] which corresponds to S then for every partition A € #(5), A = {ag, 7y, @y, ...

k

ooy O, Ty 0} the finite sum (U, 4) = Y [U(r;, ¢;) — U(t;, ¢;-4)] is defined;
i=1

s(U, A) is the integral sum corresponding to the function U and the partition 4.

A function U: S —» R, Se ¥[a, b] is called integrable over [a, b] if there exists
7 € R" such that for every & > 0 there exists J: [a, b] — (0, ) such that for every
A € s#(8) the inequality |s(U, A) — 7| < & holds. The element y € R" is called the
generalized Perron integral of U over the interval [a, b] and will be denoted by
o DU(z, 1). If f5 DU(1, 1) exists then we define [; DU(t, t) = — [; DU(z, ). We set
[*DU(r,1) = 0ifa = b.

In [K1], Def. 1,1,1 and Def. 1,1,4 an equivalent definition of the generalized
Perron integral is given (the equivalence is proved in Th. 1,2,1 in [Kl]). This defini-
tion can be formulated as follows:

The function U: S - R, S € ¥[a, b] is integrable over [a, b] and has the integral
y € R if for every & > O there is 8: [a, b] = (0, o) and functions m, M: [a, b] > R
suchthaty — & < m(b) — m(a) £ M(b) — M(a) <y + eand (¢t — 7) [m(t) m(x)] <
S (t = 7)[U(r, 1) = U(r,1)] £ (1t — 7) [M(t) = M(1)] for every (z, ) € S such that
|t = 1] < &(x). ’

This definition will be convenient for proving the following lemma:

1.6. Lemma. Let a function U:S — R, S e ¥[a, b] be given, assume that there
is a nondecreasing function h*:[a, b] = R which has zero continuous part,is
left-continuous on (a,b] and such that |U(t, 1) — U(t, 7)| £ [h*(t) — h*(z)| for
every (v, t) € S. Then the function U is integrable over [a, b] and

I DU, 1) = T [0 1+) - UGt 9]

Proof. For every t € [a, b) the limit U(t, 1 +) exists because |U(t, s”) — U(t, s')| <
< h*(s") — h*(s') if (1,5'),(t,s") €S, t <’ < s". Denote «, = U(t, t+) — U(t, 1).
Owing to the estimate |a,| < h*(t+) — h*(f) the series Y a, is absolutely conver-
gent; let its sum be denoted by y. ast<b
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Let ¢ > 0 be given. There are pointsa = t; < t, < ... < 4+, = b such that
k
[h*(t+) — 15(0] = X [1*(tiea) = D¥(ti+)] < 2.
tela,b)\{t1,..., k) i=1 2

Define §(r) = min {|t — t;|, i = 1,2, ...,k + 1} for te [a, b]\ {1, 15, ..., t,};
Sty =min{|t, — t}|; i=1,2,..,k+ 1, i+j} for j=1,2,.. k.
If we define (1) = Y. [m*(s+) — h*(s)], t€[a, b] then the function x is

sefa,t)\{t1,...,t}
nondecreasing and x(b) — x(a) < &/2. Let us define functions

mty= Y a,—2x(1), M@t)= Y o, +2xt), te[a,b].
ass<t ass<t
Then
m(b) — m(a) =y — 2[x(b) — x(a)] >y — &;
M(b) — M(a) =y + 2[x(b) — x(a)] <y + &.
If the pair (7, f) belongs to Sand 7 < t < 7 + &() then none of the points 1y, t,, ..., #;
belongs to the interval (t,t). Hence x(t) — x(v) = h*(r) — h*(x) provided < ¢
¢{ts, 12, ..., 1} and x(t) — x(r) = h*(r) — h*(x+) provided t = ¢; for some je
€{1,2,.... k}. We have the inequality
U(r, 1) = Uz, 7) = [U(r, 7+) = U(r, 7)] + [U(r, 1) — Uz, +)] =
Sa + [h*1) — B*(z+)] S o+ Y o + 2[h¥(t) — h¥(r+)] <
T<s<t
< ¥ o+ 2[x() - «(0)] = M(r) — M(3).
T<s<t

Similarly it can be proved that if (r, f)e Sand © — §(tr) < t < 7 then
U(t, 7) — U(t, 1) < h*(1) — h*(t) < M(z) — M(7).
The inequality

(t =) [m{t) — m(x)] £ (t = D) [U(r, 1) = U(r, 7)), (v, 1) €S, |t — 1] < (z)

can be verified analogously.

1.7. In [S1], [S2] we can find basic results concerning the generalized differential
equation
(L.1) 4 _ DF(x, 1).

dr

The function F on the right-hand side of (1.1) is a vector-valued function from G
to R", where G is a subset of RV *1,

An N-vector valued function x is a solution of the equation (1.1) on an interval
1 < R, if (x(1), f) € G for all t eI and if for every s,, s, €I the identity
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(1.2) ‘ x(s;) — x(s;) = f DF(x(7), 1)

holds. The integral used on the right-hand side of (1. 2) is the generalized Perron
integral of the function U(t, t) = F(x(z), 1).

Assume that I, I' are intervals of the form [to, to + 6], [0, to + "] or [to, o + 0),
[t0s to + a’). Let x, y be solutions of the equation (1.1) on the intervals I, I', respec-
tively. The solution y is called a continuation of x if I = I and if x(t) = y(f) for
every tel. If I & I' then the solution y is called a proper continuation of the solu-
tion x. '

Solutions to which there is no .proper continuation are called maximal solutions
of (L.1). ‘

1.8. Throughout this paper let T > 0 be a fixed number and Q = R" a fixed open
set. Denote G = Q@ x (=T, T).

Assume that h, k, I: [~ T, T] » R are nondecreasing functions which are con-
tinuous from the left on (—T, T] and continuous from the right at the poiht. -T,
and let w: [0, ) — [0, w) be a continuous increasing function such that w(0) = 0.

We will be concerned with the class d)(G, k, 1, w) of functions F occurring on the
right-hand side of (1.1).

Definition. A function F: G — R" belongs to the class &(G, k, I, o) if
(1.3)  |F(x, ;) = F(x,t,)| < |k(t2) — K(t,)| forall (x,t,),(x,1,)eG,

(14)  |F(x 1) = F(x, 1)) = F(y, 12) + Fy, ;)] = o(|x = y]) [I(t2) = 1))
forall (x,1y),(x,t2), (v, 1), (v, 1) € G .

We denote #(G, h, w) = (G, h, h; w).

Whenever the symbol &(G, k, I, w) or (G, h, w) is used in this paper, it will be
assumed that the set G and the functions h, k, I, w have the properties described
above.

1.9. Remark. (i) In [K1], [K2] and [S1], [S2] the set #(G, h, o) is used except
Chap. 5 in [S2]. For one function F this is not important since if F € &(G, k, I, )
and we denote h(t) = k(t) + I(t) then F € #(G, h, w). Nevertheless, to distinguish
the two functions k and [ is of importance when one is concerned with an infinite
set of such functions F.

(ii) The continuity at the endpoints of the interval [ — T, T] of functions h, k, I is
assumed only for technical purposes. Since we will work ontheset G = Q x (=T, T),
nothing changes if e.g. a function h is only left-continuous on (—T, T); it can be
re-defined by the value h((—T) +) at the point —T'and by h(T—) at T.
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1.10. Remark. It follows from (1.3) that for every x € Q the function F(x, *) has
bounded variation on (— T, T). If a function x is a solution of (1.1) on [a, b] then

[x(t2) = x(t;)| < k(t2) — k(t), a<t; <t; b

according to Lemma 2.6 in [S1]; hence the function x has bounded variation.

1.11. Let usdenote by V'~ the set of all increasing functions v: [~ T, T] - [ - T, T]
which are continuous from the left on (— T, T] and continuous from the right at
the point =T, o(—T) = — T, «(T) =

By A let us denote the set of all functions A:[—T, T] » [—T, T] which are
continuous and increasing on [~ T, T], A(—T) = =T, A(T) =

1.12. Definition. Assume that functions H e &(G, k, I, ) and ve V™ are given,
let I = (—T,T)be an interval.

(i) An N-vector valued function x is a solution of the generalized differential
equation with a substitution

(1.5) x(1) = y(o(1)), —= = DH(y.1)

on the interval I, if there exists an interval J < (— T, T) and a solution y of the gener-
alized differential equation
(1.6) dy _ DH(y,t')
. d 4

on the interval J such that the equality x(f) = y(v(f)) holds for every tel.

(if) We say that the solution x is a maximal solution of (1.5) if it has no proper
continuation (defined as in 1.7).

(ii)) Let x be a solution of (1.5) on [t,, ¢] and let v(c) < v(c+). We say that x
disappears at the point ¢ if x(f) = y(v(t)) holds on [#,, c] for some maximal solution y
of (1.6) which is defined on an interval J such that its right endpoint belongs to

[v(c), v(c+)] and v(c) e J. -

1.13. Remark. It is possible that a solution x disappears at a point ¢ but it can be
continued to the right. This situation occurs when there are two solutions yq, ¥,
of (1.6) on intervals J,, J,, respectively, such that J, 2 [u(t,), v(c+)], 7, = [v(to), d]
or [v(to), d) where d e (v(c), v(c+)], y, is a maximal solution of (1.6) on J, and

x(t) = yy(o(t)) = y,(u(f)) for every te [t,, c].

- 1.14. Example. Assume that T =2, H(y, ) = yt; v(t) =t for te[—2,0] and
v(t) =1 + t[2 for 1 (0, 2]. By [Sl] Chap. 4A the equation with substitution (1.5)
<an be written in the form 4

(1.7) x(1) = Y(”(‘))
and its solutions are the functions x(1) = xo¢', t € [—2, 0], x(t) = x,e!*"2,t€(0,2].
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1.15. Definition. Assume that Fe &(G,k,l, w), ve A are given. A function
H: G - R is called the prolongation of the function F along v, if

(1.7) H(x, u(t)) = F(x,t) forevery (x,1)eG.
1.16. Proposition. Assume that Fed>(G, k,1, w) and ve A are given, let the

Junction H: G — R be the prolongation of F along v. Then He (G, kov™",
lo v_l, (D).

