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LAYER POTENTIALS ON BOUNDARIES WITH 
CORNERS AND EDGES 

T. S. ANGELL, R. E. KLEiNMAN, Newark, J. KRAL, Praha 

(Received May 21, 1986) 

Summary. Consider a bounded domain (termed rectangular) in 3-space such that each point z 
on its boundary 3D has a neighbourhood Ua dD homeomorphic with the plane such that U 
is contained in the union of the three planes passing through z parallel to the coordinate planes. 
Let Wbe the double layer potential operator acting on the space C(dD) of all continuous functions 
on 3D, let I be the identity operator, and denote by Q the space of all compact linear operators 
acting on C(dD). It may happen that the distance of W— ctl from Q, measured by the usual 
maximum norm, exceeds \ct\ for each choice of the parameter «. It is shown in the present paper 
that one can always introduce a new norm p in C(dD) inducing the same topology of uniform 
convergence such that thep-distance of W— \l from Q becomes less than \. 

Keywords: double layer potential, integral operators in potential theory. 

Classification AMS: 31B20 (47A53). 

We shall adopt the following terminology introduced in [1]. An open set D c R3 

is called rectangular if its boundary dD 4= 0 is compact and each point z e dD has 
a neighbourhood V in dD homeomorphic with an open disc in R2 such that V is 
contained in the union of the three planes through z parallel to the coordinate planes. 

Roughly speaking, D is rectangular if dD is locally a surface and D is built of 
bricks. Boundary value problems for sets of this type occur frequently in applications. 
Their treatment by the method of integral equations of the second kind may cause 
difficulties because of presence of peculiar corners in dD (no neighbourhood of 
which has a 1 — 1 orthogonal projection into some plane in R3 — cf. for instance 
Example 2 described in [1] and in Lemma 3 below). Our aim in this note is to present 
a method permitting to overcome these difficulties. For the sake of simplicity we 
restrict our attention to rectangular sets but we believe that the method will apply 
to more general piece wise smooth boundaries as well. 

If y E dD is not situated on an edge then we denote by n(y) the unit vector of the 
exterior normal to D at y; for the remaining yedD we put n(y) = 0 ( = the zero 
vector in R3). The symbol a will denote the 2-dimensional surface measure. For any 
fixed z e R3 we define the signed measure Xz on Borel subsets of dD by 

dA2(y) = 4 4 ^ d , ( y ) ; 
An\y - zy 
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note that, in case z e dD, dZzjda vanishes identically in some neighbourhood of z 
in dD, so that lz has always bounded variation on dD. Geometrical meaning of kz 

is the measure of the spacial angle under which parts of the oriented boundary of D 
are visible from z. 

The symbol ^(dD) is used to denote the space of all continuous functions on dD 
endowed with the topology of uniform convergence; the usual maximum norm in 
<£(dD) will be denoted by | . . . ||. For any fe %(dD) and z e R3 the corresponding 
double layer potential with momentum density / is defined by 

Wf(z) = U„fdXz ; 

it represents -a harmonic function of the variable z on R3 \ dD. We shall denote by 

Qr(y) = {xeR3; \x - y\ < r) 

the ball of center y and radius r and by 

d(y) = l i m V ° l u m e ^ ^ n Z ) ] 
rio volume [-2r(y)] 

the density of D at y. With this notation we have for y e dD a n d / e %>(dD) 

lim Wf(z) = Wf(y) + [1 - d(y)y(y) . 
z-*y 
zeD 

Defining the so-called direct value of the double layer potential at y e dD by 

Wf(y)= Wf(y) + \\-d(y)y(y), 

we arrive at a bounded linear operator 

W:f-> Wf 

on ^(dD). The attempt to represent the solution of the Dirichlet problem with 
a prescribed boundary condition g e ^(dD) as a double layer potential with an 
unknown momentum density / e^(dD) leads to an equation 

(i/ +W)f= g, 

where / is the identity operator on %>(dD). In connection with applicability of the 
Riesz-Schauder theory and Fredholm's theorems to this equation it is important 
to know whether W can be sufficiently closely approximated by compact operators 
(cf. [2]). If the deviation is measured by the maximum norm | | . . . ||, then the distance 
of PVfrom the space 1 of all compact operators acting on %>(dD) may exceed the 
critical value \, as shown in [1]. 

