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ON THE G-STRUCTURE OF HIGHER ORDER

BoHuMIL CENKL, Praha
(Received June 19, 1963)

To the G-structure of order r, defined in [2], [5], there is found an associat-
ed M-valued tensor and a canonical representation of a subgroup G of the
group L] (group of all invertible holonomic r-jets of R" into R", with source
and target 0) in a vector space M.

1. We give here the fundamental definitions of a fibre bundle and principal fibre
bundle from the standpoint used throughout this paper.

Definition. A space E(B, F, G, p, H) is called a differentiable bundle, if

a) E, B, F are differentiable manifolds. The space B is called the base and F is
called the fibre. The Lie group G is a left effective transformation group on a manifold
F, so that a mapping  : G x F — F has the following properties:

(i) = is a differentiable mapping,
(ii) n(e, y) = y, e the unit of G,

(i) n(g,91, ¥) = n(g2,1(91¥)); 91, 92 € G, y € F. The group G is called the struc-
tural group.

b) There is an equivalence relation R defined on E such that B = E/R. The natural
projection p : E — B is a differentiable mapping. Each space F, = p~'(x) is called
a fiber over x € B.

¢) For an arbitrary neighborhood U on B there exists a mapping &, :U x F -
— p~!(U) (a differentiable homeomorphism) such that (po @) (x, y) = x. f U, V
are neighborhoods on B with U n V % @ then &, '®, e G. For an arbitrary point
x € B, let &, be a mapping @y, : {x} x F - p~!(x), and H, the set of all mappings &,
with fixed xe B; H = | H,.

xeB

Definition. A space H(B, G, G, p, H) is called a principal differentiable fibre bundle
if H is a fibre bundle with a fibre G. The group G is then a group of transformations
onto itself.

Definition. Let E(B, F, G, p, H) be a fibre budle. A frame of E at a point x € B
is a differentiable homeomorphism of the fibre onto; i.e., an element h = &7 0 g,
where @7 is a differentiable homeomorphism of {x} x F onto p~!(x) and g€ G.
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The definition of a frame is evidently independent of the choice of the neighborhood U
of x € B. Let E be the set of all frames of E at points x € B. Define now the differen-
tiable homeomorphisms

&,:UxG-E, Dy(x,9) = P09, xe€B, geG.
It is evident that £ is a principal differentiable fibre bundle. We shall speak about
the associated principal fibre bundle.

2. Suppose V, and V,, are two differentiable manifolds of the dimension n and m
respectively. Let f be a C* mapping of a neighborhood of a point x € V, into V,,.
Let CY(V,, V,,) be the set of points (£, x), f being a C* mapping of a neighborhood of
the point x € ¥, into V,,. Two points (£, x) and (g, x) are said to be r-equivalent if the
functions f; and g, determining the mappings f and g in the coordinates, have equal
partial derivatives of order s(1 < s < r) at x € V,. The set of all thesz r-equivalence
classes of the elements Cy(V,, V,,,) will be denoted by J(V,, V,,). The class j, f determin-
cd by an element (f, x) € Cy, is called an r-jet. Set J'(V,,, V) = U JYV,, V,). Let

xeVn

H'(V,) be the set of all invertible r-jets of R" into ¥, with source 0 € R". The sct of
r-frames H'(V,) of the manifold V, is a fibre bundle, and is called a principal pro-
longation of order r of the manifold V,. The structural group of H'(V,,) is a group L,
(group of all invertible r-jets of R” into R" with source and target 0 € R"). A fibre
bundle associated [9] with the prmmpal bundle H'(V,) is said to be a prolongation
of order r of the manifold V,.

For each point x, € ¥, let &/ *(x,) be the system of C* functions whose domain
is an open subset of ¥, containing x,. Let &#%(x,) be the system of all functions
of &/ *(x,) which are constant on some neighborhood of x,. Finally, let &#(x,) be the
subsystem of & *(x,) consisting of functions which vanish at x,. It is evident that every
function f* e o/ *(x,) can be expressed uniquely in the form f* = f¢ + f, fCe
€ #(x,), fe H(xo). Let " (x,) be the system of all sums of products of r + 1
elements from 2/(x,).