The proof is evident.

1.17. Theorem. Assume that functions F € (G, k, |, w) and ve A are given, let
He ®(G, k', I', ) be the prolongation of F along the function v. Then the equations.
(1.1) and (1.5) have the same solutions.

Proof. First assume that x is a solution of (1.1) on I and define J = {o(f); ve I},
W) = x(v™!(¢')) for every t' € J. For every 64,0, € J We have

302) = 9o1) = x(o74(32)) — x(v" (o)) = j” " DF(x(x) 1)

v=1(ay)

-1

By Th. 1.24 in [S1] we conclude that

J’ ”""”Dp(x(z), f) = -r’DF(x(v-‘(r)), v7!(f) = rDH(y(f), f).

0= 1(a1)
This means that the function y is a solution of (1.6) on J and consequently the
function x is a solution of (1.5) on I.
On the other hand, if the function x is a solution of (1.5) on I then there is a solu-
tion y of the equation (1.6) on J such that x(t) = y(v(t)) for t € I. Th. 1.24 in [St]
implies that

v(

x(13) = (1) = ¥(e(t2) = yo(es) = | DH(E) 1) =

o(t1)

- J':*DH(y(v(r)), 1)) = J' :2DF(x(t), f) forevery t;,t,el.

1.18. Let functions H € #(G, k, I, ) and v € V™~ be given. By Ry ,, we denote the
set of all pairs (x, t) € G with the following properties:

(i) If v is continuous at ¢ then x + H(x, o(f) +).— H(x, v(t)) € 2; let us denote
p(x,t) = 0.

(ii) if o(r) < v(t+) then there exist & > 0 and a unique solution y of the initial
value problem

(18) L~ DH(y, 1), () = x
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on the interval [1(t), ot + 6)]. Moreover,
(1.9) thereexists ¢ >0 suchthat zeQ forany zeRY satisfying

|z — y(s)| <@ forsome sel[ut), ot + 8)].
Denote p(x,t) = y(v(t+) +) — x.
1.19. Proposition. Assume that functions H € d)(G, k, 1, w) andve V™ are given,
Then
(@) |p(x, 1)| = k(o(t+) +) — k(v(t)) for every (x, t) € Ry, u);
(ii) for every (x,t) € G the series

—T;« [p(x,s) = H(x, ofs+) +) + H(x, o(s))]
(x,5)eR(H, )

is absolutely convergent.

Proof. (i) Using Lemma 2.5 in [S1] we get the estimate

lp(x: O] = [y(e(t+) +) = x| = lim [y(u(s)) — x| = lim

[prote) 0| =

v(t)

S im [K(1(9) = k()] = Ko(t+) +) - K(9).

(ii) Since the composition ko v is a nondecreasing function, the set of all its
points of discontinuity is at most countable. Hence there is a sequence (s,)}‘;l of
pairwise different points from (—T, T) such that k(v(t+) +) = k(1(?)) for every

te(—T,T)\{sy,s;,...}. For every (x, t) € R(y,,, We have
|p(x, ) = H(x, o(t+) +) + H(x, o(t))| <

= [px, O] + [HGx, ot+) +) = H(x, )] < 2k(o(t+) +) = Kol

hence

Y |p(x,s) = H(x, o(s+) +) + H(x, o(s))| <

(x,5)eR 1, v)
2 % [Hole+) +) = Kol9)] = 25 [Kolsy+) +) = Ko(e))] <
< 2[«(T)) - Ko(~T))].-

1.20. Definition. Assume that functions H € <I>(G, k,1,®), ve V™ are given. The
function

(1.10) F(x, 1) = H(x, o(t)) +

+ ¥ [p(xs) = H(x, ofs+) +) + H(x, o(s))], (x,7)eG

~-T<s<t
(x,8)eR(x,v)

is called the reduction of the function H by the function v.
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1.21. Proposition. Assume that the function F: G — R" is the reduction of a func-
tion He ¢(G k,l,®) by a function ve V™. Define

W) =2_ 3 [kols+) +) = k)] rel- T,7)
D(s)<v(s+)

Then

(L.11) |F(x, t2) = F(x, ;) — H(x, v(t;)) + H(x, o(ty))| £
< |n(t:) — h(ty)| forevery (x,t,),(x,t,)eG.

Proof. The proposition follows immediately from the proof of Prop. 1.1%.

1.22. Example. Let us return to Example 1.14. In this case the reduction of the
function H by the function v will have the form F(x, f) = xtforte [-2,0], F(x )=
= x(e — 1 + t[2) for t (0, 2].

1.23. Lemma. Let functions H € <I>(G, k,1, w) and ve V™ be given, assume thdt F
is the reduction of the function H by v. Assume that the function y: [v(a), vo(b)] — R
(=T < a < b < T)satisfies the following conditions:

(i) (M(o(t)), t) € Ry, v) for every te[a, b);

(i) the function y o v is regulated;
(iii) the integral [3&) DH(y(v'), t') exists for every se[a, b). = .. -
Then the integralsf, DF(y(v(7)), t) and [5&) DH(y(t'), t') exist and the equaltty

(L12) JbDF(y(v(t)), ) — J” DH(y(x'), ) =d§§<b[F(y(v(s)),s+) — F(o{s)), ) —

v(a)

(s)

- JW(”)DH(y(t’), ) — H(Y(v(s +)), o(s+) +) + H(Y("(H))’ v(s+))]
holds. ’

Proof. Since the function H(x, v(f)) obviously belongs to #(G, h, w) with h(t) =

= k(v(t)) + I(v(t)), the existence of the integral {5 DH(y(v(z)), o(t)) follows from
Corollary 2.11 in [S1]. '

All assumptions of the Theorem in [F1] being satisfied, the existence of’
§5 DH(y(1()), o)) implies that the integral ;) DH(y(7'), t) exists and the equality

(L13) j "DH(u(2)), (1) = j"‘”’DH(y(r') ) = [ (6(6), os+) +) =

v(a) s

— HOWE) o) = [ DHO). 1) = HOf(s4), (e4) 4) +

v(s)

+ HO((s+) o6+ |

238



holds. Let us denote F*(x, ) = F(x, t) — H(x, v(t)) for (x, t) € G. By Proposition 1.21
the assumptions of Lemma 1.6 are fulfilled for every component [F *(¥(v(), )], =
=U(z,1),j = 1,2,..., N of the vector-valued function F*(y(v()), r). Consequently,
the integral {5 DF*(y(v()), 7) exists and we have

(114 [ DL, ) = Ho((0) 40 = [ RO -
= 3, [P0, 5+) = FO0E), 9] = % [FO((), +) -
= FO(e(9).5) = HO), o(s+) +) + HOEE), ).

From the existence of the integrals {5 DF*(y(v()), f)and [ DH(y(v()), o(f)) we con-
clude that the integral [} DF(y(v(t)) t) exists. Combining (1.13) and (1.14) we get
the equality (1.12).

1.24. Theorem. Let functions H € ¢(G, k, 1, w) and ve V™ be given, assume that
the function F: G — RN is the reduction of H by v. Assume that a function x: [«, §]—
> RBY (=T < o < B < T)is given such that (x(t), ) € Riu,v) for every t€[a, B).

Then the function x is a solution of the equation (1.1) on [«, B] if and only if it
is a solution of the equation (1.5) on [a, §].

Proof. (i) Let x be a solution of (1.1) on [a, #]. By Lemma 2.6 in [S1] the function
x is of bounded variation. Let us define a function y: [v(), vo(B)] - RY in the
following way:

For every o such that o = u(t) for some t € [rx B] let us define y(o) = x(¢).

If t € [«, B) is such that o(f) < v(t4-), then (x(t), t) € R,y by the assumption of
this'proposition, and therefore by 1.18 (ii) there exist 4, > 0 and an N-vector valued
function y, which is a solution of the initial value problem

2 = DH( 1), 5(6(0) = (9
on the interval [o(f), o(t+4,)]. By 1.18 (ii) we have p(x,t) = y(v(t+) +) — x. It
follows from (1.10) that F(x(r), t+) — F(x(t), t) = p(x(t), t). Consequently,

(1L19) F(x() 14) = F(x(), ) = 3 o(o+) +) = x(0) = lim I " DH(y(v), ¥) =

v(t)

v(t+)
- '[ DH(y (<), ) + H(p{e(t+)), ot +) +) — H(y{o(t+)). o(t+)
u(t)
(here Th. 1.15 from [S1] was used).
Now let us define y(a) = y (o) for every o € [v(t), v(t+)].
Lemma 1.23 implies that for every sy, s, € [«, B] the integral {733 DH(y(z'), t')

exists. By (1.15) the sum on the right-hand side of the relation (1.12) is zero if a, b are
replaced by s,, s,. Hence
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(1.16) j”‘“’nn(y(r'), ¢) = JmDF(y(v(r)), ) = [ "DF(x(2). 0 =

(s19)

e 51

= x(sz) - x(s,) = Y(v(sz)) - y(v(sl)) .

Assume that v(a) < 0, < 0, < v(f). Let us find sy, s; € [a, f] such that »s;) <
< o; S u(s;+), i = 1,2.If s; = s, then we have the equality

(L17) 3(02) = 3(02) = ¥2.(02) = yuoy) = J:lDH(y,‘(t’), ¢) = ‘[ "DH((¥), ).
If s; < s, then 2 )
(L18)  -3(o3) — ¥o1) = [Mo2) = Helsa)] + D¥(olsa)) — ¥e(s.)] +
+ [¥(os1)) = 3(01)] = [1a(02) = yi,(0(s2))] +
+ [(o(s2)) = ¥(ols1))] + [ya(els1)) = yslo4)] =
= [" o0 + D). ) - [ DHL(). 1) -

v(s2) v(s1) v(sy)

- r "DH((¥), ¥).