If p is a norm on %(dD) inducing the topology of uniform convergence in <6(dD) 
(so that the space of compact operators acting on %>(dD) with this norm remains the 
same) we define the associated essential norm of W by 

copW = inf {p(W - T); Te 1} 
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where, of course, p(W — T) denotes the p-norm of the operator W— T defined in 
the usual way. For some choices of p, copW will be smaller than the same quantity 
corresponding to [|... [|; examples showing this are given in [1]. Our main objective 
in this paper is to present a general construction of a norm p enjoying the pro­
perties from the following theorem. 

Theorem. For each rectangular set D a R3 there is a norm p inducting the 
topology of uniform convergence on q>(dD) such that 

copW<i. 

Before going into the proof we shall consider three examples described in the fol­
lowing lemmas 1 — 3. 

Lemma 1. Put 

D0 = (—oo, oo) x (0, co) x ( -co, 0 )u ( -co, 0) x ( -co, oo) x 

x ( - c o , 0 ) u ( -co, 0) x (0, oo) x ( -co, oo) 

(cf. Fig. 1) and suppose that D cz R3 is a rectangular set such that, for suitable 
b > 0, 

Q3b(0) ncD = Q3b(0) n dD0 . 

Let 
S: x -+ Sx = - x 

be the symmetry with respect to the origin and put 

Eb = {0} x (0, b) x (0, b), 

Fb = <0, b) x <0, b) x {0} , 

Gb = < 0 , b ) x {0} x ( - b , 0 ) , 

Ub = Eb u Fb u Gb, 

Ub = UbKjS(Ub). 

Fix as (1,2) and define the pseudonorm \f\b = |f|a>& for any fe%(dD) as the 
maximum of the following three expressions (1) —(3): 

(1) sup{| f(x) | ;xGU f c}, 

(2) sup{2|f(x)|; xeU2b\Ub}9 

(3) sup{| f(x)+ f(Sx) | /a ; xeUb}. 

Clearly, U2b is a neighbourhood of 0 in dD and \...\b just induces the uniform 
convergence on U2b. Let P be the union of all edges in dD and denote by 

S(x) = dist (x, P) 
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the distance ofxe dD from P.Ifse (0, b>,fe %(dD) has support in 

PE = [xe dB; S(x) < e] 

and satisfies the conditions 

(4) «fl = l. |/U^1» 
then 

. 1 Г7 + 2(в - 1) 3 11 . , л „ i ś - m a x | L -,-.-j + o.(l); 

here (and always below) oe(l) is a quantity independent of f (and depending on e 
and on the geometry of dD only) such that lim o£(l) = 0. 

EІO 

Fig. 1 

Proof. Since passing to the complement changes only the sign of W we may 
suppose that 

03,(0) n B = Q3b(0) n D0 . 

Let us fix z = [zl9 z29 z3] e Eb. 
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The element 

4тг|C - z\Ђ 

(here «°(C) 1s the exterior normal to D0 at C e 3D0) of the spacial angle under which 
an elementary oriented area d<r(C) around C e -5(Gco) *s visible from z exceeds the 
angle under which a symmetrically situated area around SC e G^ is visible from the 
same point z. We see that the maximal value of the integral 

kus(Gt)/(C)dA°(C) 

under the conditions 

\f(o+m)\^a, i/(oi = i 
would be attained for such distribution of values of / for which /(C) = 1 when 
C e S(Gb) and /(C) = a — 1 when C e Gb. Hence we conclude that (4) implies 

lk.s ( G„/dA z° | = |AZ°(S(G00))| + (a - 1) |A°(GW)|. 

Similar reasoning yields the estimate 

|k . S ( F »/dA° | = | ^ ( F . ) | + (a - 1) |^(S(F.)) | . 