Definition. A tangent vector of order r at a point x, of the manifold V, is a linear
mapping X : & *(x,) = R which vanishes on o#(x,) and on & !(x,).

Let (x*, ..., x") be a coordinate system on ¥, at a neighborhood of a point x, =
= (xgs ..., Xp). Then each tangent vector of order rX at x, can be written in the
form

- o
—— X{(x* = x) (" = X)) ——————————.
wrkn=j kgt k! ( o - o) }(Bxl)"‘ o (Oxmyen

Let T} = Ty(V,) be the system of all tangent vectors of order r at a point x of the
manifold ¥,. Set Tg(R") = F". If (¢%,...,1") is a coordinate system at 0 € R" then
evidently

1 o'

ky! ... k! ((a:l)'"...

(3t")"”>o
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are linearly independent vectors. The points

k
aa,...ak=_l— '—_?__ 5 k=l,2,...,r,
‘ k' \or*...0t™ ],

are not linearly independent, but it is possible to choose from them a basis of F'.
We now wish to obtain the coordinate expression for the transformation of the
vectors 0, , if the coordinate are transformed as follows: 1 = (e, .., 1),
0 = h*(0, ..., 0). There results the following transformation

i

_ a1’ @’k .

(2'1) aa;...a; - aal’...ag' Z hax...ajl hajl+...+_/k_'+l...,ap
k=1 Jit..tjk=i

i=12,...,r,

S VA
Pobe = g\ aPr .. aP )

It may be verified that {(8°h*'/d¢*t ... 61%%),} is an element of the left transformation
effective group L, on F". Then the following proposition holds. '

where

Proposition. An E" = \J T has the structure of a fibre bundle with the basis V,,

xeVn

structural group L, and fibre F'. The space H'(V,) is a principal bundle associated
with E'.

Proof. Let (¢!, ..., ") be a coordinate system in the neighborhood V of the point 0
on R" and let (x', ..., x") be a coordinate system in a neighborhood U of x, on V.
Let x* = f*(t', .., "); a = 1,2,...,n; x§ = f%(0) be a mapping f of Vinto U. We
have then

i
(2'2) aal...a‘ =k§18ﬁ1.-.ﬂk Z ..f:lpll...ajl b f:.p,;g 7

Jita.tjx=i

s £B
i=1,2,...,r; fc‘i...a.= 1<—L)
0

st \ o™ ... 0t

But z = {(&°f?/or ... 0r*)o}; 1 S s < r; o, B =1,2,...,n is an element of H'(V,)
over a point xo = (X, ..., xJ). From (2.2) follows that z is a mapping z : F* —
— E', z:n — zn and that (za) n = z(an) = zane E", ae L],

Each tangent vector space F* of order s; 1 £ s £ r, is a subspace of F**! and is
invariant under the transformations of L, on F'. But each point of F* is not invariant
under this transformation. Let N, be a subgroup of L, leaving each point of F*
fixed. Then we may identify G° = L,/N, with L. Let H"/N be the coset space by the
subgroup N,, We now consider two fibre spaces E™'(V,, F', L., H/N,) and
E\(V,, F', L,, H").
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Proposition. The fibre bundles E™' and E' are equivalent.

Proof. The associated principal bundles H' and H'/N, are equivalent by [4].
Then the bundles E! and E' are equivalent.

We shall now define an s,-form on the manifold as an element of the dual space
to ATy
Definition. A differential s-form w of order r on a manifold V, (abbreviated to

s,-form) is, for each x € ¥, a linear mapping of a vector space AT; into R such that

a) o XA...AX)=sgnaw(X A...AX), X,X,..,XeTy
a(1) a(s) 1 s 1 2 s
b) w(@aiX A ... A a¥X) =al'...ako(X A ... A X);
l.vl is l'l i;

¢) w depends differentiably on x € V,.