1

From (1.16), (1.17) and (1.18) it follows that the function y is a solution of (1.6) on
the interval [v(«), v(B)], and consequently the function x is a solution of (1.5) on
[, B]

(i) If the function x is a solution of the equation (1.5) then by Definition 1.12
there is a solution y of the equation (1.6) on [v(x), »(B)] such that x(r) = y(v(t))
for every t e [a, f]. Analogously as in part (i) we conclude from Lemma 1.23 that

x(52) = x(51) = (e(s2)) = y(ls2)) = [ DH(HE), 1) = j "DF(x(z), 1

o(s1)

for every s,, s, € [, ], which implies that the function x is a solution of (1.1) on
[, B]-
2. CLASSICAL .CONTINUOQUS DEPENDENCE THEOREMS

2.1. Lemma. Assume that a function Fe (D(G, k, 1, w) is given. Then for every
two regulated functions x, y: [, f] - Q (=T < « < B < T) the inequality

(21) | j "DLFG(), 1) = FO(@), ]| = el - ¥1) (8) - i)
holds.
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Proof. The intcgral in (2.1) exists owing to Corollary 2.11 in [S1]. By (1.4) we have
[t = | |F(x(), t) = F(y(z), ) — F(x(x), 1) + F(y(r), 7)| <
< (¢ = D a(lx6) — OD O - 1) S (¢ = D allx =y (1) - 1)
for every 1, t € [a, f]. Corollary 1.18 in [S1] implies that

[ j " DLF(:(3), 1) = FO(0) r)][ < j "of|x - yl)dt = af|x - y]) ((6) - i)

2.2. Lemma. Let a sequence of functions F, € (G, k,,, L,w), n=0,1,2,.
be given; assume that

(2.2) thereis ¢ >0 such that
I(T) = 1(=T)Sc forevery n=0,1,2,...;
(2.3) F(x,t) > Fo(x,t) and F,(x,t+)— Fo(x,t+) forevery (x,1)eG.

If[a,b] = (=T, T)and if a function ¢: [a, b] — Q is constant on the open interval
(a, b), then

b b
(2.4) lim J' DF(o(2), 1) = f DFo(g(z), 1)

a

Proof. Assume that ¢ has a value d on (a, b). From Th. 1.15 in [Sl] we conclude
that

2.5) J "DF,(o(t), 1) = F.(d, b) — Fi(d, a+) + Fiola), a+) — F.(o(a), a)
forn =0,1,2,.... From (2.3) we then obtaiﬁ (2.4).

2.3. Lemma. Assume that functions F,€ (G, k,, 1,,0), n =0,1,2,... satisfy
(2:2), (2.3). Then (2.4) holds for every finite step function ¢: [a,b] » Q(-T < a <
<b<T).

Proof. Assume that ¢ has the form ¢(t) = d, for e (t;_y, t;), where a = t, <
<t <..<t,=b. Since

IDF (o(), 1) = Z " DF(¢(1),f) forevery n=0,1,2,...,

ti-a

the relation (2.4) follows from Lemma 2.3.

2.4. Theorem. Assume that a sequence of functions F,e &G, k,,1,, @), n =
=0,1,2,... satisfies (2.2), (2.3).
- Let[a, p] = (=T, T). For any ne N, let x, be a solution to the equation

(26), dx

= DF,(x,t
dr ()
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on [a, B]. Furthermore, let us assume that x, tend uniformly on [a, B] to such
a function x, that xo(t) € Q for any te [a, f].
Then the function x, is a solution of the equation

@) | %if — DFy(x, 1)

on the interval [a, f].

Proof. Since the functions x, have bounded variations by [S1], Corollary 2.7,
the function x, is regulated on [a, ]; hence the integral [i* DFq(xo(7), t) exists for
every ty, t, € [a, B]. By definition of solutions of (2.6), we have

2
x,(t2) — x,(t;) = f DF,(x,(t),1) forevery neN.
t

If we prove that

Jim I"Dpn(x"(z), () = J'"Dpo(xn(f), 0,

t 13
we obtain the equality

12
xo(t2) = Xo(ty) = I DFo(xo(7), 1)
1
for every ty, t, € [, B], which implies that x, is a solution of (2.7).

Let &€ > 0 be given; let us find 2 > 0 such that w(4) < &. Since the function x,
is regulated, there is a finite step function ¢: [a, B] — @ such that |x, — @[ < /2.
Let n, be such an integer that ||x, — xo| < 4/2 for every n 2 n;. By Lemma 2.3
there is n, € N such that

'[ "DF,(o(x). 1) - J " DF(o(2), :)‘ <

t t

for every n = n,. Denote n, = max (n,, n,).
For arbitrary n = n, the inequality ||x, — ¢| < 4 holds; using Lemma 2.1 we get

j "DF,(x,(2), ) - I “DFy(xo(r), 1) < UWD[F (x(): ) = Fie(o) t)]\ ¥

t t t

ty

< % — o) (W(t2) = L) + & + (o = xol) (l(t2) - 1o(t2)) <
S20(n)c+e<e2c+1). :

+ | j “DF(p(x), 1) — j :Dro«p(r), r:( + | j :D[Fo(q»m,g — Folxo(s). r_)][ <

2.5. Theorem. Assume that a sequence of functions F,e &(G,k,, I, »), n =
=0,1,2,... satisfies (2.2);
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(2.8) there is a continuous incresing function n: [0, ) = [0, c0), 7(0) = 0 and an
increasing function K:[—T, T] » R which is left-continuous on (—T, T],
.K(—T) = K((—T) +) and such that

k(t:) — k(ty) < n(K(t;) — K(t,)) forevery neN, —-TZ tl-;-tz <T;
(2.9) F(x,t) > F.(x,t) forevery (x,1)€G. '

(i) If for any ne N x, is a solution of (2.6), on [a, B] and the set {x, (a) ne N}
is bounded, then the sequence (x) 1 contains a subsequence which.is convergent
uniformly on [a, B] to a function x4 € Zy[a, B].

(i) If xo(t) € Q for every te[a, B, then the function xo is a solutwn of (2.7)
on [«, f].

Proof. (i) By [S1], Lemma 2.6 we get from the assumption (2.8) that |x,(t,) —
— x,(t;)| £ kftz) — k,(t;) < n(K(t;) — K(t,)) for every neN, a <t, <t, £ B.

According to Theorem 1.4 about equiregulated sets the functions x,, x,,... are
contained in a compact subset of %y[a, B]; hence there is a subsequence (x,,)e-,
which converges uniformly on [a, 8] to a function x, € #,[a, 8] .

(ii) Since |Fy(x, t;) — Fu(x, t,)] £ ka(tz) — ki(t;) < n(K(t2) — K(ty)), we get by
1.4 that for every x € Q the functions F,(x, *) uniformly converge to F o(x, *). This
implies that (2 3) holds; now Theorem 2.4 can be used. .

2.6. Theorem. Assume that functions F,e (G, k,, I,,®), n = 0,1,2, ... satisfy
(2.2), (2.8) and (2.9).

Let an N-vector valued function x, be a solution of (2.7) on [«, ] = (=T, T)
which has the following uniqueness property:

(2.10) If x is a solution of (2.7) on [a, 7] = [a, B] such that x(a) xo(a), then
x(t) = xo(t) for every te[a,7]. .

Assume further that » ‘

(2.11) there is @ > O such that if ye R", s € [a; B] and |y - xo(s)l < g then ye Q.

Assume that a sequence (y,)>-y = R" is given such that lim y, = xo(oc)

n—o

Then there is an integer no such that for every n 2 n, there exists a solution x,
of (2.6), on [«, B], x,(«) = y,, and lim x,(t) = x4(t) uniformly on [a, f].

The proof is in fact the same as the proof of Theorem 2.4 in [S2], but under our
assumptions which are somewhat more general it should rely on Theorem 2.5.

2.7. Corollary. Assume that functions F,e &(G, k,, I,, co), n=0,1,2,... satisfy
(2.2), (2.8) and (2.9). Let x, be a solution of the equation (2.7) on [, f] = (=T, T)
such that (2.10), (2.11) hold. Then for every & > O there is nye Nand ¢ > 0 such
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that it holds: If x is a solution of the equation (2.6), on [a, B] for some n 2 ny and
if |x(@) — xo(a)| < o, then ||x — xo| < &.

Proof. Assume that there is such & > 0 that for every ke N there is n, = k
and such a solution x, of (2.6),, on [a, B] that |x,(x) — x¢(®)] < 1/kand |x, — x| 2
2 €. Then xk(a) - xo(a); by Theorem 2.6 the sequence (xk) converges to xo uni-
formly on [a, f], which is a contradiction.