It is also clear that for any fe ^(dB) with 

(5) spt/c=P£ 

satisfying | | / | = 1 we have the estimate 

IW2>/dI*| = o.(i), 
where o£(l) is independent of z e Eb and/; here, of course, 

4TC|C - zy 

where /i(C) is the unit vector of the exterior normal to B at C e 55. 
Finally we get for any z e Eb and / submitted to (4), (5) 

Í, fàX> 
Ü2t\Vъ 

= ì \ЦPt п [U2» ч U:J)| = ì g ì + oe(l) = 1 + oe(l). 

Summarizing we have for z e Eb and all / e ^(dB) submitted to (4), (5) the estimate 

\Wf(z)\ = |tf(F„)| + \Xl(S(Gx))\ + (a - 1) rj^(G.)| + |A°(S(F00))|] + 

+ 1/16 + o,(l) . 

Writing a = arctg (z3jz2) we can evaluate the spacial angles 

(6) iwi = ^4, 
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00 |A°(S(FM))| = | - 1 , 

(8) iwyi-^-J. 

(9) |A°(Goo)| = ^ i i , 

whence 

1 . /.A 7 + 2(a - 1) i , v 
+ — + oi l) = ^ -• + oE(l). 

16 V ' 16 W 

By symmetry and continuity the same estimate holds for all z e Ub. We have thus 
verified for f e^(dD) satisfying (4), (5) the inequality 

(10) sup {\Wf(z)\; z e Ub} =
 ? + 2{" ~ 1} + o.(l) . 

16 

Observe now that the elementary spacial angle dAz(C) under which the oriented 
element of area dtr(C) around a point £ e S(Goo) is visible from z e Eb has opposite 
sign in comparison with the elementary spacial angle dXSz(C) under which the same 
area is visible from Sz, their magnitudes being related as follows: 

dA°(C) = -dA°z(C) = |dA°2(C)| • 

If fe %>(dl)) satisfies (5) and ||f|| g 1, we have thus for any z e Eb 

\Wf(z) + Wf(Sz)\ = |JS(G2k)/dA° + fS(G2b)/dAS2 + fG2b/dAS2 + 

+ k , / d A ° + ls(F26)/d(A°2 + A°) + jf2b/d(A° + A°z)| + o£(l) = 

= (A° + A°2) (S(GX)) + (A°S2 + A°) (G.) + (A°z + A°) (^F. ) ) + 

+ |(4° + AS2) (F.) | + o£(l) = |A«(S(Goo))| - lALfSCGj)! + |A°z(Goo)| -

- M,0(G.)| + I WIv»l - K(«(".))l + IW.)! - US-MI + oe(l) • 
If a has the meaning described above, the relations (6) —(9) can be completed by 

evaluation of the following spacial angles: 

(ii) WJL*-)\-~> 

(1-) 1^(5(^)1 = ^ 1 , 
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(13) |A°2(GTO)| = - ? J - - 1 , 
2TC 2 

04) |^_(G„))|___l___I. 
Z7T 2 

Hence we get 

|W7(-) + * / ( & ) . ^ 2 fe-_ i - •_ *\ + 2 ( / - ^ - - ? i - 5 / - - - ^ + 1 V " ~ V 2TT 2 2rt 21 V 2JT 2 2TC 2j 

+ o.(l) = i + o.(l). 

By symmetry and continuity such estimates hold for all z e Ub. We have thus for 
fe^(dD) satisfying (5) and ||/|| ^ 1 the following inequality: 

(15) sup {\Wf(z) + Wf(Sz)\; zeUb}^^ + 0.(1) . 

Next we shall consider z e E2b \ Eb. Assuming that / e ^(dD) fulfils (4), (5) we get 
for such z 

\Wf(z)\ < \XZ\ (Pc n Ub) + |X,| (P. n (55 N U26)) + i|I_| (/». n (U26 \ Ub)) < 

_, 1 w/2 „v 1 JC/2 1 3 ... 
g _ _L + o.(l) + - _ _ - = _ + oi l ) . 

