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NOTE ON STABILITY OF A LINEAR HOMOGENEOUS
CONTROL SYSTEM

JAN KUCERA, IVvo VRKOCG, Praha
(Received May 20, 1968)

It is shown in [3] that the stability of zero-solution of an equation % = F(u) x,
where u ranges a set % of controls is equivalent to the boundedness of each solution.
Now we extend this and some related results on a case when F depends also on time.

In this paper we will be interested in the ordinary, uniform, asymptotic and expo-
nential stability, resp., of a control problem

(1) x=F{t)x, Fe#F,

where & is a set of locally on <0, o) integrable n x n — matrix-functions.

A function x(f), locally absolutely continuous on <0, ), is said to be a solution
of (1) if there exists such F € & that x(t) solves the equation %(f) = F(t) x(¢) in the
sense of Carathéodory (see [1]). We denote such solution by xz or x4(t, to, x°) if it is
necessary to express that x; fulfils the initial condition xg(t,, 7 , x°) = x°.

Property (F). We say that a set & has the property (F) if it is non-empty and for
eachsequence F, e #,k = 1,2, ...,and each division0 = t, < t, < t, < ..., ¥ con-
tains at least one element F for which F(f) = F,(t), te {ty_y, 1), k = 1,2,... (We

have said “at least” because in the case lim #, < + oo F is not determined uniquely).
k=00

Example. Be given G < R", H:0, ) x G - R™. Let a set % of functions
u : <0, o) — G contain with each sequence u, e %, k = 1,2, ..., and each division
0=ty <t; <t,<.. also an element u fulfilling the condition u(f) = ut),
te{t_1, 1), k =1,2,... Then the set of all functions H(t, u(t)), where u € %, has
the property (F). The condition imposed on % is fulfilled in particvlar when % is the
set of all functions <0, ) — G.

It is suitable for us to say that (1) is stable if it exists such T2 O that for each
to 2 T, ¢ > 0, there exists such § > 0 that for every F € &, every t = t, and every
x°eR", ”x°|| < 4, an inequality I]xp(t, to, x°)” < ¢ holds. If T = 0 we get the usual
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definition of stability. The stability is called uniform if T = 0 and for each ¢ > 0 the
number é can be chosen independently of ¢,.
We say that (1) is asymptotically stable if it is uniformly stable and

tlir?o (sup {[|x#(t. to, x°)|; F € F}) =0

for each t, € €0, o0) and each x° e R". We say that (1) is exponentially stable if such
positive constants C and A exist that ||xg(z, to, x°)| < C||x°|| exp (—A(t — #o)) holds
forevery Fe#,x°eR,t 21,20

Theorem 1. Let a set & have property (F). Let each matrix function F € ¥ be
locally integrable on <0, ). Let each solution xg(t, 0, x°), where Fe #, x° e R",
of (1) be bounded on <0, o).

Then (1) is stable.

Proof. Put

L(f) = {y e R"; sup {”xf(r, t, y)]

Then Lhas the following properties:

1) Evidently, L(t) is a linear space for each t = 0.

2) dim L(¢) is a nondecreasing function on <0, o).
In fact, let 0 < ¢, < t,. Take linearly independent points x*, x?, ..., x* € L(t,) and
an arbitrary F e #. Then the points xg(t5, t;, x) e L(t,), i = 1,2, ..., k, are also
linearly independent.

3) If such T = O exists that L(T) = R", then (1) is stable.

Actually, choose 1, = Tand & > 0. Then according to property 2) we have L(t,) =
= R" Let us now take an orthonormal basis e!, e?, ..., ¢" in R", denote s; =
= sup {”xF(t, to, e‘),; t2t, Fe#}, i=1,2,..,n, and choose § > 0 so that

5i s; < e. Thenforevery Fe #,t = to, x° € R", Hx"” < 6, we have ”x;(t, to, x°)“ <

;t2t FeF} <o} for t20.

1
< 6i ”xp(t, to, e')“ <6 i s; S e
i=1 i=1

4) Denote d = max {dim L(f); t = 0}. If inf {t;dim L(t) = d} <ty < 7, and
y ¢ L(z,) then xg(t,, 14, y) ¢ L(1,) for each Fe #.

To prove it, take an arbitrary F € # and choose y?, ..., ye L(z 1) linearly inde-
pendent. Then xg(t, 14, %), i =1,2,...,d, are also linearly independent. If

d
xp(t2, 71, y) € L(t,) we could write xg(t2, 74, ¥) = Y, a;X¢(T2, 74, ¥'). This would
d i=1

imply xg(7, 71, ¥) = 3, @xs(7, 71, ¥°) and especially
i=1

d d
y - Z aiyi = xl-‘(Th T1s }’) - 2:1 aixl"(rl’ T1s yi) =0.
i=1 i=
As L(t,) is a linear space it contradicts to the assumption y ¢ L(z,).