3. THE R-EMPHATIC CONVERGENCE AND THE CONVERGENCE
UNDER SUBSTITUTION

3.1. The concept of R-emphatic convergence 6f right-hand sides of generalized
differential equations
G.1). & _ DFy(x, 1)

dt

was introduced by J. Kurzweil in [K2]:

Let a set R = G be given. Assume that for every n = 0, 1, 2, ... a function F, €
€ #(G, h,, w) is given. The sequence (F,);-, converges R-emphatically to the
function F,, if the following conditions are fulfilled:

(3.2) lim sup [h,(t;) — h(1;)] < holt;) — ho(t,) if the function h, is continuous
at";:oand t, - T<t, <t, <T;
(3.3) there is a function F*: G —» R such that
|F*(x, ;) — F¥(x, t,)| < |h*(ty) — B*(ty)] for (x,1,),(x,1,)€G
» where h* is the jump part of the function ho and lim F,(x, t) = Fo(x, 1) +

n—o

+ F*(x, ) if (x, t) € G and ¢ is a point of continuity of hy;

(3.4) for every (xq, to) € R the element xo + Fo(xo, to+) — Fo(Xo, 1o) belongs to Q;
if, moreover, ho(to+) > ho(to), then for every & > O there is & > 0 such that
for each 6’ € (0, 9) there is no € N with the following property: if x is a solution
of (3.1), on [ty — &', to + 8] for some n = ny and if |x(t, — &) — x| < 6,
then

[x(to + 8") — x(to — 6") — [Fo(xo, to+) — Fo(Xo, to)]| < &
The definition of R-emphatic convergence was invented so as to cover the problem

of pointwise convergence of solutions of (3.1),, to a solution of a limit equation
(3.5 & DFy(x,1).
dr -

In this chapter another type of convergence will be defined which will cover
a similar convergence effect.
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3.2. Definition. Assume that functions F,e ®(G, k,, 1, w) are given for every
ne N. Let functions H: G —» R" and ve V™ be given such that H(x, ) is left-
continuous on (— T, T] and right-continuous at —T.

We say that the functions F, converge under substitution to the pair (H, v) if there
exists a sequence of continuous increasing functions v,€ A, ne N such that the
following conditions hold:

(i) va(f) = o(t) for every t e (— T, T) such that o) = v(t+);

(ii) there is ¢ > 0 such that I,(T) — 1,(—T) < c for every ne N;

(iii) there is a continuous increasing function n: [0, o) — [0, o0}, 7(0) = 0 and
an increasing function K:[—T, T]— R which is left-continuous on (—T, T],
right-continuous at — T'and such that

(3.6)  K(v7'(s2)) = ku(vs '(s1)) < n(K(s,) — K(s,)) forevery neN,
—-T=Zs,<s,=T;

(iv) for every n e N let us denote by H, the prolongation of the function F, along
the function v,; then

H,(x,) - H(x,1) forevery (x,1)eG.

3.3. Proposition. Let a sequence F,e ®(G,k,, I, w), neN converge under
substitution to a pair (H, v). Then there are functions x, A such thatHed)(G %, A, w)
and

(3.7 #(s;) — #(s,) < n(K(s;) — K(sy)) if -T<s;<s,£T,
' NT) = A-T)<=c.

Proof. Denote x,(s) = k,(v;'(s)) — k(=T), A(s) = L(v; '(s)) — L(—T); then
%(—T) =2(—T) =0 and from (3.6) we get the inequality x,(s;) — x,(s,) <
< n(K(s;) — K(sy)) forne N, —-T<s; <s, < T.

As was stated in 1.4, this inequality implies that the sequence (x,)i- contains
a subsequence (x,,) which converges uniformly on [— T, T] to a function #; the rela-
tion (3.7) obviously holds.

Since the functions A, are nondecreasing and bounded by the constant c, by
Helly’s Choice Theorem the sequence (4,,);= contains a subsequence, for simplicity
denoted again by (4,,), such that 4, (s) = x(s) for every s € [— T, T]. Define A(s) =
= yfs=) for se(=T,T], {(=T) = x((—T) +). Obviously 2 is nondecreasing,
NT)- A-T)=Z e S

Since H, € &(G, x,, A,, w) for every ne N, we have |H,,k(x 53) — H,(x, sy)| <
< %,(53) — %p,(s;)foreveryke Nand =T < s; < s, < T, x € Q. Passing to mﬁmty
we get the inequality |H(x, s3) — H(x, 5,)| < #(s,) — *(s;). ~

Similarly |H(x, s;) — H(x, s;) — H(y,s;) + H(y, s,)| £ w(|x - y|) (x(s2) — x(s4))
provided x,ye 2, —T < s, < s, < T. If the function 'y is left-continuous at the
points s, and s, then A(s;) = x(s4), A(s;) = x(s2), hence the inequality "
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3.8) |H(x, s2) — H(x,s4) — H(y, s5) + H(y, s¢)| £ o(|x — y|) (A(s2) — A(sp)}
holds. Since the.functions H(x, *), H(y, *), A are left-continuous on (—T, T] and
right-continuous at — T, we conclude that (3.8) holds for arbitrary s,,s,, =T < 5, <
< 32 é T . ’

3.4. Proposition. Assume that a sequence F,e &(G,k,, 1,, ), ne N converges
under substitution to a pair (H, v).

For every (x;t)e G let us define F(x,t) = H(x,v(t)). Then F,(x,t)— F(x,1)
Sor every (x; t) € G such that the function K o v is continuous at t (the notation from
Definition 3.2 is used).

Proof. If the function K - v is continuous at ¢t then v is continuous at ¢ and K
is continuous at o(t).

Let ¢ > 0 be given. There is € > 0 such that w({) < ¢, further there is 6 > 0
such that |K(s) — K(v(t))| < & for every se [—T, T] such that |s — o(f)] < 6.

There is an integer noe N such that |v,(f) — o(t)] < & and |H(x, o(t)) —
— H(x, v(t))| < & for every n 2 n,,.

We have the estimate

|Fulx, t) = F(x, )| = |HJ(x, v,(t)) — H(x, o())| =
< [Bis () = B, o0)] + B, () — HCso0)] <
< n(|K(va(t)) — K(t))]) + e < n(é) + e <2e for n=n,.

3.5. Proposition. Assume that a sequence F,e (G, k,, I, w), ne N converges
under substitution to a pair (H,v). Define F(x,t) = H(x, o(t)) for (x,t)eG. If
Fo: G — R" is the reduction of the function H by v and F*(x,t) = F(x,1) —
— Fy(x, t) for (x, t) € G, then there is a nondecreasing jump function h:[—T, T] -
— R such that :

(39 |F*(x, t2) — F¥(x, t,)| < [h(t;) — h(t))| for (x,t,),(x,1;)€G
and
(3.10)  h(t;) — h(ty) < 2n(K(v(t)) — K(v(ty))), —T<t, <t, <T.

Proof. By Proposition 3.3 the function H belongs to ®(G, , A, ®) where the
function x satisfies (3.7). Then the function h(f) =2 Y  [x(v(s+) +) — »(v(s))]
—-T<s<t
' v(s)<v(s+)
satisfies (3.10) and the relation (3.9) follows immediately from Proposition 1.21.

Remark. (i) 4 is the jump part of the function 2x o v.
(i1) (3.10) implies that if the function K o v is continuous at ¢ then & is as well.

3.6. Theorem. Assume that a sequence F,e &(G,k,, l,,»), ne N converges
under substitution to a pair (H, v). Let Fo: G — R" be the reduction of the function
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H by the function v, denote R = Ry,,. Then the sequence F, satisfies (3.3), (3.4)
and
(3.11) there is a continuous increasing function 7:[0, 00) — [0, ), 7(0) =0
and an increasing function hy:[—T, T] — R which is left-continuous on
(=T, T] and such that
lin:uscup [k(t2) — kit1)] < n(ho(t2) — ho(ty))

if the function hq is continuous at t, and t;, —T<t; <t, £ T.

Proof. We use the notation from Definition 3.2; let us define F(x, f) = H(x, u(r)),
F*(x,1) = F(x,t) — Fo(x,t) and ho(t) = K(v(t)) + 2x(v(t)), where » has the same
meaning as in Prop. 3.3.

If the function hg is continuous at t, and t,, — T £ t; < t, £ T, then the function v
is continuous at t,, ¢, and the functions K and x are continuous at (t,), v(t,). As in
the proof-of Prop. 3.3 let us put x,(s) = k,(v; (s)) — ky(—T) for be N and se
e [— T, T]. Then k(t;) = »,(v,(t))) + k,(—T) (i = 1,2) and by (3.6) we have

lim sup [k(1z) = ki{t)] = lim sup [s,(v,(t2)) = w(walt))] <
= lim n(K(v,(t2)) — K(0(12))) = n(K((t2)) = K(o{t2)) < nlho(t2) — ho(t1) -

If h has the same meaning as in the proof of Prop. 3.5 (i.e., h is the jump part
of 2x o v), then by Prop. 3.5 we have

|F*(x, 1) — F*(x, t,)| S h(t2) — h(t,) < h*(1;) — h*(t,) for xeQ,

~T<t, <t, <T, where h* is the jump part of the function hy. This completes
the proof of (3.11).

The condition (3.3) follows from Propositiens 3.4 and 3.5.

Let a pair (xo, o) € R = Ry, be given such that ho(ta+) > ho(to). Let &€ > 0 be
given.

In case that v(to) = v(to+), let us find such 4 > 0 that n(K(v(to) +4) —
— K(v(to) +)) < [24. There is such an integer n, that

(3.12) |H(xo, v(to)) — H(xo, v(to))| < ¢/8 and
|Ha(x0, v(to) + 4) — H(xo, (to) +4)| < &[24 forevery n = n,.

Then |H, (%o, o(to) +) — H(xo, t(to) +)| £ |Hd(x0, t(to) + 4) — H(xo, o(to) + 4)| +
+ 2n(K(v(to) + 4) — K(v(to) +)) < ¢/8.

In case that (o) < v(fo+), by the definition of Ry, in 1.18 there is ¢ > 0 and
a solution y, of the equation

(3.13) — = DH(y, 1)
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on [v(to), o(to + )] such that y(v(to)) = Xo. By Corollary 2.7 there is n, € N and
a > 0 such that, if ¢’ € (0, a] and y is a solution of the equation

(3.19), Yo,

dr
on the interval [u(t,), v(to + 0')] for some n = ny and if |y(u(to)) — yo(v(to))] < ,
then

(3.15) |¥(s) — wo(s)] < ¢f4 for se[v(to), v(te + 0')].

