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ON MINIMAX SOLUTIONS OF STOCHASTIC LINEAR
PROGRAMMING PROBLEMS

JiTkA ZAEKOVA, Praha

(Received October 12, 1965)

1. Our starting point is the formulation of a stochastic linear program as a strategic
game. This formulation differs only slightly from that given by IosiFescu and THEO-
DORESCU [3]. Secondly, we state a minimax theorem for that game and study the
methods of solution. In some special but important cases it is shown that the minimax
solution of a stochastic linear program is equivalent to the solution of an ordinary
linear program (of greater dimension, in general). The existence of a finite solution is
also discussed. '

2. Let E; denote the non-negative orthant of the n-dimensional Euclidean space.
Let (4, b,c) — where A = (a;;), b=(b), c=(cj))i=1,...m j=1,..,n —
be a random vector; let its distribution F(A, b, c) belong to a set of distributions &.

Letr(y), i = 1, ..., m be real functions such that r(y) = Ofor y < 0and r(y) > 0
for y > 0. .

For xe E/, F e # set

H(x, F) = Ep {jglcjxj - ilri(jglaijxj - b)}.

If H is defined and finite for all x € E;", F € #, define a two-person zero-sum game
by its normal form
G=(E/,#, H).

3. The game G corresponds to the situation, where in the linear program:
Ax £b, x=20, c’x= maximum,

A, b, c (or some of them, or some of their components) are random vectors, their
simultaneous distribution is known to belong to a set &, the vector x is to be chosen
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independently of the realization of these random vectors, and the violation of the

n
constraint ). a;;x; < b, is penalized by the amount
J=1

-

ri(zaijxj - bi), i=1...m.
j=1

As the solution of this program, the optimal pure strategy of the player Iin the game G
will be meant.

4. For Fe &, let F* be the corresponding marginal distribution of (4, b); let
F*={F*:Fe#}.

Theorem 1. Suppose that one of the following conditions is satisfied:
(i) the set # is convex and compact (in the sense of Lévy’s distance) and the c;’s
are uniformly integrable with respect to F € &, ‘

(ii) the set F* is convex and compact and Egc equals a constant vector for all
Fe#.
Let the functions r{y), i =1,...,m, be convex and let the functions

n

r{ Y. ay;x; — b;) be uniformly integrable with respect to F € & for every x € E;.")
i=1 :
Then we have

(1) sup min H(x, F) = min sup H(x, F)

xeEp* Fe¥F FeF xeEn*
where this common value is either + co or it is finite and the suprema can be replaced
by maxima. '

Proof. Let condition (i) be satisfied. According to FAN Ky [2, Theor. 2], it is
sufficient to show that H is a continuous and convex function on & for each x € E,
and that for each element of & it is a concave function on E, . The continuity of H
on # is a consequence of the uniform integrability of the cjs and ris — see LOEVE
[5, Theor. 11.4A] — and of the special form of H; the convexity is trivial, because H,
being an integral with respect to F, is additive and homogeneous in F. The concavity
of H on E; follows easily from the convexity of the r;’s.

Now, let condition (ii) be satified. For every F e # let F* be the mentioned
marginal distribution; let y be the constant vector Epc. Let us define H*(x, F*) =

1) The uniform integrability of the ris means that for every x € E,:" andi=1,...,,m,

n
lim een ri(Z' ainj—‘bi)szo
N-w j=1

lail 2N, j=1,..., n,|bi]ZN

holds uniformly in F € &; similarly for the c'js. Cf. Loéve [5, p. 182].
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=Y px;— EF.{Z ri(Za,l x; — b;)}. It is readily seen that the games G =
i=1

= (E}, #, H) and G* = (E,,+ , F*, H*) are equivalent (in the sense of BLACKWELL
and GIRsHICK [1, Def. 1.4.2]) and the game G* again satisfies the conditions of the
Fan Ky’s theorem.

