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Časopis pro pěstování matematiky, roč. 95 (1970), Praha 

NOTE ON STABILITY OF A LINEAR HOMOGENEOUS 
CONTROL SYSTEM 

JAN KUČERA, IVO VRKOČ, Praha 

(Received May 20, 1968) 

It is shown in [3] that the stability of zero-solution of an equation x = F(u) x, 
where u ranges a set * of controls is equivalent to the boundedness of each solution. 
Now we extend this and some related results on a case when F depends also on time. 

In this paper we will be interested in the ordinary, uniform, asymptotic and expo­
nential stability, resp., of a control problem 

(1) x = F(t) x, F e F , 

where &> is a set of locally on <0, oo) integrable n x n — matrix-functions. 

A function x(t), locally absolutely continuous on <0, oo), is said to be a solution 
of (1) if there exists such F e & that x(t) solves the equation x(t) = F(t) x(t) in the 
sense of CarathSodory (see [1]). We denote such solution by :cF or xF(t, t0, x°) if it is 
necessary to express that xF fulfils the initial condition xF(t0, t )9 x°) = x°. 

Property (F). We say that a set & has the property (F) if it is non-empty and for 
each sequence Fk e $F, k = I, 2,..., and each division 0 = t0 < tx < t2 < ..., & con­
tains at least one element F for which F(t) = Fk(t), t e <r^ 1 ? tk), k = 1, 2,. . . (We 
have said "at least" because in the case lim tk < + oo F is not determined uniquely). 

* - > o o 

Examp le. Be given G c Rn
9 H : <0, oo) x G -> Rn\ Let a set % of functions 

u : <0, oo) -* G contain with each sequence uk e °U9 k = 1, 2,..., and each division 
0 = t0 < tx < t2 < ... also an element u fulfilling the condition u(t) = uk(t), 
t e <**-!, tk), k = 1, 2, . . . Then the set of all functions H(t, u(t))9 where u e %, has 
the property (F). The condition imposed on % is fulfilled in particular when % is the 
set of all functions <0, oo) -> G. 

It is suitable for us to say that (1) is stable if it exists such T ^ 0 that for each 
t0 ^ -T, e > 0, there exists such d > 0 that for every F e « f , every t ^ 10 and every 
x° e Rn, \\x°\\ ^ d, an inequality ||xF(f, t0, x°)\\ = e holds. If T = 0 we get the usual 
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definition of stability. The stability is called uniform if T = 0 and for each s > 0 the 
number <5 can be chosen independently of t0. 

We say that (l) is asymptotically stable if it is uniformly stable and 

lim (sup {\xF(t, t0, x°)||; F e &}) = 0 
r-+oo 

for each t0 e <0, co) and each x° e Rn. We say that (1) is exponentially stable if such 
positive constants C and A exist that ||xF(f, f0, x°)|| ^ C||x°|| exp (—A(f — t0)) holds 
for every F e &, x° e Rn, t = t0 = 0. 

Theorem 1. Let a set 3F have property (F). Let each matrix function F e&Fbe 
locally integrable on <0, oo). Let each solution xF(t, 0, x°), where F e F , x° 6 Rn, 
of (1) be bounded on <0, co). 

Then (1) is stable. 

Proof. Put 

L(t) = {ye Rn; sup {||XF(T, t, y)\\; % = t, F e &} < oo} for t = 0 . 

Then Lhas the following properties: 

1) Evidently, L(t) is a linear space for each t = 0. 
2) dim L(t) is a nondecreasing function on <0, co). 

In fact, let 0 ^ tt ^ t2. Take linearly independent points x1, x2,..., xke L(tt) and 
an arbitrary FeSF. Then the points xF(t2,tl,x

i)eL(t2), i = 1,2,..., fc, are also 
linearly independent. 

