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Časopis pro pěstování matematiky, roč. 96 (1971), Praha 

REMARKS ON DENJOY PROPERTY AND JT2 PROPERTY 
OF REAL FUNCTIONS 

TIBOR SALÁT, Bratislava 

(Received March 31, 1970) 

In the whole paper the interval means a normal non-degenerate interval on the real 
line Ev and the measure means the Lebesgue measure on the real line. In what fol­
lows |M| denotes the measure of the set M. 

The real function/: <0, 1> -* E± is said to have the property Jt'2 if for each a e Et 

and each closed interval J c <0, 1> each of sets I n Ea(f)91 n Ea(f)9 

Ea(f) = { x 6 <0, 1>; f(x) > a} , Ea(f) = {x e <0, 1>; f(x) < a} 

is either void or it has a positive measure (cf. [6]). 
Further, the function / : <0,1> -> El is said to have the Denjoy property if for 

each two numbers a9beEt and each closed interval la <0,1> the set I n Ea(f)9 

Eb
a(f) = {xe(0, 1); a < f(x) < b} is either void or it has a positive measure (cf. 

[i])-
It is obvious from the previous definitions that each function/: <0,1> -• E1 with 

the M'2 or Denjoy property is Lebesgue measurable. 
It is easy to see that each function with the Denjoy property has the Ji'2 property, 

too. L. MisfK has shown the equivalence of these two properties for functions of the 
first Baire class (cf. [2]). 

The function / : <0,1> -* £x is said to have the Darboux property if/ maps each 
interval / <= <0, 1> onto an interval or a one-point set. 

Denote by F the set of all functions / : <0,1> -* Et. For S c F w e put CS = 
= F - S. Denote by M29 D*9 D the set of all feF with the Jt'l9 Denjoy, Darboux 
property, respectively. Further Ba (a ^ 0) denotes the set of all functions/e F of the 
Baire class a. 

We have already remarked that D* a M2 and D* c\Bx = M2r\ Bx. L. Mistk has 
shown (cf. [2]) that the set 

S2 = B2 n [M'2 - ( D u D*)] =B2nM2
1nCDrs CD* 
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is non-void and he asked whether the set T2 = B2 n M2 n D n CD* is non-void, 
too. J. LiPitisKi has given an affirmative answer to this question (cf. [1]). He showed 
by using some properties of Kopcke derivatives that each of the sets S2, T2 is non-void. 

In this paper we shall give new proofs for the non-voidness of each of the sets S2, T29 

the proof of the non-voidness of T2 being based on some properties of certain func­
tions which were defined in the paper [5] by means of subseries of divergent series. 
Further we shall study some properties of the sets S2, T2 as subsets of the metric 
space M(0,1) of all bounded functions fe F (see Theorem 7 below). 

At first we show a simple construction of functions fe S2. Let A c <0, 1> be an Fa 

set with the following property: For each interval I c <0, 1> each of the sets 
A n J, A' n I (A' = <0,1> - A) has a positive measure (cf. [3], p. 244). R denotes 
the set of all rational numbers r e <0,1>. Put B = A - R, B' = A' - R. Let t be an 
arbitrary positive real number. Put gt(x) = t for x e B, gt(x) = — t for x e Bf and 
gt(x) = 0 for x e R. 

Theorem 1. The function gt belongs to S2. 

Proof. 1. We shall show at first that gteB2. Let a eEu Ea(gt) = {xe <0,1>; 
gt(x) < a}. Then we have 

Ea(gt) = 

0 for a ^ -t, 
B' for -t < a й 0, 
B' u .R for 0 < Ű ^ ř, 
<0, 1> for t < a . 

Since A is an F^ set, B' is a G^ set and we see at once that the set Ea(gt) is a Goa set 
for each a. It can be shown analogously that for each ae Ex the set Ett(gt) = {x e 
e <0,1>; gt(x) > a} is a G^ set. 