57




To conclude the proof of Theorem 1 assume that (1) is not stable. Then according
to property 3) L(f) + R" for every t = 0. Let t, > inf {t; dim L(f) = d}, where
d = max {dim L(f); t = 0}. We can take x° ¢ L(t,) and choose t; > to, F; € F s0
that [|xg,(t1 to, x°)| > 1. According to property 4) x' = xg (s, to, x°) ¢ L(t,).
Having already chosen x* ¢ L(t,) we can find such t,,y > t,, Fi,, € & that x**! =
= Xpoi(ts 1 to X) € Lty q) and [ >k + 1, k=1,2,...

Now take such F e # that F(t) = Fy(t) for te{ty_y, 1), k = 1,2, ... Then the
solution x(t, to, x°) is not bounded and the proof is complete.

Remark. Assume moreover that m(f) = sup {|F(t)|; Fe #}, t 20, is locally
integrable on {0, oo). Then we can put T = 0 in our notion of stability. It follows
immediately from the inequality |x(t, to, x°)| < [|x°| exp f, m(t) dt.

Theorem 2. Let 1) the assumptions of Theorem 1 be fulfilled.

2) m(t) = sup {|F(t)||; F e #}, t 2 0, be locally integrable on 0, ).
3) sup {|xe(t, 10, x°)|5 t 2 1o 2 0, |x°| < 1} < + o0 for each Fe #.
Then (1) is uniformly stable.

Proof. If (1) is not uniformly stable then there exist such ¢ > 0, x*€ R", F; € &,
0 <t <7 that |x*] >0, and ||xp(t ti, #*)| > & k=1,2,... Assume that
sup ty = s < +00. Put M = exp [} m(t) dt. Then ||x,(0, t,, x*)| = M]|x*|. Accord-
ing to assumption 2 and the proved stability of (1) we can put T = 0 in the definition
of stability. There exists such § > 0 that ||y| < & implies |x£(t, 0, y)| < & for every
t 2 0. If we put y* = x,,(0, #, x*) then | y*| < M|x*| —» 0 with k » +c0. Take k,
so that for k > k, the inequality M|x*| < & holds. Thus for k > k, we have got
a contradiction & < ||xg(ti, te x¥)| = %5 (e 0, Y*)| S & Hence sup{t; k =
=1,2,..} = +o0 and we can assume t; < Ty < f;, < T, < ...

Now take such F e # for which F(f) = F(t), where te{t, ti+1), k=1, 2, .,
Then evidently

et [ = [ [xrmo o )] > ] 7" 6 > 0

which violates assumption 3 and Theorem 2 is proved.

Theorem 3. Let the assumption of Theorem 2 be fulfilled and moreover
lim ||x(t, o, x%)| =0 |
t— 00
for each Fe #,t, 2 0, x° € R".
Then (1) is asymptotically stable.
Proof. According to Theorem 2 system (1) is uniformly stable, i.e.

B = sup {|x(t, to, x°); FEF, t 2 1,2 0, |x°| S 1} < + 0.
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Fix an ¢ > 0 and for each ¢t = 0 denote

L(t) = {xe R"; ﬁ','li“p sup {|xe(z, 8, x)||; Fe F} < ¢} .

Then L has the following properties:

1. If x € L(t) then x((z, t, x) € L(x) for each F € ¥ and each t 2 t.

2. There exists such 6 > 0 that for each t = 0 and each x € R", Hx“ < &, we have
x € L(¢t).

These two properties follow immediately from the definition of L and from the
uniform stability of (1).

3. L(¢) is closed for each t = 0.

Actually, let x* e L(f), x* > x°. Due to uniform stability of (1) for each n > 0
there exists such u >0 that |y — z| < u implies [xAz, 1, ) — x#(z, 8, z)|| =

”xF(t ty — z)" < n, where t = t, F € #. Further, there exists such integer k,
that ||x* — x°|| < p for every k > ko. Hence for k > ko we can write

limsup sup {|x(z, t, x°)|; Fe #} <
< limsup sup {||xg(z, £, x°) — x4z, t, &¥)||; Fe #F} +
+ limsup sup {||x¢(z, £, **)|; FeF} < n +¢.

As n was an arbitrary number x° e L(f) holds.

4. Let K = R" be compact. Then for each t = 0 and each n > 0 there exists such
T(t,n) = 0 that ”xp(t, t, x)” < ¢ + n holds for every t 2t + T(t,n), Fe ¥ and
xeK n L(1).

To prove it, take ¢ 2 0, # > 0, and put p = (2B)"'#. Denote S, = {zeR"

inf {||z — x|; xe L(t)} < u}. It can be shown, similarly as in Property 3, that for
each z € S, an inequality limsup sup {||x¢(z, ¢, z)|; F € #} < & + 4n holds.

