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LAYER POTENTIALS ON BOUNDARIES WITH
CORNERS AND EDGES

T. S. ANGELL, R. E. KLEINMAN, Newark, J. KrAL, Praha
(Received May 21, 1986)

Summary. Consider a bounded domain (termed rectangular) in 3-space such that each point z
on its boundary 0D has a neighbourhood U = 9D homeomorphic with the plane such that U
is contained in the union of the three planes passing through z parallel to the coordinate planes.
Let W be the double layer potential operator acting on the space C(9D) of all continuous functions
on 0D, let I be the identity operator, and denote by Q the space of all compact linear operators
acting on C(éD). It may happen that the distance of W — oI from Q, measured by the usual
maximum norm, exceeds |&| for each choice of the parameter a. It is shown in the present paper
that one can always introduce a new norm p in C(0D) inducing the same topology of uniform
convergence such that the p-distance of W — }I from Q becomes less than 3.

Keywords: double layer potential, integral operators in potential theory.

Classification AMS: 31B20 (47A53).

We shall adopt the following terminology introduced in [1]. An open set D = R®
is called rectangular if its boundary éD = 0 is compact and each point z € dD has
a neighbourhood V in dD homeomorphic with an open disc in R? such that V is
contained in the union of the three planes through z parallel to the coordinate planes.

Roughly speaking, D is rectangular if dD is locally a surface and D is built of
bricks. Boundary value problems for sets of this type occur frequently in applications.
Their treatment by the method of integral equations of the second kind may cause
difficulties because of presence of peculiar corners in dD (no neighbourhood of
which has a 1—1 orthogonal projection into some plane in R* — cf. for instance
Example 2 described in [1] and in Lemma 3 beloW). Our aim in this note is to present
a method permitting to overcome these difficulties. For the sake of simplicity we
restrict our attention to rectangular sets but we believe that the method will apply
to more general piecewise smooth boundaries as well.

If y € 8D is not situated on an edge then we denote by n(y) the unit vector of the
exterior normal to D at y; for the remaining y € 9D we put n(y) = 0 (= the zero
vector in R*). The symbol ¢ will denote the 2-dimensional surface measure. For any
fixed z € R*® we define the signed measure A, on Borel subsets of éD by

) = BHU= )
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note that, in case z € 9D, dA,/do vanishes identically in some neighbourhood of z
in @D, so that A, has always bounded variation on 0D. Geometrical meaning of A_
is the measure of the spacial angle under which parts of the oriented boundary of D
are visible from z.

The symbol €(dD) is used to denote the space of all continuous functions on 0D
endowed with the topology of uniform convergence; the usual maximum norm in
%(oD) will be denoted by |...|. For any fe 4(0D) and z € R® the corresponding
double layer potential with momentum density f is defined by

Wf(z) = I@Dfdlz 5
it represents -a harmonic function of the variable z on R*\ dD. We shall denote by
Q(y)={xeR% |x—-y| <r}
the ball of center y and radius r and by

_ 1ipy Yolume [2(y)n D]
d(y) = l,w volume [2,(y)]

the density of D at y. With this notation we have for y € D and f € (D)
lim Wf(z) = Wf(y) + [1 — d»)]f(¥) -

z=y
zeD

Defining the so-called direct value of the double layer potential at y € dD by
Wi(y) = Wiy) + [} — d»)1/(),

we arrive at a bounded linear operator
W:f - Wf

on %(dD). The attempt to represent the solution of the Dirichlet problem with
a prescribed boundary condition g € 4(0D) as a double layer potential with an
unknown momentum density f € 4(0D) leads to an equation

H+Wf=g,

where I is the identity operator on %(ap). In connection with applicability of the
Riesz-Schauder theory and Fredholm’s theorems to this equation it is important
to know whether W can be sufficiently closely approximated by compact operators
(cf. [2]).If the deviation is measured by the maximum norm .. .||, then the distance
of W from the space 2 of all compact operators acting on ¢(dD) may exceed the
critical value 4, as shown in [1].

If pis a norm on fg(ao) inducing the topology of uniform convergence in (D)
(so that the space of compact operators acting on %(8D) with this norm remains the
same) we define the associated essential norm of W by

w,W = inf {p(W — T); Te 2}
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where, of course, p(W — T) denotes the p-norm of the operator W — T defined in
the usual way. For some choices of p, w,W will be smaller than the same quantity
corresponding to | . ..|; examples showing this are given in [1]. Our main objective
in this paper is to present a general construction of a norm p enjoying the pro-
perties from the following theorem.

