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Časopis pro pěstováni matematiky. roČ. 90 (1965), Praha 

ON THE G-STRUCTURE OF HIGHER ORDER 

BOHUMIL CENKL, Praha 

(Received June 19, 1963) 

To the G-structure of order r, defined in [2], [5], there is found an associat­
ed M-valued tensor and a canonical representation of a subgroup G of the 
group Ln (group of all invertible holonomic r-jets of Rn into R", with source 
and target 0) in a vector space M. 

1. We give here the fundamental definitions of a fibre bundle and principal fibre 
bundle from the standpoint used throughout this paper. 

Definition. A space E(B, F, G, p, H) is called a differentiable bundle, if 

a) E, B, F are differentiable manifolds. The space B is called the base and F is 
called the fibre. The Lie group G is a left effective transformation group on a manifold 
F, so that a mapping rj :G x F -* F has the following properties: 

(i) r\ is a differentiable mapping, 
(ii) r\(e, y) = y, e the unit of G, 
(iii) r\(g2gx, y) = r{(g2, r\(9\y))\ gi> g2eG, yeF. The group G is called the struc­

tural group. 

b) There is an equivalence relation R defined on E such that B = E/R. The natural 
projection p : E -» B is a differentiable mapping. Each space Fx = p~1(x) is called 
a fiber over x e B. 

c) For an arbitrary neighborhood U on B there exists a mapping $v : U x F -+ 
-* p~~i(U) (a differentiable homeomorphism) such that (po <Pv)(x, y)'=- x. If U, V 
are neighborhoods on B with U n V # 0 then $yl$ve G. For an arbitrary point 
x 6 B9 let $£ be a mapping <PV : {x} x F -> p~ *(x), and H* the set of all mappings $£ 
with fixed x e J5; H = U Hx. 

xeB 

Definition. A space H(B, G, G, p, H) is called a principal differentiable fibre bundle 
if if is a fibre bundle with a fibre G. The group G is then a group of transformations 
onto itself. 

Definition. Let E(B9 F9 G,p9 H) be a fibre budle. A frame of £ at a point xeB 
is a differentiable homeomorphism of the fibre onto; i.e., an element h = 4>u o g9 

where #£ is a differentiable homeomorphism of {x} x F onto p~l(x) and geG. 
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The definition of a frame is evidently independent of the choice of the neighborhood U 
of x 6 B. Let £ be the set of all frames of E at points x e B. Define now the differen-
tiable homeomorphisms 

0V : U x G ~> £ , ^ ( x , g)=* $x
vog , x e B , geG . 

It is evident that £ is a principal differentiable fibre bundle. We shall speak about 
the associated principal fibre bundle. 

2. Suppose Vn and Vm are two differentiable manifolds of the dimension n and m 
respectively. Let f be a C00 mapping of a neighborhood of a point x e Vn into Vm. 
Let C*(Vn, Vm) be the set of points (f x), fbeing a C00 mapping of a neighborhood of 
the point x e Vn into Vm. Two points (f x) and (g, x) are said to be r-equivalent if the 
functions f and gt determining the mappings f and g in the coordinates, have equal 
partial derivatives of order s(l ^ s ^ r) at x e Vn.The set of all thess r-equivalence 
classes of the elements Cr(Vn, Vm) will be denoted by Jx(Vm Vm). The class jrfdetermin-
ed by an element (f x) e Cr is called an r-jet. Set Jr(Vn, Vm) = U Jr

x(Vn9 Vm). Let 
xeVn 

Hr(Vn) be the set of all invertible r-jets of Rn into Vn with source 0 E Rn. The set of 
r-frames H^V,,) of the manifold Vn is a fibre bundle, and is called a principal pro­
longation of order r of the manifold Vn. The structural group of Hr(Vn) is a group Ln 

(group of all invertible r-jets of Rn into Rn with source and target 0 e Rn). A fibre 
bundle associated [9] with the principal bundle Hr(Vn) is said to be a prolongation 
of order r of the manifold Vn. 

For each point x0 G Vn let «s/+(x0) be the system of C00 functions whose domain 
is an open subset of Vn containing x0 . Let $4c(x0) be the system of all functions 
of s/+(x0) which are constant on some neighborhood of x0. Finally, let «a/(x0) be the 
subsystem ofjtf+(x0) consisting of functions which vanish at x0. It is evident that every 
function / + es/+(x0) can be expressed uniquely in the form f+ =fc 4-f, fce 
ejtfc(x0), fejtf(x0). Let ^ r + 1(x0) be the system of all sums of products of r + 1 
elements from s/(x0). 

Definition. A tangent vector of order r at a point x0 of the manifold Vn is a linear 
mapping X : s/+(x0) -» R which vanishes on sic(x0) and on j2/r+1(x0). 