There is r € (0, ¢/2) such that «(r) ¢ < ¢/4; in case 1(t) < v(to+) let us assume
that also r < a. There is ¢ > 0 such that

n(K(o(to+) + 0) — K(o(to+) +)) <7/2, n(K((to)) — K(x(to) — ) < r[2.
There is such 6 € (0, r[2) that the function v is continuous at the points t, — 4,
to + 6 and o(ty + &) — v(te+) < ¢[2, v(to) — 1o — J) < gf2.

Let 6’ € (0, 6) be given. Find 4" € (0, 6'] such that the function v is continuous
at to — 8", to + 8"

Then v,(to — 6”) = vty — 8"), v,(te + 8”) = v(tc + 9"); since v(t, + 6”) >
> o(te + 6”[2) > ot} > (to — &”), there is an integer n, = n, such that
v(to + 08”) > vty + 6”[2) > (to) > v,(to — 6”) for every n = n,. Consequently
[o(to), v(to+)] = (v(to — 8"), vt + 6"))forn = n,.Since vty — 6") — vty — 8”)
and v,(ty + 6”) —» vty + 8"), there is ny = n, such that v,(to — &) — vty — ) >
> —g[2 and v,(to + 6) — t(ty + 8) < @/2. For n = n, we have 0 < K(u(t,)) —
= K(ulto ~ 8) % K(u{t0) — KGlto — 8) — 2/2) = K{o{to) — K(e) o)
hence :

(116)  n(K(e(r0)) — Koo — ) 5 1(K(x(0)) — Kolto) = ) < 72

Similarly it can be proved that

(3.17) n(K(v(to + 8")) — K(v(to+) +)) < n(K(v(to +) + @) — K(v(to+) +)) < r/2
for every n = n,. '

Let x, be a solution of (3.1), on [t, — &', t, + &'] for n = n, such that
|Xa(to — &) — xo| £ 6.

If we define y,(1) = x,(v; (7)) for 7€ [v,(to — &), v,(to + )], then by Theorem
1.17 the function y, is a solution of (3.14), on [v,(to — '), va(to + )]

Denote y, = y,((t5)), n 2 ng. Then

(3.18) [a = xo| = [yu(o(t0)) = xo| < |1a(eto)) — yaloalte — &))] +
+ [xalto = 8) = xo| = n(K(v(to)) — K(v(to = ) + 8 < r.

a) Assume that v(to) = t(fo+). Using Lemma 2.8 in [S1] for functions y,, H, and
for s = 1(t,), we get the equality

y(o(to) +) = ¥u(o(to)) = yuls+) = yus) =

= Hy,(s), s+) = Hyy:ls), s) = Hy(yas 0{t0) +) = Hy(y, o(to) -
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Lemma 2.6 in [S1] implies that

|yn(s2) - yn(sl)| < #(52) — #(51) S n(K(s2) - K(sy))
holds for s; < s,; hence for s; — v(to)+ and s, = v,(t, + 0') we get the inequality

|yle(te + &) = yule(to) +)) = n(K(vdlto + &) = K(e(to) +)) 5

similarly for s, = v,(t, — &’) and s, = 1(to) we have

, |9(to)) = yulvato = 8| £ n(K(e(to)) = K(v,(to — 97))

From (3.12), (3.16), (3.17) and (3.18) we get the inequality
|x(to + 8) — x(to — ") = [Fo(Xo0» to +) — Fo(xo, t0)]] =
= [yu(vlto + 8)) = yu(va(to — 8")) = [H(xo, v(to) +) — H(xo, v(to))]| =
= |[yaloalto + 6")) = yu(e(to) +)] + [Hu(yms o(to) +) = Hoym t(t0))] +
+ [yu(t(t0)) — yu(vato — 8'))] = [H(xo, vlto) +) — H(xo, v{to))]| <
< [Palealtot+ ) = yu(elto) +)| + |yul(elt0)) = yiloalte — 8] +
+ [Hy(yas v(to) +) = Ho(yns v(to)) = Hilx0, t(to) +) + H,(xo, 1(ta))] +
+ |Hy(xo, t(to) +) — H(xq, v(to) +)| + |Hy(xo, o(to)) — H(xo, v(to))| <
< n(K(vito + 8) = K(1(to) +)) + n(K(v(to)) — K(vi(to — 97)) +

Y = Xo|) (A(v(to) +) — A,(v(t0))) + €/8 + €8 <

<r2+r2+ ofr)c+efd<e.

b) Assume that o(to) < (to+). For n = n, the function y, is defined on
[v(to), v(to + 6”[2)] and according to (3.18) the inequality |y,(v(to)) — xo| <7 S «
holds; then (3.15) is satisfied for y = y, and ¢’ = 6”/2. We have the inequality

[xa(to + &) — Xt — 8) = [F(xo, to+) — F(xo, to)]| =

= ot + 8) ~ wlelto — )] ~ Drleto ) +) = yololil] <

< [nodto + 9) = wlotte +) ) + Inlolte+) +) = yofe(i) +)| +

+ Dralo{to) = protto)] + 15lee) = vuldto — )] <

< H(K(0lto + 8) = Klato ) +) + n(K(o{t) ~ K(o = ) +

+2|yn = yol <72+ 72+ 2.¢ld<e.

Consequently, the condition (3.4) is verified.

Remark. Taking into account that (3.11) is a certain “generalization™ of the con-
dition (3.2) and the function F, need not belong to #(G, hy, w), we can say that
the sequence (F,) in Theorem 3.6 “‘converges R-emphatically to F,” in a little more
general setting.
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3.7. Lemma. Let a sequence of functions H,€ &G, %, 4,, @), ne N be given
such that

(3.19) there is such ¢ >0 that A(T)—- A(-T)<c, neN;

(3.20) there is a continuous increasing function n:[0, ) — [0, x0), 7(0) = 0,
and an increasing function K:[—T, T] - R which is left-continuous on
(=T, T], right-continuous at — T and such that »,(s;) — #.(sy) <
< n(K(s;) — K(s,)) for every ne N, —-T< s, <s, = T}

(3.21) there is such o €(—T, T) that H,(x,0) = O for every xe Q,ne N
Then (H,);-, contains a pointwise convergent subsequence.

Proof. For every ne N let us define a function H,: @ x [K(=T),K(T)] - R"
in the following way: H,(x, 1) = H,(x, t) for every xe Q and te(K(—T),K(T))
having the form t = K(t). If te (=T, T) is such a point that K(f) < K(¢+) then
A,(x,K(t+)) = H,(x, t+) and the function A,(x, -) is defined linearly on [K(f),
K(t+)] (in terms of the notions from [F2], the function A,(x, ) is the linear pro-
longation of the function H,(x, +) along the function K).

By [F2], Prop. 1.22 there is a continuous concave increasing function #: [0, 7] -
- [0, o) where y = K(T) — K(—T), such that #(0) = 0 and n(r) < #(r) for every
r€ [0, y]. Then for every n € N, x € Q the inequality

|Ho(x, 12) = H(x, ;)| S #(t:) — %ty) S AK(12) = K(11)), =T<t; <t,<T
holds. From [F2], Prop. 2.9 it follows that

(3.22) |A(x, ;) — A,(x,1,)| < A(t; — 7))

for every xe Q, K(—T) < 1, < 1, < K(T), ne N.
The inequality (3.22) implies that the limits A,(x,K(—T) +), H,(x,K(T) -)
exist for every xeQ, ne N. Let us define H,(x,K(-T)) = lim A(x, 1),

A(x,K(T)) = lim A,(x,7). Then the inequality (3.22) holds Ki(f_rl)g(— T) <
St <1, £ It(z;f)r)-
Let te(—T, T) be given, denote t = K(t). For every x, y € 2, ne N we have
18,05,) = B0 ) = [H(ss1) = Hlo )] =
= |H(x, 1) = B(x,0) — (3,0 + (3, 0)| 5 o(lx — 3]) 140 — 2(0)| S

< offx = y)) A(T) = 4(=T)) £ &(}x = ¥ c.

If K(to) < K(to+), then passing to the limit with # — to+ we get the inequality

(29 185 %) — Ay, )| S allx — sl

also for © = K(to+). Since (3.23) holds for ¢ = K(t,) and for t = K(to+) and the
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function A,(x, ) is linear on the interval [K(t,), K(fo+)], the inequality (3.23)
holds for every te[K(to),K(to+)]. Consequently,(3.23) is valid for every te
€ [K(-T),K(T)], x€ Q, ne N. From (3.22) and (3.23) we get
|A.(x, t2) — By, 1) < |A(x, 12) = Bu(x,7,)| +
+ [B(x,7y) — By, 70)| £ fi(z2 — 7)) + of|x — y])c for x,yeQ, neN,
K(-T) st <1, SK(T);

hence the functions A1, are equicontinuous on @ x [K(—T), K(T)]. By (3.21), (3.22)
we have [8,(x, 9] = |(x, ) — R(x, K(o)| = A% — K(o)) = AK(T) — K(~T),
hence the functions H, are bounded. It follows from the Arzela-Ascoli Theorem that
for every compact subset A of Q the sequence (A, )i contains a subsequence which
is 'uniformly convergent on 4 X [K( T), K(T)] using the diagonalization we can
find a subsequence (H,)-; which converges pointwise to a function A:Q x
x [K(=T),K(T)] - R". 1f we define H(x,t) = H(x, K(t)) for every (x,1)€G,
then H,(x, ) = A,(x, K(t)) » A(x, K(t)) = H(x, ).