Theorem. For each rectangular set D = R® there is a norm p inducting the

topology of uniform convergence on 4(0D) such that
w,W<4%.

Before going into the proof we shall consider three examples described in the fol-
lowing lemmas 1-3.

Lemma 1. Put

Dy = (—o0, ) x (0, 0) X (—00,0) U (—00,0) x (—00, 0) x
x (—00,0) U (—a0,0) x (0, ) x (=00, c0)

(¢f. Fig. 1) and suppose that D = R® is a rectangular set such that, for suitable
b>0,

93,,(0) N 65 Q3b(0) a) 6D0 .

Let
S:x—> Sx=—x

be the symmetry with respect to the origin and put
E, = {0} x (0,b) x (0, b),
F, =<0, b) x <0, b) x {0},
G, = <0, b) X {0} X (—b’ O)a
U,=E,uF,UG,,
U, = 0,u 5(0,).

Fix a € (1, 2) and define the pseudonorm |f|, = |flas for any fe %(0D) as the
maximum of the following three expressions (1)—(3):

)] sup {|f(x)]; xe Uy},
(2) sup {2|f(x)|; xeUy\U,},
€)] sup {|f(x) + f(Sx)|/a; xe T} .

Clearly, U,, is a neighbourhood of 0 in 0D and II,, just induces the uniform
convergence on U,,. Let P be the union of all edges in 0D and denote by

5(x) = dist (x, P)
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the distance of x € D from P. If ¢ € (0, b), f € 4(3D) has support in
P, = {xedD; §(x) < ¢}

and satisfies the conditions
4) =1, [fls =1,
then

_ 1 7+2a—-1) 3 1
Wﬂ —s—_ ) _,— +05];
W7 e 2max{ 8 4 a} M

here (and always below) 0,(1) is a quantity independent of f (and depending on &
and on the geometry of dD only) such that lim o,(1) = 0.
el0
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Proof. Since passing to the complement changes only the sign of W we may
suppose that .
Q3b(0) N ﬁ = Q3b(0) N Do .

Let us fix z = [z, 25, 23] € E,.
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The element

ai1) = TSP 4o

(here n°({) is the exterior normal to D, at { € dD,) of the spacial angle under which
an elementary oriented area da({) around { € S(G,) is visible from z exceeds the
angle under which a symmetrically situated area around S¢ € G, is visible from the
same point z. We see that the maximal value of the integral

.[GDUS(GIV) f(C) dlg(C)

under the conditions
[F@Q) + /(SO s a, [fQ)] =1

would be attained for such distribution of values of f for which f({) = 1 when
{ e S(G,) and f({) = a — 1 when { € G,. Hence we conclude that (4) implies

[feyuscen £ dis| £ |22(S(Go))| + (a — 1) [42(G.)] -
Similar reasoning yields the estimate
|§rsuscen £ dAz] < [2(F )| + (a — 1) |A2(S(F.))| -
It is also clear that for any f € ¢(6D) with
(5) sptf < P,
satisfying [ f]| < 1 we have the estimate
”ab\uz,,fdzzl = 05(1) ’

where o,(1) is independent of z € E, and f; here, of course,

a7(0) = %ﬂ;zlz) do(z).

where /({) is the unit vector of the exterior normal to D at { € 8D.
Finally we get for any z € E, and f submitted to (4), (5)

1 1721 1
d1.| = = |1.(P <=--=C 1) =— 1).

J S ST U U] S S50+ o) = o+ o)
Summarizing we have for z € E, and all f € ¢(dD) submitted to (4), (5) the estimate
[WS(2)| = |2(Fo)| + [2(S(G))| + (a = 1) [|22(G)] + |22(S(F)|] +

+ 1/16 + o(1).

Writing o = arctg (z,/z,) we can evaluate the spacial angles

© NGNS

b
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0 _xl
(7) Mz (S(Foo))l 21!'. 2 4
® e(s(e.) = 2L
2 2
. 0 — 75/2 — otl
0 prceal = 221
whence
Wi <™=l n2+al n2—al al
IWf(')Ié R 1)( w2 21r2>
1 7+ 2(a —1)
et o (1) = 6 + o (1).

By symmetry and continuity the same estimate holds for all z € U,. We have thus
verified for f € (D) satisfying (4), (5) the inequality
7+ 2(a - 1)

(10) sup {|Wf(z)|; zeU,} < P

+ o1).