An 0-form is a differentiable function on V,. It is clear that in natural manner one
may define the sum of s,-forms and the product fw with a differentiable function f
on V,. The exterior product w; A o, of a u,-form w; and a v,-form w, isa (u + v),
-form defined by the formula

O A0(XA L AXAXA .. AX)=
1 u u+1 utv

=Y end o XA AX)o( X Aon X))
a (u + U)' a(1) a(u) a(u+1) a(u+v)

Let (x', ..., x") be the coordinates of a point x in the neighborhood U on V,. We
now have linearly independent vectors X{° , = @//(dx')* ... (8x")* at x. Denote by
X .. the vector field which assigns to each point x the vector X{” , . Then define

linear operators ag};™™, hy + ... + h, = i, by

Biowhin v (i hyowin . . ) .
ags Xl(c{?..k,. =6ammsy 2L, jSr; kiy+...+k,=].

r

The 1,-form o can then be written in U in the form o = _Zldi,(,’lf",,”a'('}i“"", o), being
» 'l=

the functions on U, &(X{” ) = &5 , . If M is a vector space, define an M-valued

hl...hn'
S

s,-form to be a linear mapping of ATy into M such that the above mentioned condi-
tions are satisfied. It is clear that the operations defined for the s,-forms may also be
defined for the M-valued s,-forms.

Note. s,-forms are called s-forms. For such forms the exterior differential is
defined.

3. At this point we wish to consider the tensor associated with the M-valued
sy-form  defined on H(V,, G). We know that H'(V,) is a set of isomorphisms of
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o(R") onto T{(V,) for each x e V,. If we consider vectors of the first order only, we
see that H'(V,) is a set of isomorphisms of Tg(R") onto T3 (V,). We know that H'(V,)
is a set of isomorphisms of Tg(R") onto T;(V,), we have then an equivalence relation
on H'(V,). Thé coset space H'/N, is thea equivalent with H'. We shall identify H'
with H'/N,. One can then define a fundamental 1-form on H"(¥,) [2]. It is not
difficult to prove the

Theorem. Let G be a subgroup of L,. Let H(V,, G) be a principal fibre bundle,
a subbundle of H'(V,), and let w be a fundamental A-form on H. The M-valued
s-forms A on H of type &(G) are one-to-one correspondence with the tensors tA

on H with values in M ® AR of type o(G), where ¢(g) = ¥(9) ® AZ(g™").

The tensor associated to the form A is defined by A = (tA) (/\a)). & is a represent-
ation of G on the vector space M, and & is a representation of L, on the vector
space R".

Let y be a canonical projection of L, ont> L, /N, = L,, and B a canonical represent-
ation of L, on R"; then £ = DB oy is a canonical representation of I, on R". Let £ be
a canonical representation of the Lie algebra L] of L, on #(R") given by the repre-
centation #.

A special affine connection of order r on a manifold V, is an infinitesimal connec-
tion on the principal fibre bundle H'(V,) [6]. Suppose n to be an L]-valued A-form
of the connection on H'(V,). Let o be a fundamental A-form on H",i.e. an R™valued
1-form o defined by the formula w{t,) = z7'. pr, € R", 1, being the tangent vector
to H" at a point z € H". The 1-form w is a tensorial form.

Note. Let M and P be two vector spaces. Let & (or ¢) be an #(M, P) = P @ M*
(or M)-valued vector form on V,. The P-valued form & . ¢ is defined by the formula

D.0=Y P N0 ® fie 2 =R f 0 = 90" ® e,
a, A

The torsion form of the special affine connection of order r is a 2-form ¥ = V.
On the basis of the note mentioned above we can write X in the form £ = dw +
+ %(n) o.

4. In this part we shall study in detail the subspace of H'(V,,).

Defiinition. Let G be a subgroup of L,. A G-structure of the order r is the set H(V,,G)
of all the r-frames of the manifold V.

In the case r = 1 we obtain the well known G-structure [2]. We shall prove that
the G-structure of order r on V, gives rise to an invariant tensor on a principal fibre
bundle H with values in certain vector space, and that a canonical representation
of L, on this vector space can be defined.

