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Casopis pro p&stovini matematiky, ro¥. 96 (1971), Praha

REMARKS ON DENJOY PROPERTY AND .#, PROPERTY
OF REAL FUNCTIONS

TiBor SALAT, Bratislava
(Received March 31, 1970)

In the whole paper the interval means a normal non-degenerate interval on the real
line E; and the measure means the Lebesgue measure on the real line. In what fol-
lows |M | denotes the measure of the set M.

The real function f : {0, 1> — E, is said to have the property .# if for each a € E,
and each closed interval I < <0, 1) each of sets I n E,(f), I n E*(f),

E(f) = {x€0,1); f(x) > a}, E*(f) ={xe<0,1); f(x) < a}

is either void or it has a positive measure (cf. [6]).

Further, the function f: <0, 1) - E, is said to have the Denjoy property if for
each two numbers a, b e E; and each closed interval I< 0, 1) the set I n EX(f),
EXf) = {x€<0,1); a < f(x) < b} is either void or it has a positive measure (cf.
(1)

It is obvious from the previous definitions that each function f : (0, 1) — E, with
the .#; or Denjoy property is Lebesgue measurable.

It is easy to see that each function with the Denjoy property has the .#; property,
too. L. MiSik has shown the equivalence of these two properties for functions of the
first Baire class (cf. [2]).

The function f : €0, 1) — E, is said to have the Darboux property if f maps each
interval I « (0, 1)) onto an interval or a one-point set.

Denote by F the set of all functions f:<0,1) —» E,. For S =« F we put CS =
= F — S. Denote by M;, D*, D the set of all f€ F with the 3, Denjoy, Darboux
property, respectively. Further B, (« = 0) denotes the set of all functions f € F of the
Baire class a.

We have already remarked that D* <« M} and D* n B, = M5 n B,. L. Misik has
shown (cf. [2]) that the set

S, = By n[Mj — (D u D¥)] = B, n M} n CD n CD*
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is non-void and he asked whether the set T, = B, n M, n D n CD* is non-void,
too. J. LipINski has given an affirmative answer to this question (cf. [1]). He showed
by using some properties of Kopcke derivatives that each of the sets S,, T, is non-void.

In this paper we shall give new proofs for the non-voidness of each of the sets S, T,
the proof of the non-voidness of T, being based on some properties of certain func-
tions which were defined in the paper [5] by means of subseries of divergent series.
Further we shall study some properties of the sets S,, T, as subsets of the metric
space M(0, 1) of all bounded functions f € F (see Theorem 7 below).

At first we show a simple construction of functions f€ S,. Let A < (0,1) bean F,
set with the following property: For each interval I = <0, 1) each of the sets
ANl A nI(A =<{0,1) — A) has a positive measure (cf. [3], p. 244). R denotes
the set of all rational numbers r€ {0, 1>. PutB =4 — R, B = A" — R. Let t be an
arbitrary positive real number. Put g(x) =t for xe B, g(x) = —t for x € B’ and
g{x) = 0 for xeR.

Theorem 1. The function g, belongs to S,.

Proof. 1. We shall show at first that g, e B,. Let a € E,, E%(g,) = {x € (0, 1);
g{x) < a}. Then we have

0 for ax —t,
. B’ for —t <a
E'(g) = B’ UR for 0O<a
{0,1) for t<a.

Since A4 is an F, set, B’ is a G,, set and we see at once that the set E%(g,) is a G,, set
for each a. It can be shown analogously that for each a € E, the set E(g,) = {x¢€
€40, 1); g(x) > a} is a G,, set.

2. The function g, has not the Darboux property since (<0, 1)) = {0, 1, —t}.

3. The function g, has not the Denjoy property since the set E* (g,) = {xe
€¢0,1); —t < g(x) < t} is non-void and its measure is 0.

4. The function g, has the .# property. Indeed, let ae E, and let I = <0, 1) be
a closed interval. If I n E(g,) # 0, then @ > —t and therefore the set I N B’ is
contained in the setI N E"(g,). In view of the properties of the set 4 we have |I fa) B’[ >
> 0 and so |[I n E(g,)| > 0. It can be shown analogously that if I n E,(g,) + 0
then |I ~ E,(g,)| > 0. This completes the proof.

Remark. From the previous theorem we obtain a set of the power ¢ (c is the
power of the continuum) of functions from S,. Since S, = B, and the power of the
set B, is ¢, we see that the set S, has the power c.

In what follows we shall use some functions defined in [5] by subseries of divergent

o0

series. Let ) |a,| = +o0, x€(0,1), x =Y &(x)- 27* (non-terminating dyadic
k=1 k=1
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expansion of X, sk(x) = 0 or 1 and for an infinite number of k’s we have g(x) = 1).