3.8. Lemma. Let functions Fy, F: G - RY be given such that
(i) there is a nondecreasing left-continuous function h:[—T, T] — R which has
zero continuous part, such that

|Fo(x, t2) — F(x, t;) — Fo(x, t;) + F(x, t,)| < h(t;) — h(t,)
Jorevery xeQ, -T<t;  <t,<T;

(ii) there is a set R = G such that for every (x,t)e R the identity Fo(x,t+) —
— Fe(x,t) = F(x, t+) = F(x, 1) holds.

If x:[a, ] > R, [«,f] = (=T, T) is such a functlon that (x(t), t)e R for
every te[a, f), then

t2 12
J DF(x(1), 1) = '[ DF(x(z), t)
ty ty
Jor every t,, t, € [, B] provided at least one of the integrals exists.

Proof. Let us denote N(x, {) = Fo(x, t) — F(x,1), (x, t) € G. Then

(329 [N(x, t2) = N(x, t,)| < h(t;) — h(t,) forevery xeQ,
—-T<t;<t, <T;
(3.25) N(x,t+) — N(x,f) = 0 forevery (x,t)eR.

Assumethata < t, <t, < B.
By Lemma 1.6 we have

ﬁ DN ) = ¥ [N, s+) — Nx(s) 9)].

t1Ss<ty
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Since (x(s), s) € R for every s € [1,, t,), (3.25) implies that N(x(s), s+) — N(x(s) 5) =
= 0. Consequently

I DI Fo(x(), ) - o). ] - j:zDN(x(t), H=0.

The rest of the Lemma follows from [S1], Th. 1.6.

3.9. Theorem. Assume that a sequence of functions F,e€ 9"(6, h,, cu), ne NV
converges R-emphatically to a function Fy: G — R". Then

(i) there is a subsequence (F,)i-y which converges under substitution to a pair
(H, o)

(ii) if we denote by F the reduction of the function H by the functton v, then for
every x € Q the continuous part of the function Fo(x, *) — F(x, ) is constant and
for every (x,t)€ RN Ry, the identity Fo(x, t+) — Fo(x, 1) = F(x,t+) — F(x, 1)
holds;

(iii) let [a, B] = (=T, T); a function x: [«, B] — R" such that (x(t), ) e R n R(,, o>
for every te [a, B) is a solution of the equation (3.5), if and only if it is a solution
of the equation

dx

(3.26) ol DF(x, 1)

on the interval [a, B].

Proof. (i) By [F2], Th. 1.21 there is a subsequence (h,, )i for which there exists
a sequence of continuous increasing functions (v,);~; < 4 and an increasing function
ve V™ such that v,(r) - o{t) for every t € (— T, T) at which v is continuous, and the.
functions h, o vy ' are equiregulated. ,

Since the functions h,, o v, ! are equiregulated, by the property 1.4 there is an
increasing continuous function #: [0, ©0) — [0, ©), 7(0) = 0 and an increasing
function K: [— T, T] — R which is left-continuous on (—T, T] and right-continuous

— T so that

ha (o5 '(s2)) = ho (v '(s1)) < n(K(s;) — K(s,)) forevery keN,

Then the inequality (3.6) is satisfied provided k,, v, are replaced by h,,, v,

Fix such a point to € (— T, T) that the functions hg, v are continuous at t, and K
is continuous at v(t,). Let H,: G — R" be the prolongation of the function F,l
along v, denote H,(x, 1) = H,(x, ©) — Hy(x, v(t,)) for every (x, 7) € G. '

By Lemma 3.7 there is a subsequence of (H ) which for simplicity will be denoted
again by (H;), such that Hy(x, 1) » H’ (x 7) for every (x, 1) e G. Define H(x, 1) =
= H'(x, 1) + lim F,(x, t,).

n-o
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By (3.3)for every & > O there is such an integer k, that |F,,(x, to) — hm F(x,t)| <
< ¢ for every k= ko. For k 2 ko we have |H,(x, v(to)) — hm F(x, to)] =

= [, 07 '(o(to)) = lim Fi(x, to)] S [Fu(x, 0 '(o(t)) = Fulx, ‘O)I + | W%, 10) =
— tim Fy (5, t9)] < & + (o7 (o00) = hat0) S & + n(|K(o10) = K(ai(io)].

Since v is continuous at to, we conclude that v,(t,) — v(to); further K(vy(to)) —
— K((to)) because K is continuous at v(t,). Consequently Hy(x, t) —» H(x, t),(x, 1) € G,
and the subsequence (F,,) converges under substitution to (H, v).

(i) By (3.3) there is a function F(x,f) = Fy(x, t) + F*(x, t) which is left-con-
tinuous in ¢ and such that F,(x, t) — F(x, t) for every x € Q and t € (— T, T) at which
the function h, is continuous. Proposition 3.4 yields that F(x, t) = H(x, u(?)),
(x,1)eG.

By Proposition 3.5 there is such a jump function h that (3.9), (3.10) hold when
F*(x, 1) is replaced by F*(x, t) = F(x, t) — F(x, t). Then

|[Fo(x, 12) = F(x, 12)] = [Fo(x, t1) = F(x, t,)]| =
= [[F¥(x, 1) = F¥(x, 1] — [P 1) — P, )]
< [h¥(12) — h(1)] + [(t2) = h(11)] = A(t2) — (1))
where h(t) = h*(r) + h(r). '
If (x, ) € R then the value Fy(x, t+) — Fo(x, 1) is evaluated by (3.4). Since the

subsequence (F,,) converges R-emphatically to F, and Ry ,-emphatically to F,
‘we have

.Fo(x, t+) — Fo(x,1) = F(x,t+) — F(x,t) forevery (x,f)e RN Ry, .

Part (iii) is an evident consequence of Lemma 3.8.

3.10. Theorem. Assume that a sequence F,e ®(G,k,,l,,w), ne N converges
under substitution to a pair (H, v), let Fy: G - R¥ be the reduction of the function H
by v. Assume that the function K o v is continuous at ¢, g, — T<a < f < T.

(i) If x, is a solution of the equation (3.1), on [«, B] for every ne N and if the
set {x,(«); n € N} is bounded, then there is a function xo: [, B] — R" with bounded
variation and left-continuous on (a, f], and a subsequence (x, )i, such that
X, (1) = xo(t) for every t € [, B] at which the function K o v is continuous (notation
from Def. 3.2 is used).

(ii) Assume that xo(«)e€ Q. Then either the function x, is a solution of the
generalized differential equation with a substitution

(327) (1) = ¥(e(®), =L =DH(y, 1)

on the interval [a, B), or there is such ﬁ’e(a, B] that x, is a maximal solution
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on [a, B') or [a, B], or there is such B” e (a, B) that x, is a solution of (3.27) on
[«, B"] and disappears at B".

(iii) If (xol), t) € Ren,vy for every te[a, B], then the function x, is a solution
of (3.27) on [, B, as well as of the equation (3.5).

Proof. (i) By Corollary 2.7 in [S1] the function x, has bounded variation on [a Bl
for every ne N and

var; x, < ki(B) — k(@) < n(K(0.(8)) — K(va(o))) = '1(K(T) K(-T))
for every ne N. By Helly’s Choice Theorem there is a function x: [a, f] = RN of
bounded variation and a subsequence (x,)i%, such that x,(f) —» x(f) for every
tela, B].
Since [x,,(t;) — Xn(ts)] S knlt2) — kults) < (K (v,(12)) — K(vn(ty))) for every
keN,a £t, <t,; <8, passing to the limit with k — oo we get the inequality

(3.28) x(t2) = x(t1)] < n(K(o(t2)) — K(o(t1))

for every t,, t, at which the function K - v is continuous, « < t, < t, < f.

Let us define xo(a) = x(«), xo(f) = x(¢t—) for t € (o, f]. Then the function x, has.
bounded variation and is left-continuous on (a, B]. Since the function x has one-sided.
limits on [a, f], the inequality (3.28) yields

(3.29) x(@+) — x(@)] < n(K((x+) +) — K(o()) =
Ix(9) = x(t=)| = n(K(() - K(eo(e-) )

for every t € (¢, f] at which K o v is continuous.
If the function K o v is continuous at t € [«, 8] then the function x is continuous:
at t, which implies that x,(t) = x(f) = hm x,,k(t)

(ii) For every te[a, B], ne N we have the estimate |x,(f)] < |x.(2)] + 2(K(T) —
— K(—T)), hence there is d > 0 such that

(3.30) |x(t)) £ d forevery te[a,f], neN.

For every k e N let us define y(t) = x,,(v;. (7)), 7 € [0n,(@), v4(B)]- By Theorem 1.17
the function y, is a solution of the-equation (3.14),, on [v,(), v,(B)].

Since the function v is continuous at «, B, we have v, () = v(2), v,(8) — v(B).
Hence for every [7, 8] = (v(«), o(p)) there is such ko € N that [y, 6] < [v,,(2), v,(B)]
for every k = ko. By Theorem 2.5 the sequence y, contains a subsequence which is
uniformly convergent on [y, 8]. By a diagonalization process we can find a function
Yo (v(a), o(B)) — RY and a subsequence of (y,) — which will be denoted again
by (y,) — so that y, = y, on [y, 8] for every [y, 6] = (v(a), v(B)).

From (3.2) and Lemma 2.6 in [S1] it follows that

ka(sé) = »lso)| S n(K(s2) = K(s1))» vmfo) < 51 <52 S 0,(B), keN ;
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then
(3.31) [vo(s2) = yols)| £ n(K(s2) — K(s1)), v(e) <54 <52 < ().