Observe now that the elementary spacial angle dA2({) under which the oriented
element of area do(() around a point { € S(G,) is visible from z € E, has opposite
sign in comparison with the elementary spacial angle dAs,({) under which the same
area is visible from Sz, their magnitudes being related as follows:

d22(0) 2 —dag,(0) = |ds.(0)] -
If f € 4(0D) satisfies (5) and ||| < 1, we have thus for any z € E,

[W1(z) + W(Sz)| = |[soan S 9% + Js6amy f 428 + fos, £ d23, +
+ [620 f Q27 + [srsy £ (A3, + 22) + [e,, fA(A] + 23,)| + 0,(1) <
< (2 + 23.) (5(G)) + (A5, + 49) (Go) + (A5, + A7) (S(Fo)) +
+ (22 + 25.) (Fo)| + 0,(1) = [2(5(G.))| = |25:(S(Goo))| + |25:(Goo)| —
= |22(Go)| + |25:(S(Fo0))| = |2 (S(F))| + [22(Fo)l = [25:F )| + 0,(1) -

If « has the meaning described above, the relations (6)—(9) can be completed by
evaluation of the following spacial angles:

1

11 A(F) =22,

( ) | Sz( )l 2712 2
(12) S(S(FL)| = 2221,
2 2
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0 w2+ al
(13) |45:(G0) 5
0 _ 7:/2 - o 1
(4 sG] = 221

Hence we get

W1(2) + Wf(Sz)Igz("zjt“%_%ri)+2("/2+°‘%_ﬂ/2—ag) .

+ o,(1) = 1 + o,(1).

By symmetry and continuity such estimates hold for all z € U,. We have thus for
f € %(0D) satisfying (5) and ||f|| < 1 the following inequality:
(15) sup {|Wf(z) + Wf(Sz)|; zeU,} <%+ o(1).
Next we shall consider z € E;, \ E,. Assuming that f e ¢(0D) fulfils (4), (5) we get
for such z
[Wf(z)| < || (P.aU,) + || (P~ (8D~ Uz,,)) + L] (B (Uyp\Uy)) <
l 1\:/ I1nf21

to )+ 2224 0.

22n 2

In view of symmetry and continuity we have for our f
(16) sup {|[Wf(2)]; zeUp Uy} £ 3+ 0(1).

Taking into account the relations (10), (15), (16) we obtain for all fe %(oD)
satisfying (4), (5) the estimate

_ 7+2a—-1) 1 3
Wil,, <max (229~ 2 ) 401
W s ( 16 2a 8) ()

and our lemma is established.

Remark 1. If a > 1 is fixed sufficiently close to 1, then 2(a — 1) < 1 and for
all sufficiently small ¢ > 0 the right-hand side of the last inequality becomes less
than a constant < 1/2; this will be crucial for later application of Lemma 1.

The following two lemmas modify the examples considered in [1] into the form
which will be needed in the proof of our theorem.

Lemma 2. Put

Dy = (=0, ) x (0, ) x (—00,0) U (0, ©) x (—00, ©) x (—c0,0)
and suppose that D = R® is a rectangular set such that, for suitable b > 0,

Q23,(0) " 0D = Q2;,(0) N 4D, .
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Put
E,, = <0, 2b) x <0, 2b) x {0},
E,, = €0,2b) x (—2b,0) x {0} u (—2b,0) x <0,2b) x {0},
C, = {0} x (=b,0> x (—b,0),

B, = (=b,0) x {0} x (~b,0),
so that
Usp = Epp U E3 B, UG,

is a neighbourhood of the origin in 0D (cf. Fig. 2). Fix q € (1, 4/3) and define

1q for yeE,,
W(Y) =—3q for yek,,,
1 for yeUyN(Eypu Ey).

(Note that w is lower semicontinuous on Uy, 1/4 <w < 1.) Let us define the
pseudonorm

|f1s = |f]ws = sup {|f()|w(»); ¥ €U}

on %(8D); clearly |...|, induces uniform convergence on Us,. For any &€(0, b)
define P, as in Lemma 1. If f € 4(0D) has support in P, and satisfies the conditions
(17) Iflst, Ifls=t,

then

|Wf|w,,§1max 7q+8, 1 + 0,(1),
b= 16 ¢

where o,(1) has a similar meaning as in Lemma 1.
Proof. We may suppose that
Q3b(0) N D = .st(()) @) Dl

(otherwise we could replace D by the complement of its closure).
If ze E,,, then

1.(B,)] + J(C))] = é _ %)

where 1, has the meaning described in the proof of Lemma 1. If fe %(0D) has
support in P, and ||| < 1, then

— ' 1
(18) sup {|Wf(z)|[w(z); z € Ez} < 2—q + o,(1),
where 0,(1) does not depend on f.'
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If ze E,,, then

3 w(z)
L(Bsp)| + |1(Cy)| £ = = =2,
(B2 + L(Canll = g = 77
whence we get again for the same f as above
— 1
(19) sup {|Wf(z)|/w(z); ze Ezp} < ” + 0,(1).