Let {G,; a € A} be such system of open sets G, = R" that K n L(t) = U G, and

acA n

for each o€ A there exist x°, x',...,x"€ S, such that G, = {xeR"; x = ZA,x
Z Ay = Z |4 <1}. AsK n L(t) is compact it exists such finite subset 4, = A that
K N L(t) < UG,

aedo

Take a € A, and the corresponding points x°, ..., x" € S,. Foreachx',i = 0, ..., n,
;FeFl<e+nforeveryr =t + T,
Denote T, = max {Tj; i = 0, 1, ..., n}. Then for every x € G, and every F e # we

have |[x(z, t, x)|| = [x#(c, t,‘glix‘)” gtg Ail|xe(z, t, )| < & + n. Thus T(t,n) =

= max {T,; « € Ay} has obviously the required property.
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5. Let such xe R t, 3 2 0 exist that for every F € F we have xg(t + 3, t, x) e
€ L(t + 9). Then x € L(t).

In fact, let K be the closure of the set {y € R"; there exists Fe % so that y =
= xg(t + 9,¢,x)}. Then, according to property 3, K < L{t + 9). As sup {| y”;
y €K} < B|x| holds the set K is compact.

Take an arbitrary n > 0. Then, according to property 4, there exists such T(¢ + 9, 1)
that

| Fe#, yeK, 1> (t+ 9+ T(t+ 9,n)} <e+n.

sup {|x¢(z. t + 9, y)

Hence sup {||x¢(t,t,x)|; FeF, > (t+ 9) + T(t + 9,n)} <e +n and as n is

arbitrary x e L(f) holds
6. L(t) = R" for each t = 0.

Proof. If it is not true then there are such ¢, = 0, x° € R" that x° ¢ L(t,). According
to property 5 such F; € & exists that x' = xp (to + 1, t, x°) ¢ L(t, + 1). Hence, it
exists such F, € & that x2 = xp,(to + 2, 1, + 1, x') ¢ L(t, + 2).

By the mathematical induction we can construct sequences x* e R" — L(t, + k)
and F,e &, k=1,2,..., for which x**' =x. _(tq + k + 1, to + k, x"), k =
= 1,2, ... If we now take such F € & that F(t) = Fi(f)for te {to + k — 1, t, + k),
k = 1,2,..., then for eachinteger k = 0 we have x* = x(to + k, to, x°) ¢ L(to + k).
According to property 2 we have limsup ||x(t, t,, x°)|| 2 8 which violates assumptions
of the theorem. e

To bring the proof of Theorem 3 to the end take ¢ > 0. Then the mapping L:
: <0, 0) — R"is defined. Take t, € 0, ), x° € R". According to property 6 we have
x® € L(to). If we put n = ¢ in property 4 then there exists such T(t,, ¢, x°) = 0 that
| x(z, to, x°)| < 2¢ holds for every t = t, + T(to, & x°) and every Fe #. The
proof is complete.

Theorem 4. Let the assumptions of Theorem 2 be fulfilled and for each fixed
F € & the linear system x = Fx be exponentially stable, i.e. there are such positive
constants Cg, Ap that ||xg(t, to, x°)| < Ci||x°| exp (—Ax(t — t5)) holds for every
t=1t 20 x°eR"

Then (1) is exponentially stable.

Proof. As (1) is a homogeneous (in x) system it follows from the uniform stability
of (1) the equivalence of the above mentioned definition of exponential stability with
the following one: System (1) is exponentially stable if for each ¢ > 0 there is such
T > 0 that for every t 2 0, xeR", Fe # and t > t + T we have ||x(r, 1, x)” <
< ¢&||x|. Henceforth, if (1) is not exponentially stable then there exist & > 0, # >
> tox + k 2 k, Fye #, x* € R such that ||xz,(t, tor, X¥)| > &|x*], k = 1,2, ...

If sup {tox; k =1,2,...} < +00 then we can assume that t, — o, + +00. It
exists such integer ko that for k > ko we have exp |fi2, m(f) di| < 2, |tox — fo| < 1.

tok
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As the assumptions of Theorem 3 are fulfilled there exists, according to property 4
in the proof of Theorem 3, such T > 0 that sup {||xg(t, to, x)|; t > to + T,Fe F} <
< le|x|. Hence for k > 1 + max (T, ko) we have e|x*| < % (tes tow )| =
= | %t to X£,(tos tows ¥))|| = 3e]|%p(tos tors ¥*)| < %e|x*|. This contradiction
proves that sup {tg; k = 1,2,...} = +o0.

Using subsequences we can now assume that to, < t; < 5, < t, < ... Take
such F € # that F(f) = F,(t) for t € {tox, to,x+1)- Then % = F(t) x is exponentially
stable and we have &|[x*| < || £ (t tors ¥)|| = || *#(tis tow ¥*)|| = C||%*| exp (= At —
—tox)) S Cp||%*| exp (—Ark), k = 1,2,... We have obtained again a contradiction
and Theorem 4 is proved.
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