We shall now investigate the game G for special choices of r; and #. It will be
shown that in some cases the method of solution reduces to an ordinary linear
program. As a rule, we shall describe the set of distributions & in terms of random
variables and their properties. In the sequel, Greek letters will always denote known
constants (not = o).

5. In thgsgame G, let a;;, i =1,...,m, j=1,...,n, be constants, let b, i =
=1,...,m, be independent random variables such that E(b;) = B, Bi < b; < B}
as., B < piiletc; j = 1,..., n, be random variables such that Ec; = y;. (Herewith
the set & is defined.) Let r{(y) = v;y*, v, > 0,i = 1,..., m, where y* = {;(Iy[ + y).

Let 4 = {I, J, K} be an arbitrary decomposition of the set {1, 2, ..., m} into three
disjoint parts, one or two of which may be empty. Denote 4,, v = 1, ..., M, those of
such decompositions, for which the sets

(2 {x=zo: Zauj_ Jiel; B,<ZaUJ._ ,ied; Za,,l_ﬁ,,zeK}

are non-empty. (M < 3™ holds.) Further, define

q,j =—y1+2va,l+2viau,
lEv lEV
ky=Yop+YvApi v=1,...M; j=1,..,n
iel, ieJ,

where 4; = (B] — B,)/(B7 — B;). Finally, denote Q = (q,;),v=1,...M,j =1,...,n;
k=(k),v=1.,M;¢e=(1,..,1).

Theorem 2. (i) Relation (1) holds. (ii) x is a solution of the game G if and only
if (x, yo) is a solution of the linear program

(3) Ox +ye<k, x=20, y= maximum.

Proof. (i) As the b; are independent it suffices to prove the compactness of the
sets of one-dimensional distributions. But this is a consequence of the criterion: %#
is compact <> # is closed and both lim F(t) = 0, lim F(t) = 1 are uniform in #.

t—=*—o t—=>+

(See Logve [, p. 215].) All other conditions of Theorem 1 are evidently satisfied.
(ii) Denote ¢(x) = min H(x, F). From the independence of b,’s it follows
FesF

o(x) = Eiji - Z v; max Eg{( ). a;x; — b)*}.
j=1 j=1 Fe¥ ji=1
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The terms of the second sum can be evaluated with the help of a result due to JIRINA
and NEDOMA [4, Theor. 4]'); we get

o) = Sty = Zodd(S o - 8" +(1 - 1) (L awx - 5"}

The function ¢(x) is concave, and it is linear (¢(x) = — Y q,;x; + k,) on each of
i=1

the sets (2), which correspond to the decompositions 4,, v = 1, ..., M; these sets
themselves constitute a (non-overlapping) decomposition of E, . This means that
n

- Y g,;x; + k,, v=1,..., M are the upper supporting hyperplanes to ¢(x) and
i=1 .
that
o(x) = min (-3 q,x; + k,).
1SvEM j=1

Now, the maximization of ¢(x) is equivalent to the maximization of y under the
n
constraint y < ¢(x), i.e., under the constraints y < ~ Y q,;x; + k,, v=1,..., M;
Jj=1
but this is the assertion of the theorem.

Theorem 3. The non-existence of a (strictly) negative column in the matrix Q is
a necessary condition and the existence of a non-negative row in Q is a sufficient
condition for the existence of a(finite) solution of the game G.

Proof. The solution of the game G exists <> there exists the maximum of y on the
set {x = 0: Ox + ye < k} (which is always non-empty) <> there is an admissible
vector of the dual linear program to (3), i.e., there exists a vector u, for which

M
uz0, Zuv Zuqu_,._ , i=1,
v=1

Especially, such a vector exists if there is a non-negative row in Q, and it cannot
exist if there is a negative column in Q.

Corollary If the set {x 2 0: Zauxj =B, i=1,...,m} is non-empty and if

Z v,a;; = yj forallj=1,..., n, then a solution of the game G exists.