Denote by f = f(Za,,) the function defined on (0, 1) in the following way: If the
series

o0

1) Y. &(x) a

converges 3 and has the sum S(x), then we put f(x) = S(x)/(1 + |S(x)|). If Z &(x) a; =
=+ (Zsk(x) a, = —), then we put f(x) =1 (f(x) = —1). If (1) oscillates,

then f (x) = 0

It is well-known (cf. [6] Theorem 1, p. 6) that each function fe F of the first
Baire class with the .#; property has the Darboux property. So the inclusion B, n
N M, = B; n D holds. In the connection with this fact we shall show that for the
functions of the second Baire class the inclusion B, n D = B, n M} is not true.

Theorem 2. Let a; — 0 and let the series Y a, fulfil one of the following conditions:
k=1

1) Y a=+0, Y |a]< +oo;

k;ax =20 k;ax<0
2) Z: ak:= ‘WD, 2: ak‘< +CD.
kiax <0 ki;ax20

Define the function g : {0, 1) — E, in the following way g(0) = 1 in the case 1)

and g(0) = —1 in the case 2). Further we put g(x) = f(Za ) (x) for xe (0,1 (in
both cases).
Then g eBz A (D — M)).

Proof. Let Z a, fulfil the condition 1) (in the case 2) the theorem can be proved in
an a.nalogouskw;.y). We know that f (Za,,) is a function from the second Baire class
(see [5], Theorem 2,6). From this it foliows easily that g € B,.

F urther it is known that f (Za ) has the Darboux property and the set {x € (0, 1);
f (Za ) (x) = 1} is dense in (0, 1> (see [5], Theorem 2,4 and 1,10). From this it can

be easﬂy deduced that g € D.
Since a, — 0 there exists a sequence k, < k, < ... of natural numbers such that

Ylan| < 0. Put xo =Y 27" =Y &x0) 27 (exo) =0 for k =+ k, and
n=1 n=1 k=1

&.(%) =1, n = 1,2,...). Then it follows from the definition of g that g(xo) < 1
and so E(g) = {x €40, 1); g(x) < 1} * 0. From the theorem 1,10 of the paper [5]

we get [{xe(0,1>; ¥ ex)a = +oo}| =1 and so we have |E'(g)| = 0. Hence
k=1
g ¢ M}, and so finally g € B, n (D — M3). This completes the proof.
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Remark. In view of Theorem 2 there exists a function f; eU,, U, = B, n
n (D — M3). It is easy to check that each of the functions f; + a (a € E,) belongs to
U, too. From this we see at once that the set U, has the power c.

We shall prove now the non-voidness of the set T,. The proof of this fact will be

[
based on some properties of functions f(3 a,).
1

Theorem 3. T, = B, n M3 n DN CD* + 0.

Proof. Let C, denote the Cantor set in <0, 1). In the closure of the longest com-
ponent interval J, of the set (0, 1) — C, we construct again a Cantor-like set C,.
Thus the only common points of C;, C, are the end-points of the interval J,. In the
closure of the longest component interval J, of the set <0, 1) — (C, U C;) we con-
struct again a Cantor-like set C,. Thus the only common points of C,, C, U C, are
the end-points of the interval J,. We continue this construction by induction. Hence

we obtain the set C = |J C,. Obviously |C| = 0and the sets C,(n > 0), Co LU C; U...

n=0

... U C,_, have only two common points (inf C, and sup C,). If I = <0, 1) is an
arbitrary interval, then there exists an m such that C,, < I. Let ¢, : C, = {(—1,1)
denote the function which maps C, onto {(—1, 1), ¢, being continuous and non-
decreasing on C, (this function is analogous to the well-known Cantor function - see

[3] p. 410).
Further we construct an F, set A < <0, 1) such that for each interval P = (0, 1)
we have

*) |AnP|>0, |[4nP|>0(4 =<0,1) - A)

(cf. [3], p. 244). Put G = <0, 1) — C. Then €0, 1> = C U GA U GA’, the summands
on the right-hand side being pairwise disjoint. Let

ak>0, ak—’o, Zak=+00; bk<09 bk—>0, Zbk=-—00.
k=1 k=1

Define the function g in the following way: g(x) = @o(x) for xe Cy = C3, g(x) =
=@x) for xeC; — Co =CT,...,g9(x) = @(x) for xeC,—(CouC,u...

...V C,_y) =C;,... Further we put g(x) = f(}a,) (x) for xe GA and g(x) =
@ 1
= f(}3bs) (x) for xe GA'.
1
1) We show that g € B,. For a € E; we have E°(g) = M, u M, U M;, where

M, = §o{xec:; o.(x) < a}, M, ={xeG4; f(ia,,) (x) < a},
M, = {xe GA’; f(zrb,,) (x) < a}.
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Owing to the continuity of ¢, on Cy the set {x € Cy; ¢,(x) < a} is open in C} and
therefore it is a Gy, set. So the set M, is a G,, set, too. Further M, = GAn {xe

€ (0, 1); f(f:a,,) (x) < a}. Since GA is a G, set and {x e (0, 1); f(ia,,) (x) < a}
1 i

is a G,, set, too (see [5], Theorem 2,6), the set M, is a G,, set. In an analogous way
we can verify that M; is also a G,, set. So E%(g) is a G;, set. Analogously it can be
shown that E,(g) is a G, set.