3) If such T = 0 exists that L(T) = Rn, then (1) is stable. 
Actually, choose t0 = Tand e > 0. Then according to property 2) we have L(t0) = 

= Rn. Let us now take an orthonormal basis e1, e2, ..., en in Rn, denote st = 
= sup {||xF(f, t0, el)\\; t ^ t0, Fe &}, i = 1, 2 , . . . , n, and choose 3 > 0 so that 

n 

5 X s; ^ e. Then for every F e &,t = f0, x° e JR", ||x°|| ^ 5, we have ||xF(f, t0, x°) | g 
i = l 

-S*iM*,*o,e')M*i *.-*«• 
i = l i = l 

4) Denote d = max {dim L(t); t = 0}. 7/ inf {t; dim L(f) = d} < Tt g T2 and 
y $ L(xx) then xF(x2, xt, y) $ L(x2)for each F e3F. 

To prove it, take an arbitrary F e J* and choose y1,..., yd e L(xx) linearly inde­
pendent. Then xF(x2,xt, y1), i = 1,2,..., d, are also linearly independent. If 

d 

xF(r2,x1,y)eL(x2) we could write XF(T2 , T1? y) = £ a^E(T2> Ti» y')- This would 
d i = l 

imply XF(T, XU y) = £ aixFV
T> Ti> y') and especially 

i = l 

i = l i = l 

As L(T . ) is a linear space it contradicts to the assumption y $ l / j i ) . 
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To conclude the proof of Theorem 1 assume that (1) is not stable. Then according 
to property 3) ^i) + Rn for every t ^ 0. Let t0 > inf {t; dim ^i) = d}9 where 
d = max {dim L(f); t ^ 0}. We can take x° $ L(f0) and choose tt > t09 F1e&r so 
that ||xFl(f!, t09 x°)|| > 1. According to property 4) x1 = xFl(* i, t09 x°) $ L(tx). 
Having already chosen xk $ L(^) we can find such tk+l > tk9 Fk+1 e SF that xk+1 = 
= xFk^(tk+l9tk9x

k)^^k+1)2ind \\xk+1\\ > k + 1, k = 1,2,... 

Now take suc& F e3F that F(t) = Fk(t) for t e Ok-u h), k = 1, 2 , . . . Then the 
solution xF(t9109 x°) is not bounded and the proof is complete. 

Remark. Assume moreover that m(t) = sup {||F(f)||; Fe^}9 t ^ 0, is locally 
integrable on <0, oo). Then we can put T = 0 in our notion of stability. It follows 
immediately from the inequality \\xF(t910, x°)\\ ^ ||x°|| exp JJ0 m(t) dt. 

Theorem 2. Let 1) the assumptions of Theorem 1 be fulfilled. 

2) m(t) = sup {||P(0||; F e J5"}, t = 0, be locally integrable on <0, oo). 

3) sup{||xF(t,r0,x0)||;f = t0 = 0, |x°|| = 1} < +oo for each Fe^. 

Then (1) b uniformly stable. 

Proof. If (1) is not uniformly stable then there exist such e > 0, xk e Rn
9 Fk e 3F^ 

0 = tk< xk9 that ||xk|| -> 0, and |xFfc(Tk, tk9 xk)\\ > e9 k = 1, 2 , . . . Assume that 
sup tk = 5 < +oo. Put M = exp J0 m(f) dt. Then ||xFfc(0, fk, xk)|| ^ M||xk||. Accord­
ing to assumption 2 and the proved stability of (1) we can put T = 0 in the definition 
of stability. There exists such 3 > 0 that |y|| ^ 5 implies ||xFk(f, 0, y)\\ ^ e for every 
f = 0. If we put / = xFfc(0, tk9 x

k) then | / | | ^ M||xk|| -> 0 with k -> +oo. Take fc0 

so that for k > k0 the inequality M||xk | < 5 holds. Thus for fc > k0 we have got 
a contradiction e < |xFfc(Tk, fk, xk)|| = |xFkVTk- 0, j>k)|| ^ e. Hence sup {fk; k = 
= 1, 2,...} = +oo and we can assume t1 < xt < t2 < T2 < ... 

Now take such F e J*" for which F(t) = Fk(t)9 where f e<fk, fk+1), fc = 1, 2, ... 
Then evidently 

{xfo tk, | | x * | - ^ ) | = l ^ l " - «xffc(tt, ,to x ') | > |x-| |-- « - 00 

which violates assumption 3 and Theorem 2 is proved. 