2 2ir 2 2rc 2 16 

In view of symmetry and continuity we have for our/ 

(16) sup {\Wf(z)\; zeU2b\Ub} = ± + o.(l). 
Taking into account the relations (10), (15), (16) we obtain for all fe<tf(dD) 

satisfying (4), (5) the estimate 

I W U s m M ( i i f c i ) , i . , ? ) + 0 , ( 1 ) 
and our lemma is established. 

Remark 1. If a > 1 is fixed sufficiently close to 1, then 2(a — 1) < 1 and for 
all sufficiently small 8 > 0 the right-hand side of the last inequality becomes less 
than a constant < 1/2; this will be crucial for later application of Lemma 1. 

The following two lemmas modify the examples considered in [1] into the form 
which will be needed in the proof of our theorem. 

Lemma 2. Put 

Dt = (— co, co) x (0, co) x (— co, 0) u (0, co) x ( - co, co) x ( - co, 0) 

and suppose that D c_ R3 is a rectangular set such that, for suitable b > 0, 

-_3b(0) n dD = Q3b(0) n dDt. 
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Put 

E2b = <0, 26) x <0, 26) x {0} , 

£2b = <0, 26) x (-26, 0) x {0} u (-26, 0) x <0, 26) x {0} , 

Cb ={0} x (-6,0> x ( -6 ,0) , 
Bb = ( - 6 , 0 ) x {0} x ( - 6 , 0 ) , 

so that 
U2b = E2b u t2b u Bb u Cb 

is a neighbourhood of the origin in dD (cf. Fig. 2). Fix q e (1, 4/3) and define 

Aq for ysE2b, 

w(y) = — l q for y e £2b, 

M for y e U2b \ (E2b u £2b) . 

(Note that w is lower semicontinuous on U2b9 1/4 < w = 1.) Let us define the 
pseudonorm 

\f\b = |/|Wj6 = sup {\f(y)\jw(y); yeU2b} 

on <&(dD); clearly |...|A induces uniform convergence on U2b. For any ee(0, 6> 
define Pe as in Lemma 1. If fe%>(dD) has support in Pe and satisfies the conditions 

(17) H / N - . |/k> = i , 
then 

^ 1 (lq+ 8 1\ ... 

where o£(l) has a similar meaning as in Lemma 1. 

Proof. We may suppose that 

Q3b(0) nD = Q3b(0) n D, 

(otherwise we could replace D by the complement of its closure). 
If z G E2b9 then 

\Xz(Bb)\ + \Xz(cb)\^l = ^, 

where lz has the meaning described in the proof of Lemma 1. If fe^(dD) has 
support in Pt and ||f|J ^ 1, then 

(18) sup {|JVf(z)|/w(z); z e E2b} = ±-+ o£(l) , 
2q 

where o£(l) does not depend on f. 
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If z e Ě2b, then 

\l(B3b)\ + \Xz(C3b)\ < 

whence we get again for the same / as above 

<ҙ = м>) 

(19) 

8 2đ 

1 
sup {| Wf(z)\jw(Z); z e Ě2b] <. — + o£(l) 

2g 

Fig. 2 

Consider now z e Bb. The detailed discussion of Example 1 in [1], case (II), 
shows that the following estimates hold: 

\UE2b)\*i, \xz(E2b)\^i, mc6)i<i. 
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Hence we get forfe <g(dB) satisfying (17) with support in P£ the estimate 

\Wf(z)\ = 1M + 1 £ + 1 + 0i(1) ., 1 H+l + 0e(i). 
1 W l 4 4 8 4 4 W 2 16 w 

In view of the symmetry, the same estimate holds for z e Cb, whence 

(20) sup {\Wf(z)\; z e Bb u Cb} = J ---?-±i + o.(l). 
2 16 

Combining (18) —(20) we obtain for the same fas above 

(-1) |W|.^inwx(i ,ZL±i) + 0i(l) 

and the proof is complete. 

Remark 2. If q0 is the positive root of the equation 

-/« = (7« + 8)/16 , 
then q0 G (1, 8/7) and we may choose q = q0 in Lemma 2 to guarantee that the 
right hand side in the inequality (21) is below a fixed constant < 1/2 for all suf­
ficiently small e > 0. 