Fig. 2

Consider now z € B,. The detailed discussion of Example 1 in [1], case (II),
shows that the following-estimates hold:

T(Ex)| %, |L(Ew)| =%, |L(G) 4.
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Hence we get for f € (D) satisfying (17) with support in P, the estimate

179 +8

+-2 4= +0,1) = + o,(1).
4 M 2 16 M

In view of the symmetry, the same estimate holds for z € C,, whence

(20) sup ([W1(2)): e By G} 52 7222 4 o1

Combining (18)—(20) we obtain for the same f as above

(21) . | |ws < ! max (l, Tq + 8) + 0,(1)
2 q 16

and the proof is complete.

Remark 2. If g, is the positive root of the equation

1/g = (19 + 8)16,

then g, € (1, 8/7) and we may choose ¢ = g, in Lemma 2 to guarantee that the
right hand side in the inequality (21) is below a fixed constant < 1/2 for all suf-
ficiently small ¢ > 0.

Lemma 3. Put

D, = (=, ©) X (—00,0) x (—00,0)uU (—00,0) x (0, 0) x (—o0, )L
U (=,0) x {0} x (—o,0),

C ={0} x (0, ©) x (—o0, o),

C; = {[0, x5, x3]} € C; |x3| < J/3x3},

C, = C\Cy, :

E =(—o0,®) x (—w,0) x {0},

E; = {[%4,x,0] € E; |x;] £ —/3 %}

(cf. Fig. 3). Fix a constant q € (1, 6/5) and define
/%q Jor yeC,VUE,,

w(y) =
\1 for yedD,\(C,UE,).

(Note that w is lower semicontinuous on 0D,, 5/6 < w < 1.) Let D = R® be
a rectangular set such that, for suitable b > 0,
Q4,(0) 0 85 = 2,,(0) D, .
Writing .
U, = {x =[xy, X2, x3] €3D; |x;| < b, 1 £ k £ 3}
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we define the pseudonorm

f1s = |flws = sup {|f()|/w(»); v € Us}

for fe€4(dD); clearly |...|, just induces uniform convergence on U,,. For any
¢ €(0, b) define P, as in Lemma 1. If f € €(6D) has support in B, and satisfies (17),
then

|7 | < % max {I/q, (9 + 59)/18 + larctg \/2/3} + 0,(1),
n

where o(1) has the meaning described in Lemma 1.

]
1
-
|
]
=N
~ -
~N
— e —

1
L
N
)4
=
{
Y
{
S o
|
/

!

I
i
v
P
I

N
~

4
L

Fig. 3

Proof. We shall again suppose, as we may, that

.Q3bh5=§23,,ﬁ Dz.
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Put
= (0, 0) x {0} x (—00,0),
By = {[x1,0,x3]€B; x3 = —x4},
B, = B\B, .

Consider first y € B;. If A2(M) denotes the normalized spacial angle unter which
a Borel set M < 0D, is visible from y, then we have the estimates

|5 (E)| = 1/4,
15(chl = 1/6
Writing
=2 arctg \/(2/3) €(0, 1)
2n
we have also

|22\ Cy)| £ /9

(cf. the discussion of Example 2 in [1], case (A)). Let now e € (0, b). If f e ¢(0D)
has its support in P, and satisfies (17), then we have for y € B, n U,,

5q 1 19 +4c+5
|Wf(y)|< + 84282 Loy =-2TCT

+ o(1),
9 66 2 18 M

where o0,(1) does not depend on f.
Next consider y € B,. We have then symmetrically

I —

pelst, wesl, pese) s

¢
9’

so that we obtain again for the same f as above and for y e B, n U,
o,(1).