Let (x1,..., xn) be a coordinate system on Vn at a neighborhood of a point x0 = 
= (xj,.. . , x0). Then each tangent vector of order rX at x0 can be written in the 
form 

* = t E T - T - V ; * l ~ *o)kl • •. (*n - *0)*«} dJ 
jJi k1 + ..f+to.-y kx\ ...kn\

 v u/ ' (dxl)kl... (dxny» 
ki*0,...tkn*0 \ / \ / 

Let Tr = Tx(Vn) be the system of all tangent vectors of order r at a point x of the 
manifold Vn. Set T0(R

n) = Fr. If (*\ ..., f) is a coordinate system at OeR* then 
evidently 

_J__(/ .. ) 
k1\...kn\\(8t1)k'...(dt»)k»J0 
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are linearly independent vectors. The points 

are not linearly independent, but it is possible to choose from them a basis of Fr. 
We now wish to obtain the coordinate expression for the transformation of the 
vectors dai...ak if the coordinate are transformed as follows: f' = ha'(tx,..., tn), 
0 = h*'(0,..., 0). There results the following transformation 

i 

(2-1) don...ai = L^«i'...«k' L, K\..Mj'"Kjk + ... + j +1...,«|J 
k = l i i + ... + Jk=i ' * 

i = 1,2, . . . , r , 
where 

*-• = I ( õ *' \ 
ßl-ßs s\\дť>>...дť>*)0 

It may be verified that {(dsh*'jdtfii... Btfis)0} is an element of the left transformation 
effective group En on Fr. Then the following proposition holds. 

Proposition. An Er = (J Tr has the structure of a fibre bundle with the basis Vttr 
xeVn 

structural group En and fibre Fr. The space Hr(Vn) is a principal bundle associated 
with Er. 

Proof. Let (f1,..., tn) be a coordinate system in the neighborhood Vof the point 0 
on Rn and let (x1,..., x") be a coordinate system in a neighborhood U of x0 on Vn. 
Let x* = f*(t\ ..., f); a = 1, 2,..., n; x0 = /a(0) be a mapping / of V into U. We 
have then 

(-•2) a....... =£a,....fc Z ft^-fX; 
fc=l . Jl + . . . + J k = t 

'•'•2 f: <-4(ra=:)0 
But z = {(dsf^ldfl ... df*)0}\ 1 = s = r; a, j8 = 1, 2,.. . , n is an element of Hr(Vn) 
over a point x0 = (xj, . . . , x?). From (2.2) follows that z is a mapping z :Fr -+ 
-* £r, z :t] -» zrj and that (za) rj = z(afy) = zarj eEr, ae Ln. 

Each tangent vector space Fs of order s; 1 <J s <i r, is a subspace of F s + 1 and is 
invariant under the transformations of En on Fr. But each point of Fs is not invariant 
under this transformation. Let Ns be a subgroup of Un leaving each point of Fs 

fixed. Then we may identify Gs = CJNS with Ln. Let Hr/Ns be the coset space by the 
subgroup Ns. We now consider two fibre spaces Fr,1(Vn, F1, L1, Hr/Nt) and 
E\V„F\LlH*). 
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Proposition. The fibre bundles ErA and E1 are equivalent. 

Proof. The associated principal bundles H1 and HrjNx are equivalent by [4]. 
Then the bundles ErA and El are equivalent. 

We shall now define an sr-form on the manifold as an element of the dual space 

to AT;. 

Definition. A differential s-form co of order r on a manifold Vn (abbreviated to 
s 

vform) is> for each x e Vn, a linear mapping of a vector space /\Tr into R such that 

a) co(X A ... A X) = sgnaco(K A ... A X), X,X,...,XeTr; 
a(l) a(s) 1 s 1 2 s 

b) co^a^X A ... A al
s
sX) = a[l ... al

s
sco(X A ... A X); 

»i is h is 

c) co depends differentiably on x e Vn. 