Proof. To the decomposition {(1, ..., m), 9, 9} there corresponds the row in Q

with non-negative components —y; + Y v,a;;, j = 1,...,n
i=1

1) The theorem holds under the assumption of convexity (concavity) only; the existence of
the second derivatives is not needed.
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6. If the assumption E(b;) = B, is replaced by B, < E(b) < B, i=1,...m
and all the other assumption of Section 5 are unaltered, then the Theorem 2 remains
true with ; replaced by B, (in the definitions of 4; and k,).

On the other hand, if the assumption B; < b; < B a.s., is replaced by o(b;) <
< const. (say 0;), i=1,...,m, and all the other assumptions of Section 5 are
unaltered, then part (i) of the Theorem 2 remains true — this follows from Logve
[5, Theor. 11.4.A B] — but to find a solution is much more difficult. It means first
to find

max EF{(Z a;x; — b)*} = min {d, + d,B; + dy(o7 + )},

where the minimum is to be taken over all (dy, dy, d,) which satisfy ( Z agx; —y)* =

S<dy+dyy+ dyy?, —0 <y < 4+, when xeE; is fixed (see RICHTER [6]),
then to set this result into the relation for ¢(x) and to maximize ¢(x). (Both these
comments are easily to prove.)

7. In the game G, let (a;q,...,a;, b;), i =1,...,m be mutually independent
random vectors such that

4) a; S a;; 2o, Bi< b, S PBT as., ay<aj,
Eai_i:aij:%(uij-*_aij’ Ebl=ﬂl=%(ﬂ:+ﬂ’l,)’ i=1:~--am’ ’j=1a-"1n;
letc;,j = 1,..., n be random variables such that Ec; = y;. Let r(y) = v,y*, v, > 0,

i=1,...,m. Let 4, = (I‘,. J,K,), v=1,...,M, be all those decompositions of
{1, ..., m}, for which the sets

{x 20: Zcxu x;— B 20, iel,;

n

n
Za;ixi— :’éoéz ®ijXj — B iedy; Zau;_ﬁgé(),ieKy}

j.—
are non-empty. Define
= —y;+ Y v + }Z vt

iel, ieJ,

Z lﬂl + %2 uiﬂl

iel, ieJy

and denote P = (p,;),v=1,...M,j=1,...,n; h=(h),v=1,...M

Theorem 4. (i) Relation (1) holds. (ii) x is a solution of the game G if and only
if (x, yo) is a solution of the linear program

Px+ye<h, x=0, y= maximum.

(Note that the case g; = g is not excluded.)
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Proof. According to the theorem of Jifina - Nedoma [4]

- max EF{(i aijxi -b)*} =
(Z“x —ﬁ)—(Z%x B) .
= = - (X oiyx; = B)* +

(3 s = ) - (;‘1 ey = B)

}:“nxj (2% Xj ﬁlz’) n
+ J; (Zau X j B:)+ =
(J;a';,.x,. -5 = (e =)

= H(T 5 — B)" + (Tt = B)°]
=
The other parts of the proof are the same as in Theorem 2.

Condition (4) is essential for the linearity of resulting program only. Theorem 3
and its Corollary hold also true with P in the place of Q.

8. In the game G, let (4, b, ) be a random vector such that '
ajSa;Sog, BiSb SBLY;Sc; Sy as, j=1..,ni=1..m.

Letry) =vy*,0,>0,i=1,...,m. Let 4, = (I, J,), v = 1,..., M’, be all those
decompositions of {1, ..., m}, for which the sets

{xz0: Zau x;—Bi20,iel,; Zau x;— B <0, iel)}
are non-empty. (M’ < 2™ holds.) Define

r'= —y‘]+zvlatj’ lv=zviﬂ’i

iel, iel,

and denote R = (r,;)), v=1,...M,j=1,...m1=(),v=1,.., M.