Let us define yo(0(a)) = yo(t(®) +), ¥o(0(B)) = ya(v(B) —). If the function K o v is
continuous at ¢ € («, f) then

xo(t) = yo(o(D)] = [xo(t) = X (D] + [¥m(tn(t)) = Yo(Em ()] +
+ yo(vnl)) = yo(e(1))] = |xo(t) = x,(9)] +
+ [y = Yollweor-s.mm+ a1 + n(IK(0n (1) = K(u(2))])

where 6 > 0 is so small that [v(t) — &',0(t) + 6] < (v(«), v(B)). The expression at
the end of the inequalities tends to zero with k — oc, hence xo(f) = yo(v(t)) for
every t € (a, B) at which the function K . v is continuous. Since the functions x4, y, v
are left-continuous, the equality xo(f) = yo(v(f)) holds for every te(«, B]. The
continuity of K . v at « implies that the functions x,, v are right-continuous at «
and y, is right-continuous at v(a). Hence

(3.32) xo(t) = yo(v(t)) forevery te(a,f].

Since xo(a) = yo(v{)) € @ and the function y, is right-continuous at v(a) there is.
such & > 0 that yo(7) € Q for every t € [v(a), v(a) + ).

If yo(z) € Q for every 7 € [v(x), v(B)], by Theorem 2.5 the function y, is a solution
of the equation (3.13); then the function x, = y, o v is a solution of (3.27) on [a, £].
Assume that there is such y e (v(e), v(B)] that yo(t) € Q for every 7 e [v(x),y) and
y(y) ¢ Q.1f y = v(p’) for some B’ € («, B] then the function x, is a maximal solution
of (3.27) on [a, p'). If there is such B” € («, B) that y € (v(B"), v(B” +)] then the func-
tion x, is a solution of (3.27) on [a, "] and disappears at g”.

Finally, assume that there is such 7 e (v(x), o(B)) that yo(t)e Q for every te
€ [v(«), 7] but there is no s > 7 such that y(z) € 2 for every € [1(a), s]. Let us find
such B that y € [v(B), v(B +)]. If v(B) = v(B+) then x, is 2 maximal solution on [, B]
If o(B) < v(B+) then x, is a solution on [«, B] and disappears at B.

(i) If (xo(t), ) € Rym,v for every t € [a, B) then yo(t) € 2 for every 7 € [v(a), v(B)],
hence the function x, is a solution of (3.27). By Theorem 1.24 the function x, is also
a solution of (3.5) on [, B].

3.11. Theorem. Assume that functions F, e tD(G, Ky, 1, @), n € N converge under-
substitution to a pair (H,v), let Fy: G > R™ be the reduction of the function H
by v. Assume that the function K o v is continuous at a, f, — T<oa < f < T.

Let xo: [a, B] = R" be a solution of the equation (3.5) on [a, ] which has the
uniqueness property (2.10) when (2.7) is replaced by (3.27). Assume that (xo(t), t) €
€ Ry o) for every t € [a, p).

Assume that any solution y: [v(a), v(f)] = R of the equation (3.13) such that
(@) = xo(a) satisfies
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(3.33) there is such @ > O that if zeR", se [v(x), "()] and |z — y(s)| < ¢ then
zeQ.
Let a sequence (z,)7-, = Q be given such that lim z, = x,(a).

n-w

Then there is an integer ny such that for every n = n, there is a solution x, of
the equation (3.1), on [a, B] such that x,(«) = z,, and llmx A1) = xo(t) for every
t € [, B] at with the function K o v is continuous. "

Proof. We will use the notation from Definition 3.2. By Theorem 1.24 the function
Xo is a solution of (3.27) on [, §], hence there is a solution y, of the equation (3.13)
on [v(a), ()] such that yo(v(t)) = xo(f) for every t € [«, B].

If 6 € (v(«), v(B)] and y is a solution of (3.13) on [v(«), 8] such that y(v(x)) = xo(a),
let us find such y € [a, f] that 6 € [1(y), v(y+)] and define x(t) = y(v(?)), t € [a, y].
Then the function x is a solution of the equation (3.27) on [«, y] and by the uniqueness
property (2.10) we obtain that x(r) = x(t) for every t € [a, y].

For every 1€ [v(a), 8] let us find such t € [a, 7] that 7 e [o(f), o{t+)]. If 7 = o(s)
then y(t) = x(t) = xo(t) = yo(r). If o(t) < vo(t+) and te(v(t), o(t+)], then the
definition of the set Ry ,, in 1.18 implies that y(t) = y(t). We have proved that

(3.34) if y: [v(«), 6] —» R" is a solution of (3.13) such that y(v(«)) = yo(v(«)) then
(1) = yo(7), 7€ [v(), 8]

Since the function K o v is continuous at «, there is such d > 0 that n(K(v(«) + d) —
— K(v(e) — d)) < 0/2 (the number ¢ is taken from (3.33)). Since v,(a) — v(«) and
z, = xo(), there is such an integer n, that v,(«)e [v(2) — d, v(¢) + d] and
|z = xo()| < ]2 for every n = no. Let n = n, be fixed.

By A let us denote the set of all functions y from Zy[v(a) — d, v(x) + d] satisfying
[(z) = z.| < n(|K(z) — K(v,(@))|) for every e [v(a) — d, v(a) + d]. The set A4 is
closed in #,[v(2) — d, v{a) + d] and y(v,(«)) = z, for y e A. If y € A then |)(1) —
= 1@ 5 (D) = @)+ o) — %@ < IK() - Ko@) +
+ |za = x0(a)| < n(K(v(«) + d) — K(v(x) — d) + ¢[2 < ¢ for every 7€ [v(x) — d,
(@) + d], hence y(t) € 2 owing to (3.33).

For every y € A the function

T y(o) = z, + J.‘r DH,(y(7), 1), o € [v(a) — d, v(a) + .d]

vn(a)

is defined. For y e A we ha\}e
(3.35) IT¥o2) = Ty(01)| < %02) = #(01) < 1(K(02) — K(o4)),
o) —d=Loy <o, Sv(a)+d,

consequently the set T(A) is relatively compact in Zy[v(¢) — d, v(«) + d] and
T(A) = A. According to Lemma 2.1 the operator T is continuous. By the Schauder-
Tichonov fixed point theorem there is such a function y, € A that y)(t) =T (1),
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1€ [v(e) — d, v(a) + d]. By Theorem 2.5 there is a subsequence (y;,) which con-
verges uniformly to a function y on [1(«) — d, v(a) + d]. Since |y;(7) = yo(v())| < o,
n = n,, we have |y{t) — yo(v(2))| < ¢ for every € [v(a) — d, (a) + d]; the as-
sumption (3.33) implies that y(7) € Q. By Theorem 2.5 the function y is a solution
of (3.13) on [v(e) — d, v(a) + d]. From (3.34) it follows that y(t) = y,(t) for every
1€ [v(x), () + d], consequently y, =3 yo on [v(x), v(a) + d].

Since y,(v(a) + d) = yo(v(®) + d) and the solution y, satisfies the assumptions
of Theorem 2.6 on [v(a) + d, v(B)], there is such n; = n, that for every n > n,
there is a solution y, of (3.14), on the interval [v() + d, o(B)] such that y,(v(«) +
+ d) = y;(v(«) + d), and y, =3 yo on [v(a) + d, o(B)]. If we define y,(7) = yi(1),
te[v(a) — d, v(«) + d], then y, is a solution of (3.14), on [v(«), v(B)], y.(v(2)) = z,
and y, 33 y, on [v(a), u(B)].

Since yo(v(B)) € 2, y.(v(B)) — yo(v(B)) and the function K o v is continuous at B,
it can be proved similarly as above that there are such d’ > 0 and n, = n, that the
solutions y, can be continued on [v(x) — d, v(f) + d'] and v,(B)e [v(B) — d’,
uB)+d],nzn, :

For every n 2 n, let us define x,(f) = y,(v,(t)), t € [, B]; by Theorem 1.17 the
function x, is a solution of the equation (3.1), on [, 8], x,(a) = y,(v,(®)) = z,.

If the function K o v is continuous at te(«, f) and n 2 n,, then there is such
n' 2 n, that v(f)e[v(x), ()], n=n'. We have |x,(t) — xo(t)] = |ya(v:1)) —
= Yo(()] = |ya(ralt) = yo(al))] + [yo(e(t)) = yo(o(D)] < 72 = Yolltocerweam +
+ n(|K(v.(t)) — K(v(t))]); the last expression tends to zero with n — .

Let £ > 0 be given; there is such 6 > 0 that 5(6) < &. Find such t € («, ) that the
function K o v is continuous at ¢t and K(v(f)) — K((r)) < 6/2. There is such n” 2 n,

that
|K(va(B)) — K(u(B))] < 0/4, |K(v(r)) — K(o(6))] < /4

|xit) = x4(t)] < & forevery n=n".

and

Then .
[%u(8) = xo(B)| = |xu(B) = xulB)] + [xol) — xc(B)] + [xalt) — xo(t)] <
< n(K(o:(B) ~ K(ea(d)) + n(K((8) — K() + e <
< n(K(v(B)) — K(v(t)) + 6/2) + n(6) + & < 3e.

Consequently x,(f) — x,(t) for every t € [«, f] at which the function K o v is con-
tinuous.

3.12. Example. Assume that functions Fe & (G, h, a)), g: Q- RY and
®,:[—T, T] > R, ne N are given such that :

(i) the function h is continuous on [—T7, T] and the function g is uniformly
continuous on Q;

(ii) the functions @,, ne N are continuous on [—T, T] and there is such ¢ > 0
that var” ;. &, < ¢ for every ne N;
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(iti) for every ¢ > 0 there is such & > 0 that

var_T*® @, 4 varf_, P, <& forevery neN;

(iv) there is a function ® e BV[—T, T] which is left-continuous on (—T, T,
right-continuous at — T and such that ®,(r) — &(¢) for every t e [~ T, T] at which &
is continuous (including — T, T). :

Our aim is to find a limit equation for the sequence of generalized differential
equations

(3.36), j—f = D[F(x, ) + ¢(x) 2:(1)]
(see also [S2], Example 4.7).