We see that (22) holds for all y € BN U,, and f € ¢(0D) described above.
Suppose now that y € C, and put

19 4+ 4c + 5q
—_ +

2 wr) s 525

B = {x =[xy, X3, %3] €0D,, x, =0} .
Then we have the inequalities ‘
|5(B)| < 1/4, |5(E)| < 1/6, |H(ENE)| < 1/12,
whence we get for f € ¥(0D) with support in P, satisfying (17) and for y € C, n U,,

@) MOl (5+ 75+ g) o =3+ el

where 0,(1) has the usual meaning.
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Now let y € C,. Then
15(B) = 1/4, |5(E)] < 1/6,

so that we obtain for f specified above and for ye C; n U,

@)  |FIO) < %G + ;) +o,(1) = %g + ofl) = %(ql) 4 of1).

In view of the symmetry, (24) holds also for y € E; n U,,, (22) holds for y € (B\ B) n
N U,, and (23) holds for y e (ENE;) n Uy, as well.
Summarizing we get for y € U,, and f described above

T10)w() < % ax (I/q’ 12 + Sq, 9 + 4c + 561) + ofl) =

18 18
1 9+ 4c+ 5¢q
= -max | 1/g, ————— ) + o,(1
5 (/q 3 ) (1

and the lemma is established.

Remark 3. If q, is the positive root of the equation

1/q

_944c+ 5q
18 ’

where ¢ has the meaning described in the above proof, then 1 < ¢; < 6/5 and
choosing ¢ = q; we have for our f

— 1
|flus < — + o(1),
2q,

whence we infer that |f],, , is below a fixed constant < 1/2 for all sufficiently small
e > 0.
Now we are in position to present the following

Proof of Theorem. Let P be the union of all edges in 0D, denote by &(x) the
distance of x € D from P and put

P, = {xedD; §(x) <¢}.
We shall say that a point z € ¢D is critical if, for each ¢ > 0,

limsup |A,|(P,) = }.

yeob
Let us denote by H the set of all critical points in 0D; clearly, all points in H are
vertices. It turns out that

2
H= UH,’,
i=0
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where H; denotes the set of those z € H for which D can be mapped isometrically
onto a set D in such away that z is mapped into the origin and, for suitable b > 0,

(25) 23,(0) " 8D = Q,,(0) ~ oD,

where D, is the set described in Lemma numbered (i + 1) above (0 < i < 2); for
z € H; we denote by 7, the corresponding isometric mapping of oD onto dD. We
may suppose that b > 0 has been fixed so small that 6b is less than the distance of
any two different vertices in dD. We have seen in the above lemmas that there is
a distinguished pseudonorm |...|, inducing uniform convergence on some neigh-
bourhood U,, of the origin in 8D. We put U? = 1,(U,,) and, denoting by fo 1,
the composition of 1, and f, define

p(f) =|fonls, fe4(oD).

Clearly, U*? is a neighbourhood of z in 0D and p, is a pseudonorm inducing
uniform convergence on U?.

For any fe (D) we shall now define p(f) as the maximum of all p,(f) (z € H)
and of

sup {|f(x)|; xe oD \UHU’} .

It is easily seen that p() is a norm on %(0D) inducing the topology of uniform con-
vergence such that

(fes(@D), p(f) = D=|f] 1.
It is not difficult to verify that

(26) lim sup {|4,| (P,); xedD\ U*} £ }.
€l0 zeH

Let us fix, for each € > 0, a symmetric function ¢, on R such that 0 £ ¢, < 1,
¢(t)=0 for || =3, ¢t)=1 for [t <3e
and define the function ¢, on 0D by
®,(x) =1— ¢,((x)), xedD.

Since all the functions @, . f vanish in some neighbourhood of P, one easily verifies
that all the functions in

(W(a,.1); fe@(@D), p(f) < 1)

are equicontinuous and uniformly bounded.
In other words, the operator
T,:f - W(,.f)

is compact in 4(0D). We are now going to estimate the norm of the operator

W= T:f->W(l-2)f).
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Fix an arbitrary fe €(0D) with p(f) < | and observe that, for sufficiently small
¢€(0, b) and any z € H,

spt(1 — @)= P, [(1—=)f] <1, p(1 - @.)f) = p(f);

the last inequality holds even if z € H, thanks to the fact that @, is symmetric on U,
with respect to z.

Using Lemmas 1—3 (cf. also Remarks 1—3) we conclude that, for all ze H and
a suitable constant ¢ we have

p(W((1 = @)f)) S c + o1) < %,

where ¢, o,(1) are independent of f. As observed in (26), we have also
sup {|W((1 — &,) f) (x)|; xeoD~ UHUZ} <
< sup {|4|(P,); xedD~ UUTG £ +0(l).
We conclude that, for all f € €(dD) with p(f) < 1, and suitable ¢
p(W((1—@,)f) S c+oll)<%.