2. The function # r has not the Darboux property since #,(<0,1>) = {0, t, -*}. 
3. The function gt has not the Denjoy property since the set E^t(gt) = {xe 

e <0,1>; — t < gt(x) < t} is non-void and its measure is 0. 
4. The function gt has the M'2 property. Indeed, let ae Et and let J c <0,1> be 

a closed interval. If I n Ea(gt) =f= 0, then a > —t and therefore the set I r\ B' is 
contained in the set/ n Ea(gt). In view of the properties of the set A we have |/ n 1?'| > 
> 0 and so |/ n Ea(gt)\ > 0. It can be shown analogously that if I n Ea(gt) + 0 
then |/ n Ea(gt)\ > 0. This completes the proof. 

Remark. From the previous theorem we obtain a set of the power c (c is the 
power of the continuum) of functions from S2. Since S2 c B2 and the power of the 
set B2 is c, we see that the set S2 has the power c. 

In what follows we shall use some functions defined in [5] by subseries of divergent 
OO 00 

series. Let £ |afc| = 4-00, xe(0,1>, x ==£ejk(x)- 2~* (non-terminating dyadic 
* = i 
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expansion of x, ek(x) = 0 or 1 and for an infinite number of fc's we have ek(x) = 1). 
00 

Denote by / =fC>X) the function defined on (0,1> in the following way: If the 
series * 

(1) i*lx)ak 
k=l 

oo 

converges and has the sum S(x), then we put/(x) = S(x)j(l + |S(x)|). If £ ek(x) ak = 
00 * = i 

= + oo ( Y, ek(x) ak = — °°), then we put f(x) = 1 (f(x) = — 1). If (1) oscillates, 
k = l 

thenf(x) = 0. 
It is well-known (cf. [6] Theorem 1, p. 6) that each function feFof the first 

Baire class with the Jt'2 property has the Darboux property. So the inclusion Bx n 
n M2 c Bt n D holds. In the connection with this fact we shall show that for the 
functions of the second Baire class the inclusion B2n D c B2c\ M'2 is not true. 

00 

Theorem 2. Let ak -• 0 and let the series £ ak fulfil one of the following conditions'. 
jfc=i 

1) Z ak = +°o> L \ak\ < +oo; 
fcjaic^O fc;a»t<0 

2) 1L ak = -°°> £ ** < + 0 0 ' 
fc;afc<0 k;ak^Q 

Define the function g : <0, 1> -> JÊ  in the following way: g(0) = 1 in fhe case 1) 
ao 

and g(0) = - l i / i fhe case 2). Further we put g(x) =/(Za») (*) / o r x G (0> O (in 

b0fh cases). * 
T/icn g e B2 n (D - M )̂. 

oo 

Proof. Let £ ak fulfil the condition 1) (in the case 2) the theorem can be proved in 
* = 1 00 

an analogous way). We know that f(£a„) is a function from the second Baire class 
i 

(see [5], Theorem 2,6). From this it follows easily that g e B2. 
00 

Further it is known that/Q[an) has the Darboux property and the set {x e (0,1>; 
00 1 

f(Lan) (x) = !} i s dense in (0, 1> (see [5], Theorem 2,4 and 1,10). From this it can 
I 

be easily deduced that g e D. 
Since ak -» 0 there exists a sequence kt < k2 < ... of natural numbers such that 

S K I < +oo. Put x0 =£2-*"=£e*(*o)2-* (ek(x0) = 0 for k * kn and 
» = 1 n = l k = l 

ekn(x0) = 1, n = 1, 2,...). Then it follows from the definition of g that g(x0) < 1 
and so E\g) = (x e <0,1>; #(x) < 1} + 0. From the theorem 1,10 of the paper [5] 

00 

we get |{xe(0,1>; Y,zk(x)ak = +co}| = 1 and so we have \El(g)\ = 0. Hence 
k = i 

g ̂  M2 and so finally g e B2 n (D — M2). This completes the proof. 
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Remark. In view of Theorem 2 there exists a function fx e U29 U2 = B2 n 
n (D — M2). It is easy to check that each of the functions ft + a(ae Ex) belongs to 
l/2, too. From this we see at once that the set U2 has the power c. 

We shall prove now the non-voidness of the set T2. The proof of this fact will be 
00 

based on some properties of functions f(£an). 
1 

Theorem 3. T2 = B2 n M2 n D n CD* * 0. 