Theorem 3. Let the assumption of Theorem 2 be fulfilled and moreover 

lim ||xf(r, t09 x°)|| = 0 
f-*oo 

for each F e &9 t0 = 0, x° e Rn. 
Then (1) is asymptotically stable. 

Proof. According to Theorem 2 system (l) is uniformly stable, i.e. 

B = sup {||xF(t, t09 x°)\\; Fe^9t^to^09 ||x°| ^ 1} < + oo . 
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Fix an e > 0 and for each t ^ 0 denote 

L(f) = {x e Rn; Urn sup sup {||XF(T, t, x)||; Fe^} <^e} . 

T-*00 

Then Lhas the following properties: 

1. If xe L(t) then xF(r, t, x) e I^x)for each F e 3F and each x ^ t. 
2. There exists such 5 > 0 that for each t ^ 0 and each x e Rn, ||x|| < 5, we have 

x e L(t). 
These two properties follow immediately from the definition of L and from the 

uniform stability of (1). 
3. L{t) is closed for each t ^ 0. 
Actually, let xk e L(t), xk -* x°. Due to uniform stability of (1) for each r\ > 0 

there exists such /* > 0 that \y — z|| < \i implies ||XF(T, t, y) — XF(T, t, z)\\ = 
= ||XF(T, f, j ; — z)|| < ^, where T ^ , Fe#" . Further, there exists such integer fc0 

that ||x* — x°|| < \x for every k > k0. Hence for k > k0 we can write 

limsup sup {\\xF(x, t, x°)||; F e / } ^ 
T-+00 

^ limsup sup {||XF(T, t, x°) - XF(T, t, x*)|; F e &} + 
T-+00 

+ limsup sup {|XF(T, t, x*)||; F e J5"} g t/ + e . 
T-+00 

As /y was an arbitrary number x° e L(t) holds. 

4. Let K <=: Rn be compact. Then for each t ^ 0 and each rj > 0 fftere exists such 
T(t, rj)^0 that \\xF(x, t, x)|| < e + rj holds for every x ^ t + T(f, tf), F e & and 
xeKn L(t). 

To prove it, take f ^ 0, ?/ > 0, and put \i = (2£)_1 >/. Denote 5M = {z e R"; 
inf {||z — x||; xeL(t)} < fx}. It can be shown, similarly as in Property 3, that for 
each z e 5^ an inequality limsup sup {||XF(T, t, z)j|; F e « f } ^ 8 + ^ holds. 

t-*oo 

Let {Ga; oce A} be such system of open sets Ga c Rn that K n L(t) c U G a and 
aeA n 

for each a e A there exist x°, x1, ...,xneSft such that Ga = {xeR"; x = £ AjX1, 
n n i = 0 

E *̂ = X |̂ *| < !}• As K n L(t) is compact it exists such finite subset A0 c. A that 
i = 0 i = 0 

K n L(r) c (J Ga. 
aeAo 

Take a e A0 and the corresponding points x°,. . . , xn e S^. For each xl, 1 = 0,..., n, 
there exists such Tt that sup {||XF(T, f, x*)\\; F e &} < e + r\ for every T ^ f + T.-. 
Denote Ta = max {Tf; i = 0 ,1 , . . . , n}. Then for every xe Ga and every F e ^ we 

n n 

have |XF(T, t, x)|| = ||XF(T, t, £ X^)\ < X A,||*-(T, t, x^j < e + rj. Thus T(t, n) = 
t=o (=0 

= max {Ta; a e A0} has obviously the required property. 

59 



5. Let such x e Rn
919 3 = 0 exist that for every F e 3F we have xF(t + 3, t9 x) -= 

e L(t + 3). Then x e L(t). 
In fact, let K be the closure of the set {y e Rn; there exists F e3F so that y = 

= xF(t + 3, t9 x)}. Then, according to property 3, K c L(t + 3). As sup {||j>||; 
y eK} ^ B\\x\\ holds the set K is compact. 

Take an arbitrary r\ > 0. Then, according to property 4, there exists such T(t + 3, rf\ 
that 

sup {||XF(T, t + 3, y)\\; F e &9 y eK, x > (t + 3) + T(t + 3, rj)} < e + rj. 