Lemma 3. Put 

D2 = ( - oo, oo) x (— oo, 0) x (— oo, 0) u ( - co, 0) x (0, oo) x (— co, co) u 

u ( - o o , 0 ) x {0} x ( -co ,0) , 

C = {0} x (0, oo) x (-co, oo) , 

Ci = {[0, x29 x3]} e C; |jc3| = V3 x2} , 

E = (-co, co) x (-co, 0> x {0} , 

Ei = {[xl9x290]eE; \xt\ ^ -y/3x2) 

(cf. Fig. 3). Fix a constant q G (1, 6/5) and define 

,\q for yeC1uEl9 

w(y) = / 
\ l for yedD2\(CivEl). 

(Note that w is lower semicontinuous on dD2, 5/6 < w = 1.) Let B a R3 be 
a rectangular set such that, for suitable b > 0, 

Q3b(0) ndD = Q3b(0) n dD2 . 
Writing 

ub = {x = [xl9 x29 x3] G dB; \xk\ < b9 1 = k g 3} 
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we define the pseudonorm 

\f\» = | f U = sup {\f(y)\lw(y); yeU2b] 

for fe^(dB); clearly \.. .\b just induces uniform convergence on U2b. For any 
s G (0, by define P£ as in Lemma 1. If fe^(dB) has support in Pe and satisfies (17), 
then 

\Wf\Wtb g 1 max Ujq, (9 + 5g)/18 + i arctg ,/2/3J + o.(l) , 

where o£(l) has the meaning described in Lemma 1. 

Fig. 3 

Proof. We shall agairi suppose, as we may, that 

Q3b n B = Q3b n D2 . 
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Put 

B = (0, oo) x {0} x ( -oo ,0) , 

&i = {[*i> 0, x3] e B; x3 = -x x } , 

B2 = B\B1 . 
Consider first ye Bt. If ^(M) denotes the normalized spacial angle unter which 

a Borel set M cz dD2 is visible from y, then we have the estimates 

IW I^ l / 4 , 
K2(C,)| = l/6. 

Writing 

c = |-arctg > /(2/3)e(0,l) 

we have also 
^ ( C s C O I ^ c / 9 

(cf. the discussion of Example 2 in [1], case (A)). Let now £ e (0, b>. If fe^(dB) 
has its support in PE and satisfies (17), then we have for y e B1 n U2b 

]Wf{y)l < 1 + i + H\ + 0E(1) = 1 9 + 4C + 5^ + OE(1), 
1 V n 4 9 6 6 W 2 18 W 

where o£(l) does not depend on f. 
Next consider y e B2. We have then symmetrically 

W ( C ) | g i , W ( E , ) | ^ i . ^ ( E x * , ) ! ^ , 

so that we obtain again for the same f as above and for y e B2 n LJ2b 

(22) |*m>01^9 + 4;8
+5g + o ea)-

We see that (22) holds for all y e B n U2& and fe W(dB) described above. 
Suppose now that y e C2 and put 

B = {x = [xx, x2, x3] G dZ)2, x2 = 0} . 

Then we have the inequalities 

K 2 ( £ ) | g l / 4 , ^ ( £ 0 1 = 1/6, ^ ( .BsEOI-S- / -2 , 

whence we get forfe ^(315) with support in PE satisfying (17) and for y e C2 n U2h 

<"> I W | S i ( i + ^ + i) + o,,0 = i ^ + « . ( • ) , 

where oe(l) has the usual meaning. 
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Now let y e Cv Then 

^(.5)1^1/4, |A,2(£)Ul/6, 

so that we obtain for f specified above and for y e Cxn U2b 

(24) \Wf(y)\ < i (I + 1) + o.(l) = H + o.(l) - ^ + 9.(1) • 

In view of the symmetry, (24) holds also for yeExn U2b, (22) holds for y e(B\B)n 
n U2b and (23) holds for y e(E\ Fx) n U2b as well. 