Theorem 5. (i) Relation (1) holds. (i) x is a solution of the game G if and only
if (x, yo) is a solution of the linear program

Rx +ye<l, x=20, y= maximum.

Proof. Assertion (i) follows from the fact that condition (i) of Theorem 1 is
satisfied. To prove assertion (ii), let us take into account that for x € E, we have

min E.{ ) ¢;x; — Y o Y ayx; — b)*} =Y vix; — Zvi(Za., xj— B)T.
Fe¥  j=1 =1 j=1 i=1 i

i=1

The rest of the proof is the same as in Theorem 2.
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Theorem 3 and its Corollary also hold true with R in the place of Q.

9. It is possible to modify the above results for the case where ry) = 0for y = 0
and r{y) > 0 for y # 0, which corresponds to the relation Ax = b at the place of
Ax £ b in the initial linear program. Then Theorem 1 remains true; if ryy) =
=vyt +wy ,v;>0, w,>0, i=1,...,m, and all the other assumptions are
unaltered, then Theorem 2 holds true with J and k in the places of Q and k, where

d,j= —v; + z via;; + )y (Uili —w(l = 4))ay; “.E wid;;,

iel, ieJy ieK,
Ev = Z v,f; + Z (viliﬂg - Wi(l - '1;') ﬁlz') - Z wiBi,
iel, ieJ, ieKy
and so on.
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Resumé

O MINIMAXOVEM RESEN{ ULOHY STOCHASTICK EHO
LINEARNIHO PROGRAMOVANI

JirkA ZAEKOVA, Praha

Obsahem cldnku je vySetfovdni dlohy stochastického linedrniho programovéni
a jejiho FeSeni jakoZto strategické hry. V prvych paragrafech je tato loha formulova-
na a pro uvazovanou hru je dokdzdna véta o minimaxu (véta 1). V dalSich paragrafech
se studuji metody feSeni. Ve vétdch 2, 4 a 5 je dokdzdno, Ze minimaxové feSeni ilohy
stochastického linedrniho programovdni je v nékterych dileZitych specidlnich pfi-
padech ekvivalentni fe§eni ulohy linedrniho programovéni (v&t$i dimense). Podminky
pro existenci kone¢ného feseni jsou uvedeny ve vété 3.
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Pesome

O MMHHMMAKCHOM PEIMIEHHMU ITPOBJIEMBI CTOXACTUYECKOI'O
- JIMHEMHOT'O IMMPOTPAMMMPOBAHUA

MIUTKA XAUYKOBA (Jitka Zatkova), Ilpara

B Hacrosie# craThe H3y4aeTcs 3a/jaYa CTOXaCTHYECKOTO JMHEHHOTO MpOorpaMMu-
POBaHHMS H €€ PELICHHE C TOYKH 3PEHHS TEOPUM Urp. B mepBBIX oTHeNdx naHa mocra-
HOBKA 3aJJa4M, ¥ JJIsi BOSHUKIIEH O6CKOHEYHOM UTPHI IIOKa3aHa TEOpEMa O MUHMMAKCE
(TeopeMa 1). OcraybHbIe OTIEJBI MOCBSILIEHBI HCCIIEOBAHUIO pellieHus 3aqaun. J{is
HEKOTOPHIX BaXXHBIX YACTHBIX CIIyYaeB IMOKa3aHO (T€OPEeMBI 2, 4 ¥ 5), YTO MUHMMAKC-
HOE pelICHUE 3a/1aY¥ CTOXaCTHYECKOTr0 JIMHEHHOT O IPOrPaMMIPOBaHUS PABHOCWIBHO
PEIICHHO ONPEIe/ICHHOM 3aauH JIMHEHHOT 0 MporpaMMuUpoBanus (Goibieif pa3mep-
HOCTH). B Teopeme 3 uccirenyeTcs cyliecTBOBaHHe KOHEYHOTO PEIICHHS.
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