Proof. Let C0 denote the Cantor set in <0,1>. In the closure of the longest com­
ponent interval Jx of the set <0,1> — C0 we construct again a Cantor-like set Cv 

Thus the only common points of Cl9 C0 are the end-points of the interval Jt. In the 
closure of the longest component interval J2 of the set <0,1> — (C0 u C}) we con­
struct again a Cantor-like set C2. Thus the only common points of C2, C0 u Ct are 
the end-points of the interval J2. We continue this construction by induction. Hence 

00 

we obtain the set C = U Cn. Obviously jc| = 0 and the sets Cn(n > 0), C0 u Ct u . . . 
n-«0 

... u Cn_x have only two common points (inf Cn and sup C„). If / c <0,1> is an 
arbitrary interval, then there exists an m such that Cm c I. Let q>n : Cn -> < — 1,1> 
denote the function which maps Cn onto < —1, 1>, q>n being continuous and non-
decreasing on Cn (this function is analogous to the well-known Cantor function - see 
[3] p. 410). 

Further we construct an Fa set A cz <0,1> such that for each interval P c <0, 1> 
we have 

(*) |-4 n P| > 0 , \A' n P| > 0 (A' = <0, 1> - A) 

(cf. [3], p. 244). Put G = <0,1> - C. Then <0, 1> = C u GA u GA\ the summands 
on the right-hand side being pairwise disjoint. Let 

oo oo 

<**>0, ak-+09 £ a f c = + o o ; bk < 0, bfc->0, ^ b f c = - o o . 
fc=i k=i 

Define the function g in the following way: g(x) = <p0(*) for ^ e C0 = Cj, ^(x) = 
= <Pi(x) for x e Ci - C0 = C*9..., ̂ f(x) = ^(x) for x e C„ - (C0 u Cx u ... 

00 

... u C ^ ) = C*,... Further we put #(x) =f(Xa»)(x) f°r *eGA and f̂(x) = 

= /(Z^)WforxeGA i ' . 
I 

1) We show that g e B2. For a e EY we have E\g) = Mx u M2 u M3, where 

Mi = U {x 6 C*; cpn{x) <a), M2 = {x e G.4; /(Ifl,,) (x) < a} , 

Af 3 - {x6C .4 ' ; / ( f6 . ) (x )< f l } . 
i 
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Owing to the continuity of cpn on C* the set {x e C*; q>n(x) < a} is open in C* and 
therefore it is a G6tr set. So the set Mt is a G^ set, too. Further M2 = GA. n {x e 

00 00 

e(0,1>; / Q X ) (x) < a}. Since GA is a G^ set and {xe(0, 1>; /£a„)(x) < a} 
1 I 

is a G6a set, too (see [5], Theorem 2,6), the set M2 is a G^ set. In an analogous way 
we can verify that M3 is also a G6a set. So -Efl(g) is a G^ set. Analogously it can be 
shown that Ea(g) is a G^ set. 

2) We shall show that g has the property JC2. Let aeEY and let / c <0,1> be 
a closed interval. If 

(2) InEa(g)*<&9 

then a > — 1 and the set / n Ea(g) contains the set / n {x e <0,1>; #(x) = — 1}. 
According to the theorem 1,10 from [5] we have g(x) = — 1 for almost all x e GA' 
and so owing to the property (*) of the set A we obtain |/ n Ea(g)\ > 0. In an analo­
gous way we can show that also the set / n Ea(g) is either void or it has a positive 
measure. 

3) We shall show that g has the Darboux property. If / c <0,1> is an interval 
then there exists an m such that Cm c / and so 

(3) g(i) = 9{cm) = 9JiC3 = (-1,1). 

In view of (*) and \c\ = 0 we have \(GA) n / | > 0, \(GA') n / | > 0. But for almost 
all x e GA(x e GA') we have g(x) = 1 (g(x) = -1 ) (see[5], Theorem 1,10). Owing 
to this fact there exist two points xl9 x2 e/such that g(xt) = 1, g(x2) = — 1. This 
together with (3) gives g(l) => < - l , 1>. But #(<0, 1» c < - l , 1>, therefore g(l) = 
= < - - , !> . 