Since ¢, 0,(1) do not depend on f and o,(1) tends to zero as ¢ | 0 we see that

p(W-T) <%
for all sufficiently small ¢ > 0, so that
w,(W) < 1.

Thus the proof is’complete.

Remark. The above proved theorem implies that, for any bounded rectangular
set D = R*® whose complement is connected, the solution of the Dirichlet problem
with an arbitrarily prescribed boundary condition g € (dD) is always representable
as a double layer potential Wf in D with a uniquely determined f e %(0D). More
generally, Corollary 2 established in [ 1] for admissible multiply connected rectangular
sets remains in force for arbitrary multiply connected rectangular sets.

Similarly, Corollary 1 from [1] dealing with representability of the solution of the
generalized Neumann problem by a potential of a signed measure supported in the
boundary remains valid for arbitrary rectangular sets.

We refer the reader to [1] for further references concerning applicability of layer
potentials to boundary value problems in domains with irregular boundaries.
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Souhrn

POTENCIALY DVOJVRSTVY NA HRANICICH S HRANAMI A VRCHOLY

T. S. ANGELL, R. E. KLEINMAN, Joser KRAL

Nechf D je omezena (tzv. rektangulirni) oblast v trojrozm&rném prostoru, pro niZz kazidy
bod z na hranici 2D m4 takové okoli U < D homeomorfni s rovinou, Ze U je obsaZeno ve sjed-
noceni t¥i rovin vedenych bodem z rovnobé&Zzné se soufadnymi rovinami. Bud W operator po-
tencidlu dvojvrstvy na prostoru C(dD) vSech spojitych funkci na oD, necht I znali identicky
operator a Q prostor viech kompaktnich linearnich operatorti na C(9D). Je zndmo, Ze vzdale-
nost W — «I od Q (m&fend pomoci supremové normy) mize prevySovat |x| pro kaZzdou volbu
parametru «. V éldnku je dokdzdno, Ze na prostoru C(9D) lze vzdy zavést novou normu p (indu-

kujici stejnou topologii stejnomé&rné konvergence) takovym zpiisobem, aby p-vzdalenost opera-
toru W — 1I od Q byla mensi nez 3.

Pesome

ITOTEHLIAJIBI IBOMHOI'O CJIOSI HA TPAHULIAX
C BEPIIMHAMU U PEBPAMU

T. S. ANGELL, R. E. KLEINMAN, J. KRAL

PaccMoTpuM orpanmyeHHyro o6macte D B TPEXMEPHOM IPOCTpaHCTBE (HA3hIBaeMyIO IpPsSMO-
YrOJIHOM) TaKyro, YTO AJIA KaXAO TOYKU z rpaHdubl 0D cyimecTByeT Takas romeomopdHas
[UTOCKOCTH OKpecTHOCTE U < 9D, uto U comepUTCA B COEAUHEHHUM TPEX IUIOCKOCTEH, IPOXOAAMIMX
yepes z ¥ NapauieIbHbIX KOOPANHATHHIM InockocTaM. ITycts W— onepaTop NoTeHInana JBOHHOro
cios, AedcTByromuit Ha nmpocrpaHcTse C(0D) Bcex HempepsIBHBIX (yHknuit Ha 0D. OGo3HaYMM
yepe3 I TOXASCTBEHHbIM onepaTop U yepe3 Q NPOCTPAHCTBO BCEX KOMIAKTHBIX JIMHEHHBIX omepa-
TOpoB Ha C(9D). U3BecTHO, uTO paccTosiaue OT W — &I 1o Q OTHOCHTENBHO OOBIKHOBEHHOM MaKCH-
MYM-HODMbI MOXET IIPEBOCXOJUTH |a| Zisi KaXkaoro napamerTpa o. B HacTosmieil cTaTbe JOKa3bl-
BaeTcst, yTo B C(0D) BCcerma MOXHO BBECTH HOBYIO HOPMY p, MHAYLUHMPYIOLIYIO TY K€ CaMyIO TO-

TOJIOTHIO PaBHOMEPHOU CXOAMMOCTH, TaKAM- 00pa3oM, 4yToObl paccTosiuue ot W — -}I 1o Q OTHO-
CATEJIEHO p CTAJI0 MEHBIIE YeM 4.
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