Summarizing we get for y e U2b and f described above 

I-7WIM-) - -J -ax („,, «±a , i ± £ t * ) + C(l) -

-ip»(,,,.i±4l±J!) + <tf) 

and the lemma is established. 

Remark 3. If q± is the positive root of the equation 

9 + 4c + 5q 
-/«-= 

18 

where c has the meaning described in the above proof, then 1 < qt < 6/5 and 
choosing q = qt we have for ourf 

1 
w,Ъ = — + O в (l) , < 

2«i 

whence we infer that |PYf|W)ft is below a fixed constant < 1/2 for all sufficiently small 
c > 0. 

Now we are in position to present the following 

Proof of Theorem. Let P be the union of all edges in 3D, denote by S(x) the 
distance of x e 3D from P and put 

PE = [xe dD; S(x) < e} . 

We shall say that a point z e dD is critical if, for each s > 0, 

Urn sup | ^ | (Pe) = i . 
y-*z 
yedD 

Let us denote by H the set of all critical points in 3D; clearly, all points in H are 
vertices. It turns out that 

H=\JHi9 
1 = 0 
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where Ht denotes the set of those z e H for which D can be mapped isometrically 
onto a set D in such away that z is mapped into the origin and, for suitable b > 0, 

(25) Q3b(0)ndD = Q3b(0)ndDi9 

where Dt is the set described in Lemma numbered (i + 1) above (0 ^ / ^ 2); for 
z e Hi we denote by rz the corresponding isometric mapping of dD onto 3D. We 
may suppose that b > 0 has been fixed so small that 6b is less than the distance of 
any two different vertices in dD. We have seen in the above lemmas that there is 
a distinguished pseudonorm |...|& inducing uniform convergence on some neigh­
bourhood U2b of the origin in dD. We put Uz -= rz(U2b) and, denoting by / o rz 

the composition of rz and / , define 

R ( / ) = | / o t , | t , feV(dD). 

Clearly, Uz is a neighbourhood of z in dD and pz is a pseudonorm inducing 
uniform convergence on Uz. 

For any fe 9?(dD) we shall now define p(f) as the maximum of all pz(f) (z e H) 
and of 

sup{|/(x)|; xedD\(JUz} . 
zeH 

It is easily seen that p(') is a norm on %>(dD) inducing the topology of uniform con­
vergence such that 

(feV(dD),p(f)^l)=>\\f\\<l. 

It is not difficult to verify that 

(26) lim sup {\XX\ (P.); x e dD \ (J U1} ^ f . 
ciO zeH 

Let us fix, for each s > 0, a symmetric function 0£ on W such that 0 ^ 0B ^ 1, 

0£(O = 0 for |*| ^ je , 0£(r) = 1 for \t\ ^ is 

and define the function <j)£ on dD by 

* . ( * ) = l - 0 £ ( o - ( x ) ) , xsdD. 

Since all the functions <P£. / vanish in some neighbourhood of P, one easily verifies 
that all the functions in 

{W(<P£.fy9feV(dD),p(f)<^l} 

are equicontinuous and uniformly bounded. 
In other words, the operator 

T.:f->W(*M.f) 

is compact in ^(dD). We are now going to estimate the norm of the operator 

W-Tc:f^W((l - # . ) / ) . 
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Fix an arbitrary fe %>(dD) with p(f) ^ 1 and observe that, for sufficiently small 
e e (0, b} and any z e H, 

spt (1 - <*>£) c= i>£, ||(1 - * , ) / | | <. 1 , pz((l - * . ) / ) < Pz(j) ; 

the last inequality holds even if z e H0 thanks to the fact that <Z>£ is symmetric on Uz 

with respect to z. 
Using Lemmas 1 — 3 (cf. also Remarks 1 — 3) we conclude that, for all z e H and 

a suitable constant c we have 

pz(W((\ - 0e)f)) ^ c + o£(l) < i , 

where c, o£(l) are independent off As observed in (26), we have also 

sup{|W((l - * , ) / ) ( x ) | ; xe3D\[]Uz} ^ 
zeH 

<_ sup {|4| (P.); x e dD\ u uz] < I + o,(i). 
zeH 

We conclude that, for allfe ^(dD) with p(f) ^ 1, and suitable c 

p(W((l - * , ) / ) ) < c + o.(l) < | . 