2) We shall show that g has the property .#;. Let ae E, and let I = 0, 1) be
a closed interval. If

(2 InE(g)+0,

then a > —1 and the set I n E%(g) contains the set I n {x €0, 1); g(x) = —1}.
According to the theorem 1,10 from [5] we have g(x) = —1 for almost all x € GA’
and so owing to the property (*) of the set A we obtain |I A E*(g)| > 0. In an analo-
gous way we can show that also the set I n E,(g) is either void or it has a positive
measure.

3) We shall show that g has the Darboux property. If I < <0, 1) is an interval
then there exists an m such that C,, = I and so

(3) g(I) > g(Cru) = ‘Pm(c::) = (_1’ 1) .

In view of (¥) and |C| = 0 we have |(GA) N I| > 0,](GA’) N I| > 0. But for almost
all x € GA(x € GA') we have g(x) =1 (g(x) = —1) (see[S], Theorem 1,10). Owing
to this fact there exist two points x,, x, €I such that g(x,) = 1, g(x,) = —1. This
together with (3) gives g(I) o (—1, 1). But g(<0, 1)) = {1, 1), therefore g(I) =
=(—1,1).

4) We shall prove that g has not the Denjoy property.

Let us choose a = —1, b = 1, I = <0,1). Then I n E}(g) = {x€<0,1); —1 <
<g(x) <1} +0 and I n E(g) = Cu M where M denotes the set of all such

@ @
x € GA U GA’ for which at least one of the series Z s,,(x) ay, Z ek(x) b, converges.

It follows from the theorem 1,10 of the paper [5] that IM | = 0 and since lCl =0,
we have |I n E(g)| = 0. This completes the proof.

Remark. It is easy to verify that T, has the power c.

It is easy to check that if f € M, or f € D*, then for each k € E, also the function kf
belongs to M5, D* respectively. In connection with this fact the question arises
whether the sum of two functions from M; or D* is again a function belonging to M}
or D*, respectively (i.e. whether M or D* is a linear function space). The following
example gives a negative answer to this question.
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Example. Let C < <0, 1) be the Cantor set, C' = <0,1) — C. Let 4 = (0, 1>
be such an F, set that for each interval P < <0, 1) we have |4 N P| > 0,4’ A P| > 0
(4’ =<0,1) — A). Then €0,1) = C U C'A U C'4’, the summands on the right-
hand side being pairwise disjoint. Put hy(x) =1 for xe C U C'4 and hy(x) = —1
for x € C'A’. Further put h,(x) =1 for xe C U C'A’ and h,(x) = —1 for x e C'4.
If we put h = h; + h,, then h(x) = 2 for x € C and h(x) = 0 for x e C'. It is easy to
verify that hy, h, € D*. Since {x € €0, 1); h(x) > 0} = C, the function h does not
belong to Mj.

In what follows we shall study the structure of the space M(0, 1) (with the metric

o(f, 9) = sup l (o) - g(t)|) from the point of view of the Denjoy and Zahorski’s
0stst

property .#;. Let D*(0, 1) and M5(0, 1) denote the set D* n M(0, 1), M5 n M(0, 1),

respectively. Let us remark that if (X, ¢) is a metric space, then the symbol S(p, 5)

(pe X, 6 > 0) denotes the spherical neighbourhood of the point p in the space X,

ie. S(p, &) = {x e X; o(p, x) < 68}.

Theorem 4. Each of the sets D*(0, 1), M5(0, 1) is a perfect non-dense set in M(0, 1).

Proof. We shall prove the theorem for D*(0, 1) (the proof for M5(0, 1) being analo-
gous). It suffices to prove the following assertions:

1) D*(0, 1) is a closed subset of the space M(0, 1);

2) D*(0, 1) has no isolated point;

3) D*(0, 1) is non-dense in M(0, 1).

1) Let f, € D*(©0,1) (n = 1,2,...) and let {f,};>, uniformly converge to f. Then
it is known that f € D*(0, 1) (cf. [7], Theorem 15).

2) Let fe D*(0, 1) and 8 > 0. It is easy to check that each of the functions f + t,
|t| < & belongs to S(f, 5) and f + 1 € D*(0, 1).

3) Since each of the functions fe D*(0, 1) is measurable, we have D*(0,1)
< L(0, 1), L(0, 1) being the set of all Lebesgue measurable functions from M(0, 1).
But L(0, 1) is a non-dense set in M(0, 1) (see [4]) and therefore D*(0, 1) is non-dense,
too. The proof is complete.

In an analogous way we can prove the following

Theorem 5. Each of the sets Z n M(0,1), Z = S,, T,, U, is a perfect non-dense
set in M(0, 1).

Proof. It follows from the inclusions S, « M3, T, = M; that S, n M(0, 1),
T, n M(0, 1) are non-dense. Further U, < D and D n M(0, 1) is non-dense in
M(0, 1) (see [4]), so that U, n M(0, 1) is non-dense, too. The perfectness of the sets
Z A M(0,1), Z = S,, T, U, can be proved in an analogous way as the perfectness
of D*(0, 1) was proved in Theorem 4.
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