Denote ¢, = 1 + (1/2T)varl; &, for ne N, & = 1 + (1/2T)c. By (ii), for any
n e N the inequality 1 < ¢, < ¢ holds.

For every ne N let us define functions v,(t) = (1/c,) [t + T + varL; &,] — T,
te[—T, T]. Then v, € A. Since the functions v,, n € N are increasing and bounded,
there is a subsequence (v,,) and a nondecreasing function vy: [ — T, T] — R such that
vn(t) = vo(t) for every te [— T, T]. Evidently vy(—T) = —T, vo(T) = T.

Let us prove that v, is continuous at the endpoints of [ — T, T]. For & > 0 given
let us find J € (0, ] by the assumption (iii). For any te (— T, — T + ] we have

vo(t) — vo(—=T) = “1“ [onft) = v (=T)] =

= lim [—l— (t+ T+ vary <I>,,k):| S(t+ T)+ limsupvarl 1 &, < 2¢;
k

k | Cn,

hence v, is right-continuous at — T. The left-continuity at T can be proved similarly.
We have

(3.37) .v,,(tz) -ty —1'—(t2 —-1)2

O | =

(tz —1t,) for neN,

nEN, —T__<—_tl<t2_S_T,
and consequently

Uo(tz) - vo(tl) g %(tl - tl) fOI' '—Té tl < tz _S_ T.

Let us define o(—T)= —T, o(T) =T, o(t) = vy(t—) for te(—T, T). Then
obviously ve V™~ and v,,(f) - u(r) for every t € [ — T, T] at which v is continuous.
Let us define ¥,(t) = ®,(v; '(7)) for te[-T,T], neN. If —-T< 1, <1, T
and 1, = v,(t,), 7, = v,(t,) for some n € N, then
|Zo(72) — ulty)| = |Pult2) — B.(t1)] S vari2 @, <

< c(valtz) — v(t)) = e, — 7)) S U1, — 1))
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Then the sequence (¥,) is equicontinuous; it is also bounded, because |®,(f)| <
< |®uto)| + var®; @, and the sequence (@,(t,)) is convergent for some fq.

By the Arzela-Ascoli Theorem the sequence (¥,,) contains a subsequence — which
will be denoted again by (¥,,) — such that ¥, = ¥ on [— T, T]. Evidently ¥(u(t)) =
= ¢(t). From (3.37) it follows that the functions v;,' are Lipschitzian with the con-
stant 1/¢, hence they converge uniformly to the functlon u defmed by u(t) = tif
u(t) £ © < v(t+) (see [F2], Def. 1.10 and Prop. 1.11).

By Theorem 1.17 the equation (3.36) has the same solutlons as the generalized
differential equation with a substitution

(3.38) x(1) = Wot), =% = DIF(y, v(t)) + g(y) ¥(1)] -

Since the function u is continuous, we have F(x, v, '(r)) — F(x, u(t)) for every
xeQ, te[—T,T] It is simple to verify that the sequence of functions F,(x, t) =
= F(x, t) + g(x) @,(t) converges under substitution to the pair (H, v) where H(x, t) =
= F(x, u(t)) + g(x) ¥(t); then the equation with a substitution

(3:39) x(t) = (1)), 2 = DIF(y, u(1)) + g() ¥l

is a limit equation for the sequence (3 36),,-
In case the functions @, satisfy the condmcn var> - D, + var,, d> - 0 for every
> 0, the function ¥ will be constant on [T, v(0)) and on (v(0+) T], and the func-
tion v will have a unique discontinuity at 0; then the function u will be constant on
[2(0), v(0+)]. The equatlon (3 39) has the form

(3.40)  x(r) = y(v(t)), — = DF(y, u(t)) on [- T, v(O)] [v(0+) ]

D) YT on OO04].
Since the function ¥ is Lipschitzian, it is absolutely continuous and has a.e. a deriva-
tive ¥'(¢) = yY(t). Using Theorem 4A.1 in [S1] and the fact that the function v is
continuous on [ —T, 0) and (0, T], we find an equivalent form for (3.40): .-

3—: = DF(x,t) on [-T,0)u(0,T];
x(0) = y(v(0)) and x(0+) = y(v(0+)) g(y) l,b(t)

Notice that the equation dy/dt = g(y) w(t) need not have the uniquenes_s_property
and the function ¥ may depend on the subsequence ('I’ ,

Let us return to the former case of an arbitrary sequence. (45 ) satlsfymg the con-
dition (iii), moreover assuming that for every x € Q the ordinary differential equation
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(3.41) ¥ =49(y)

has a unique maximal solution such that ¥(0) = x, and this will be denoted by 7(t x).
Denoting H(x, t) = F(x, u(t)) + g(x) y(1), let us describe the set Ry ,):

Let (x,t) € G be given such that v(f) < v(t+). Since the function u is constant
on [v(t), v(t+)], the equation dy[dt’ = DH(y, ') will have the form dy/dt =
= g(y) (') on [v(¢), v(t+)], (all solutions of the equation dy/dt’ = DH(y, ') are
continuous, consequently we do not need the solution y on an interval [u(t), v(t + 8)]).
The function y(s) = x(¥(s) — ¥(v(t)), x) is a unique solution of the initial value
problem

(342) - gf =g ¥(s), »(r) = x;

the function y is defined on [v(z), v{t+)] if the function x(-, x) is defined on the set
{teR; v = ¥(s) — Y(v(t)) forsome sel[o(t),v(t+)]}.

If y is the unique solution of (3.42) on [v(f), v(¢+)] then (x, ) belongs to Ry, ,, and
we denote

p(x, t) = 2(P(v(t+)) — P(u(1)), x) — x = x(D(t+) — &(t), x) — x.

Then the reduction F of the function H by v which is defined in (1.10) will have the
following form:

For every x € Q the continuous part of F(x, -) is equal to F(x, *) + g(x) (*),
and F(x, t+) — F(x, 1) = x(®(t+) — &(t), x) —x, (x, ) € Rz vy

Let us mention that the set Ry ., can depend on the choice of the subsequence ¥,
which converges to ¥, but the values F(x, t+) — F(x, t) do not.

Let us denote by R the set of all pairs (x, ) € G such that the function (-, x) is
defined on the interval [—&(v(t+) — v{t)), &(v(t+) — v(t))]. Let us define

Fo(x, 1) = F(x, 1) + g(x) 9(t) + 3 _[o6+) - o)) - +].
(x r)sR

Then the sequence of functions F (x t) = F(x, t) + g(x) ®,(t) converges R-ephati-
cally to the function F.

References

[F1] D. Frarikovd: A discontinuous substitution in the generalized Perron integral (to appear).

[F2] D. Frarikovd: Regulated functions (to appear).

[K1] J. Kurzweil: Generalized ordinary differential equations and continuous dependence on
a parameter. Czechoslovak Math. J. 7 (82) (1957), 418—449.

[K2] J. Kurzweil: Generalized ordinary differential equations. Czechoslovak Math. J. 8 (83)
(1958), 360— 388,

. 260



[K3] J. Kurzweil: Nichtabsolut konvergente Integrale. BSB B. G. Teubner Verlagsgesellschaft,
Leipzig 1980.

[S1] S. Schwabik: Generalized differential equations: Fundamental results. Rozpravy CSAV
(95) (1985), No 6.

[S2] S§. Schwabik: Generalized differential equations: Special results (to appear).

Souhrn

SPOJITA ZAVISLOST RESENf ZOBECNENYCH DIFERENCIALNICH
ROVNIC NA PARAMETRU

DANA FrANKOVA

V teorii zobecnénych diferencialnich rovnic se vyskytuje zajimavy konvergen&ni efekt, ktery
byl popsan J. Kurzweilem jako R-emfatickd konvergence. S pouZitim pojmu zobecn&né diferen-
cidlni rovnice se substituci bude definovana tzv. konvergence se substituci, o niZ se ukaZe, Ze je
velmi podobna R-emfatické konvergenci. Posloupnost rovnic, ktera je konvergentni se substituci,
se da prevést na jinou posloupnost rovnic, kterd ke své limitni rovnici konverguje klasickym
zpusobem, tj. se stejnom&rnou konvergenci feSeni a pravych stran t&chto rovnic.

Pe3lome

HEINPEPBIBHAA 3ABIICUMOCTH OT ITAPAMETPA PEIIII:SHVIPI
OBOBIIEHHBIX JU®OEPEHIIMAJIBHBIX YPABHEHHU

DANA FRANKOVA

B Teopun 0606menHnx auddepeHUMaNEHEIX YPABHEHHMH IOMNABIACTCA HMHTEPECHBIH 3ddekT,
xoropeiit Gei1 onucan SI. Kypuseitiom kax R-3mpaTHyeckasi CXOAAMOCTb. B cTaThe NpH NOMOLIK
NOHATUA 060011eHHOTO MU depeHIManbHOrO YpaBHEHHS C NOACTAHOBKOM ONpenenseTcs Tak Ha3bi-
BaeMas CXOJMMOCTE C OJCTAHOBKOMR M MOKA3LIBAETCA, YTO OHA OYEHb TIOX0Xa Ha R-3MbaTHyecKyIo
cxogumocThb. ITocnenoBaTenbHOCTE ypaBHEHHH, KOTOpas CXOAKWTCA C NOACTAHOBKOM, MOXHO Inepe-
BECTH HAa JPYIyI0 NOCTENOBATEILHOCTh YPaBHEHHH, KOTOpas CXOAMTCA K CBOEMY NpeIebHOMY
YPaBHEHHIO B KJIACCHYECKOM CMBICNE, T.€. PCHICHHS M NpaBblE YACTH 3THX YPaBHEHHH CXOIATCH
PaBHOMEPHO.

Author’s address: LuZicka 1054, 250 82 Uvaly u Prahy.
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