Since c, o£(l) do not depend on f and o£(l) tends to zero as e j 0 we see that 

p(W- T8)<i 

for all sufficiently small e > 0, so that 

cop(W) < i . 
Thus the proof iscomplete. 

Remark . The above proved theorem implies that, for any bounded rectangular 
set D a R3 whose complement is connected, the solution of the Dirichlet problem 
with an arbitrarily prescribed boundary condition g e %>(dD) is always representable 
as a double layer potential Wf'mD with a uniquely determined fe ^(dD). More 
generally, Corollary 2 established in [1] for admissible multiply connected rectangular 
sets remains in force for arbitrary multiply connected rectangular sets. 

Similarly, Corollary 1 from [1] dealing with representability of the solution of the 
generalized Neumann problem by a potential of a signed measure supported in the 
boundary remains valid for arbitrary rectangular sets. 

We refer the reader to [1] for further references concerning applicability of layer 
potentials to boundary value problems in domains with irregular boundaries. 
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Souhrn 

POTENCIÁLY DVOJVRSTVY NA HRANICÍCH S HRANAMI A VRCHOLY 

T . S . ANGELL, R . E. KLEINMAN, JOSEF KRÁL 

Nechť D je omezená (tzv. rektangulární) oblast v trojrozměrném prostoru, pro niž každý 
bod z na hranici dD má takové okolí U cz dD homeomorfní s rovinou, že U je obsaženo ve sjed­
nocení tří rovin vedených bodem z rovnoběžně se souřadnými rovinami. Bud W operátor po­
tenciálu dvojvrstvy na prostoru C(BD) všech spojitých funkcí na č)D, nechť I značí identický 
operátor a Q prostor všech kompaktních lineárních operátorů na C(9D). Je známo, že vzdále­
nost W— 7.1 od Q (měřená pomocí supremové normy) může převyšovat |a| pro každou volbu 
parametru a. V článku je dokázáno, že na prostoru C(dD) lze vždy zavést novou normu p (indu­
kující stejnou topologii stejnoměrné konvergence) takovým způsobem, aby p-vzdálenost operá­
toru W — \I od Q byla menší než \. 

Резюме 

ПОТЕНЦИАЛЫ ДВОЙНОГО СЛОЯ НА ГРАНИЦАХ 
С ВЕРШИНАМИ И РЕБРАМИ 

Т. 8. АNСЕ^ ,̂ К. Е. КЬЕШМАГ*, I. К Б ^ 

Рассмотрим ограниченную область О в трёхмерном пространстве (называемую прямо­
угольной) такую, что для каждой точки 2 границы #1) существует такая гомеоморфная 
плоскости окрестность ^ с #1>, что ^ содержится в соединении трех плоскостей, проходящих 
через 2 и параллельных координатным плоскостям. Пусть \У— оператор потенциала двойного 
слоя, действующий на пространстве С(д^) всех непрерывных функций на д^. Обозначим 
через I тождественный оператор и через ^ пространство всех компактных линейных опера­
торов на С(дО). Известно, что расстояние от \У — а7 до ^ относительно обыкновенной макси-
мум-нормы может превосходить |а| для каждого параметра а". В настоящей статье доказы­
вается, что в С(5Х>) всегда можно ввести новую норму р, индуцирующую ту же самую то­
пологию равномерной сходимости, таким образом, чтобы расстояние от IV — \1 до () отно­
сительно р стало меньше чем \. 

АиХког? аййге&ьез: Т. 8. Ап^еН, Я. Е. К Л е т т а п , ШЬ/егзпу о!" Ве1а\уаге ^\уагк, ^ 8 . А., 
^. Кга1, Магетагюку шп^ С 8 А ^ 2кпй 25, 115 67 Ргапа 1. 
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