An Or-form is a differentiable function on Vn. It is clear that in natural manner one 
may define the sum of sr-forms and the product fco with a differentiable function / 
on Vn. The exterior product cox A CO2 of a wr-form cox and a tv-form co2 is a (u -F v)r 

-form defined by the formula 

COj A C02(X A . . . A K A K A . . . A K ) = 
1 u u+1 u+v 

= X S g T i a COt(X A ... A X)0)2( X A . . . A X ) . 
a (u 4- v)! a( l ) fl(ii) a(u+l) a(u + v) 

Let (x1,..., x") be the coordinates of a point x in the neighborhood U on Vn. We 
now have linearly independent vectors X(

k
j^ kn = djl(dxx)kl ... (3x")kn at x. Denote by 

!̂i!..jfcM
 t u e vector field which assigns to each point x the vector Xkl%kn. Then define 

linear operators a\)]"hn
9 ht -F ... + hn = i, by 

«(J)',l,n^..kn = <^ .± ; 1 -= h j s£ r ; ki + ... + kn=j. 
r 

The lr-form co can then be written in U in the form co = £ îi!..ftn
ac/rfcn> ^!../,n being 

1=i 
the functions on U, c0(XĴ ##ftn) = #£{*..&„. If M is a vector space, define an M-valued 

s 

sr-form to be a linear mapping of /\Tr into M such that the above mentioned condi­
tions are satisfied. It is clear that the operations defined for the sr-forms may also be 
defined for the M-valued sr-forms. 

Note. Si-forms are called s-forms. For such forms the exterior differential is 
defined. 

3. At this point we wish to consider the tensor associated with the M-valued 
srform co defined on H(V„, G). We know that Hr(V„) is a set of isomorphisms of 
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TQ(RK) onto Tr(Vn) for each x e Vn. If we consider vectors of the first order only, we 
see that Hr(Vn) is a set of isomorphisms of TQ(RU) onto T*(Vn). We know that Hl(Vn) 
is a set of isomorphisms of TQ(RH) onto T*(Vn), we have then an equivalence relation 
on Hr(Vn). The coset space HrjNx is then equivalent with H1. We shall identify Hl 

with HrjNv One can then define a fundamental 1-form on Hr(Vn) [2]. It is not 
difficult to prove the 

Theorem. Let G be a subgroup of lLn. Let H(Vn, G) be a principal fibre bundle, 
a subbundle of Hr(Vn), and let a) be a fundamental A-form on H. The M-valued 
s-forms A on H of type £f(G) are one-to-one correspondence with the tensors tA 

s s 

on H with values in M ® /\Rn* of type Q(G), where q{g) = ¥(g) ® A^g" 1 ) -
s 

The tensor associated to the form A is defined by A = (tA) (/\co). 9> is a represent­
ation of G on the vector space M, and M is a representation of lLn on the vector 
space Rn. 

Let y be a canonical projection of Cn onto CJNl = Ln, and 35 a canonical represent­
ation of Ln on Rn; then 0t = 95 o y is a canonical representation of Em on Rn. Let M be 
a canonical representation of the Lie algebra Un of En on £?(Rn) given by the repre-
centation @t. 

A special affine connection of order r on a manifold Vn is an infinitesimal connec­
tion on the principal fibre bundle Hr(Vn) [6]. Suppose n to be an L^~valued /1-form 
of the connection on Hr(Vn). Let a> be a fundamental .A-form on Hr, i.e. an Revalued 
1-form co defined by the formula CO(TZ) = z""1 . pxz e Rn, xz being the tangent vector 
to Hr at a point z e Hr. The 1-form a> is a tensorial form. 

Note. Let M and P be two vector spaces. Let # (or q>) be an £?(M, P) = P ® M* 
(or M)-valued vector form on Vn. The P-valued form <P . <p is defined by the formula 
0 . cp = X <f>" A q>A ® fa(eA), ^ = <P* ® fa, q> = ^ ® e^. 

The torsion form of the special affine connection of order r is a 2-form I = Vco. 
On the basis of the note mentioned above we can write I in the form I = dco -F 
-F Sp(7t) CO. 

4. In this part we shall study in detail the subspacc of Hr(Vn). 

Definition. Let G be a subgroup of En. A G-structure of the order r is the set H(Vn,G) 
of all the r-frames of the manifold Vn. 

In the case r = 1 we obtain the well known G-structure [2]. We shall prove that 
the G-structure of order r on Vn gives rise to an invariant tensor on a principal fibre 
bundle H with values in certain vector space, and that a canonical representation 
of UB on this vector space can be defined. 

Let n be a form of the infinitesimal connection on a principal fibre bundle if. 
Because j? is a representation of the Lie algebra L£ on a vector space &(Rn) we have 
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an RH ® Rn* - valued 1-form 3t(n) on if. Let {eQ} be a basis of G and {et} a basis 
of R*. Then the torsion form Z can be written as 