4) We shall prove that g has not the Denjoy property. 

Let us choose a = - 1 , b = 1, / = <0,1>. Then / n Ea(g) = {x e <0,1>; - 1 < 
< 9(x) < 1} * 0 and / n Ea(g) c: C u M where M denotes the set of all such 

00 00 

x 6 GA u GA' for which at least one of the series £ £*(x) ak, £ ek(x) bk converges. 
* = 1 k=l 

It follows from the theorem 1,10 of the paper [5] that \M\ = 0 and since |C| = 0, 
we have |/ n Ea(g)\ = 0. This completes the proof. 

Remark. It is easy to verify that T2 has the power c. 
It is easy to check that iff€ M2 orfe />*, then for each k e El also the function fcf 

belongs to M2, £>* respectively. In connection with this fact the question arises 
whether the sum of two functions from M2 or D* is again a function belonging to M2 

or £>*, respectively (i.e. whether M2 or D* is a linear function space). The following 
example gives a negative answer to this question. 
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Example. Let C c <0,1> be the Cantor set, C = <0,1> - C. Let A <= <0,1> 
be such an Fa set that for each interval P c <0,1> we have \A n P| > 0, \A' n P| > 0 
(A' = <0,1> - A). Then <0,1> = C u C A u CA'9 the summands on the right-
hand side being pairwise disjoint. Put fc1(x) = 1 for x e C u CA and /ix(x) = - 1 
for x e C.A'. Further put ft2(x) = 1 for x e C u CA' and h2(x) = - 1 for x e CA. 
If we put ft = hv + fc2, then h(x) = 2 for x e C and h(x) = 0 for x e C. It is easy to 
verify that hl9h2e D*. Since {x e <0,1>; h(x) > 0} = C, the function h does not 
belong to M2. 

In what follows we shall study the structure of the space M(0,1) (with the metric 
Q(/> &) ~ SUP 1/(0 ~~ #(01) fr°m * e P°int of view of the Denjoy and Zahorski's 

property Jt'2. Let D*(0,1) and M2(0,1) denote the set D* n M(0, l), M2 n M(0,1), 
respectively. Let us remark that if (X9 Q) is a metric space, then the symbol S(p9 8) 
(p e X9 8 > 0) denotes the spherical neighbourhood of the point p in the space X9 

i.e. S(p9 8) = {x e X; Q(P, X) < 8}. 

Theorem 4. Each of the sets D*(0, 1), M2(0, 1) is a perfect non-dense set in M(0, 1). 

Proof. We shall prove the theorem for D*(091) (the proof for M2(0,1) being analo­
gous). It suffices to prove the following assertions: 

1) D*(091) is a closed subset of the space M(0,1); 
2) £>*(0,1) has no isolated point; 
3) D*(091) is non-dense in M(0,1). 

1) Let/B € D*(0,1) (n = 1, 2,...) and let {fH}^x uniformly converge to / . Then 
it is known tha t /e D*(0,1) (cf. [7], Theorem 15). 

2) Le t / e Z>*(0,1) and 8 > 0. It is easy to check that each of the functions/ -F f, 
\t\< 8 belongs to S(/, 5) and/ + f e D*(0,1). 

3) Since each of the functions / e D*(0,1) is measurable, we have D*(0,1) cz 
c L(0,1), L(0,1) being the set of all Lebesgue measurable functions from M(0,1). 
But L(0,1) is a non-dense set in M(0,1) (see [4]) and therefore D*(0,1) is non-dense, 
too. The proof is complete. 

In an analogous way we can prove the following 

Theorem 5. Each of the sets Z n M(0,1), Z = S2, T2, U2 is a perfect non-dense 
set in M(0,1). 

Proof. It follows from the inclusions S2 e M2, T2 c M2 that S2 n M(0,1), 
T2 n M(0,1) are non-dense. Further U2 c D and D n M(0,1) is non-dense in 
M(0,1) (see [4]), so that U2 n M(0,1) is non-dense, too. The perfectness of the sets 
Z n M(0, l), Z = S2, T2, U2 can be proved in an analogous way as the perfectness 
of £>*(0,1) was proved in Theorem 4. 
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