Hence sup {|XF(T, t9 x)\\; Fe&9 x > (t + 3) + T(t + $9rj)} < e + rj and as r\ is 

arbitrary x e L(t) holds 
6. U(i) = JRB for each t = 0. 

Proof. If it is not true then there are such t0 = 0, x° e Rn that x° $ L(t0). According 
to property 5 such Fx e & exists that x1 = xFl(f0 + 1, t09 x°) £ L(t0 + 1). Hence, it 
exists such F2e^ that x2 = xF2(f0 + 2, t0 + 1, x1) £ L(t0 + 2). 

By the mathematical induction we can construct sequences xk e Rn — L(t0 + fc) 
and Fke2F9 fc = 1,2,..., for which xk+1 = xFk+1(t0 + k + 1, t0 + fc, xfc), fc == 
= 1, 2, . . . If we now take such F e & that F(t) = Fk(t) for t e <r0 + fc - 1, t0 + fc), 
fc = 1, 2,. . . , then for each integer fc = 0 we have xk = xF(t0 + fc, t0, x°) $ L(t0 + fc). 
According to property 2 we have limsup ||XF(T, t09 x°)|| = (5 which violates assumptions 
of the theorem. 

To bring the proof of Theorem 3 to the end take e > 0. Then the mapping L: 
: <0, oo) -» oR" is defined. Take t0 e <0, oo), x° e Rn. According to property 6 we have 
x° e L(t0). If we put rj = e in property 4 then there exists such T(t09 e, x°) = 0 that 
||XF(T, t09 x°)|| < 2e holds for every x = f0 + T(f0, e, x°) and every Fe P. The 
proof is complete. 

Theorem 4. Let fhe assumptions of Theorem 2 be fulfilled and for each fixed 
Fe 3F the linear system x = Fx be exponentially stable, i.e. there are such positive 
constants CF9XF that \xF(t9109 x°)| = CF||x°|| exp( —/lF(i* — t0)) holds for every 
t^ t0 = 0, x° e Rn. 

Then (1) is exponentially stable. 

Proof. As (l) is a homogeneous (in x) system it follows from the uniform stability 
of (1) the equivalence of the above mentioned definition of exponential stability with 
the following one: System (1) is exponentially stable if for each e > 0 there is such 
T > 0 that for every t = 0, x e Rn

9 F e & and x > t + T we have ||XF(T, t9 x)|| S 
^ fi|x|. Henceforth, if (1) is not exponentially stable then there exist e > 0, tk > 
> t0k + fc = fc, Fke&9 xkeRn such that ||xFk(ffc, t0k9 xk)\ > e||x*||, fc = 1, 2, . . . 

If sup {t0k; fc = 1, 2,...} < +oo then we can assume that tok -> t0 -# +oo. It 
exists such integer fc0 that for fc > fc0 we have exp |J|°fc m(t) dt\ < 2, \tok — t0\ < V 
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As the assumptions of Theorem 3 are fulfilled there exists, according to property 4 
in the proof of Theorem 3, such T > 0 that sup {\\xF(t, t0, x)||; t > t0 + T, F e &} ^ 
g Jfi||xfl. Hence for k > 1 -f- max (r, fc0) we have e||x*j| S \\xFk(h> *o*> **)|| = 
= ||xF>c(rk, f0, xFk(t0, tok, x*))|| = ifi||xF*(*o» 'o*> **)| = S e F l - T h i s contradiction 
proves that sup {tok; fc = 1, 2,...} = +co. 

Using subsequences we can now assume that f01 < tx < t02 < t2 < ... Take 
such F e& that F(t) = Fk(t) for t e <fok, *o.*+i)- T h e n * = ^(0 * i s exponentially 
stable and we have e||x*|| < ^ ( M o * , * * ) ! = ||*F(Mofc>xk)|| = CF\\xk\\Qxp(-XF(tk-
-tok)) ^ CF||xk|| exp (—AFfc), fc = 1, 2 , . . . We have obtained again a contradiction 
and Theorem 4 is proved. 
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