Z = dco + a?(7c) co = dco + (TI* ® 3f(gtf)) (a>f ® et) = (#(e t f) ef) ® nQ A o>e", 

ct) being the fundamental 1-form on If. Then Z is an Revalued 2-form on H. If Sf 
2 

is a representation of the group JLn on P, £f(l) = ^(/) ® f\$(rl\ leEn> tZ is 
2 

a tensor (associated to the form Z) with values in P = Rn ® A#n* of type ^(G). 
Let two connections ri9 n on H be given. Let I", £ be their torsion forms. The 

i-form u = 7i' — n is a G-valued 1-form on if of type adj. The tensor tu = £ 
associated with the form u is defined on H and has values in the vector space N = 
= G ® Rn*. It is of type 58(G), where 35 is a representation of Lr

n on Q = L̂  ® Rn*, 
25(/) = a d i (0 ® ^ ( r l )> ' e £).• L e t u s consider the vector space K = Rn ® R** ® 
® R** and a mapping ^ of Q into K defined as follows $ : g ® a -*• J?(g) ® a, 
L̂  3 g, a e Rn*. Further, let V* be a representation of the group IT,, on K, f (/) = 
= adj »(t) ® ^ ( r 1 ) , / G Lr„. It is easy to see that @ o S5(/) = ^(/) o <#, / e Lr

n. 

In chosen local bases of G and Rn we can write u = ue ® ee, u
c = (ft/),.. a/ = £fcol 

and then u = ^ s e ® co\ We have further #(u) = g(eQ) £? ® a/ = aj^fe; ® 
® cok ® cof, if ^(ee) == a^e,- ® cok. ${u) is an element of the vector space W = 
= 8S(N) • W is invariant under the transformations of ^(G), but not pointwise. 
Now let us consider the representation 9* of En on P. If {et} is the basis for Rw, let 
{co1} be the dual basis of Rn*. A mapping s/ : K -> P is defined by «s/ : A } ^ ® cô  ® 
© coK ~> i(A^. - A}K) ex ® co-' A a>* so that J / o ir(j) = :^(/) o s/91 e Lr„. As Wis inva­
riant under the transformations of ^(G), we have sd © ^(g) = ^(g) o ^ a G G. 
The space V ~ s4(W) is then invariant under the transformations of £f(G). Then we 
have the Revalued 2-form stf@l(u) of type @t(G). It is an element of the vector space 
V=s/(W) and the equality Z1 - Z = sfSt(u) holds. 

Let M = P/Vbe a vector space and a the canonical projection P -> P/N. Let g be 
a representation of G on M defined by Q(g) © a = a o ^(g), gfeG. Now we have the 
M-valued function ts = a © *£ on if. But we know that a o fl" = a o tZ. The function 
is then independent on the choice of the infinitesimal connection on H. We have 
also t5(zg) = g(g-1) rs(z)- Then ts is an M-valued tensor on H of type Q(G). All 
these results are included in the 

Theorem. Let G be a Lie group, a subgroup of ILn. The representation Q defined 
by the relation Q(g) o a = a ° ^ ) , g^G9 is a canonical representation of G on 
a vector space M. 

To the G-structure of the order r on Vna tensor tson H with values in M of type 
Q(G) is assigned. This tensor is called the G-structure tensor. 

It is easy to verify that the tensor ts defined above is, in the case r = 1, the structure 
tensor defined in [2]. 
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У^1аЬ 

ТЕЫ80К 0-8Т1Ш1СгаКУ г-ТЁНО М о и 

(Вон^МI^ С Е Ы ^ , Ргапа) 

ВисГ Пп го2§1геп1 МёЬо гаёи Нпеагш §гиру ^п. ВиоГ О Неоуа рос^гира §гиру Еп. 
ПЪгоуап^ роёрго8{ог Н{УЮ С) ЫаупШо ргод1ош:еп1 г-1ёЬо гади Я г уапе1у V,, 
паг^уате 0-81;гикШгои г-1ёио гМи па уапе1ё Vп. К 1ак1о ёейпоуапё &1:гик1:иге па 
уапегё Vп е̂ ^еёпогпаспё рпгагеп уек1:огоуу рго$[ог М а пакгепа капотска герге-
&еп!;асе ^ §гиру С V М. Ке 0-$1гик1;иге ]е па1егеп 1епгог 18 па Я 8 иос1по1агш у М 
1ури ^(0). 

Резюме 

ТЕНЗОР С-СТРУКТУРЫ г-ГО ПОРЯДКА 

БОГУМИЛ ЦЕНКЛ (ВопитП СепкЦ, Прага 

Пусть Д. — расширение г-го порядка линейной группы ^п. Пусть С — под­
группа Ли группы Д.. Расслоенное подпространство Н(уп9 С) главного продол­
жения г-го порядка Нг многообразия Vп мы называем С-структурой г-го порядка 
йа многообразии Vп. Определенной таким образом структуре на многообразии 
Vп ставится в однозначное соответствие векторное пространство М и найдено 
каноническое представление ^ группы С в М. Для О-структуры найден тензор 1а 

на Я с значениями в М типа .0(0). 
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