Let & be a form of the infinitesimal connection on a principal fibre bundle H.
Because 4 is a representation of the Lie algebra L; on a vector space .#(R") we have
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an R" ® R™ — valued 1-form %(n) on H. Let {¢,} be a basis of G and {e;} a basis
of R". Then the torsion form X can be written as

I=do + Z(n)w = do + (1° @ %(c,) (o' @ €)) = (Zie,) &) ® 1° A 0,
 being the fundamental 1-form on H. Then X is an R"valued 2-form on H. If &
2
is a representation of the group L, on P, #(I) = () ® AR(I""), leL,, X is
2

a tensor (associated to the form X) with values in P = R" ® AR™ of type #(G).

Let two connections n’, = on H be given. Let 2’, X be their torsion forms. The
|-form u = 7' — #n is a G-valued 1-form on H of type adj. The tensor tu = ¢
associated with the form u is defined on H and has values in the vector space N =
= G @ R™. It is of type B|G), where B is a representation of L, on Q = L, ® R™,
B(l) = adj (I) ® #(17"), l e L,. Let us consider the vector space K = R® ® R" ®
® R" and a mapping # of Q into K defined as follows #:g ® a — .5?(3) ® a,
Liag, 2€ R™. Further, let ¥~ be a representation of the group I, on K, ¥ () =
= adj #(l) ® #(17"), le L,. It is easy to see that Bo B(l) = ¥ (I)- B, le L,.

In chosen local bases of G and R" we can write u = u® ® &,, u® = (tu°); o' = &o'
and then u = &%, ® w'. We have further #(u) = Re,) & @ ' = af,t%; ®
Q@ o* ® o', if Re,) = al,e; ® w*. B(u) is an element of the vector space W =
= %(N). W is invariant under the transformations of 77(G), but not pointwise.
Now let us consider the representation & of L, on P. If {e;} is the basis for R”, let
{w'} be the dual basis of R*. A mapping & : K — P is defined by o : Ajxe, ® 0’ ®
® of > $(Ag; — M) e; ® 0 A wFso thatst o ¥ () = P(I) o o, 1 € L. As Wis inva-
riant under the transformations of ¥(G), we have o ° ¥(g) = ¥{g) - «, g€G.
The space V = /(W) is then invariant under the transformations of &(G). Then we
have the R™valued 2-form &/ %u) of type %(G). It is an element of the vector space
V = /(W) and the equality 2’ — Z = o/%(u) holds.

Let M = P/V be a vector space and a the canonical projection P — P/N. Let g be
a representation of G on M defined by o(g) > & = a - #(g), g € G. Now we have the
M-valued function ts = a o tX on H. But we know that a o t2’ = o o tZ. The function
is then independent on the choice of the infinitesimal connection on H. We have
also t(zg) = o(g™") t(z). Then ¢, is an M-valued tensor on H of type o(G). All
these results are included in the

Theorem. Let G be a Lie group, a subgroup of L,. The representation ¢ defined
by the relation o(g) o o = ao #(g), g €G, is a canonical representation of G on
a vector space M.

To the G-structure of the order r on V, a tensor t, on H with values in M of type
o(G) is assigned. This tensor is called the G-structure tensor.

It is easy to verify that the tensor ¢, defined above is, in the case r = 1, the structure
tensor defined in [2].
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Vytah
TENSOR G-STRUKTURY r-TEHO RADU

(BonuMiL CENKL, Praha)

Bud L, rozsifeni r-tého fadu linearni grupy L,. Bud G lieova podgrupa grupy L.
Fibrovany podprostor H(V,, G) hlavniho prodlouZeni r-tého fadu H, variety ¥,
nazyvame G-strukturou r-tého fadu na varieté V,. K takto definované struktufe na
varieté V, je jednoznaéné pfifazen vektorovy prostor M a nalezena kanonicka repre-
sentace ¢ grupy G v M. Ke G-struktufe je nalezen tenzor ¢, na H s hodnotami v M

typu ¢{G).
Pe3rome

TEH30P G-CTPYKTVPBI r-I'O IIOPAJKA

BOI'YMUIJI LEHKIJI (Bohumil Cenkl), Ilpara

Mycts L, — pacumpenue r-ro nopsyaka juHeitnoit rpynnsl L,. Ilycts G — nog-
rpynna Jlu rpymmst L,. Paccioennoe nognpocrpanctso H(V,, G) rmasHoro mponod-
)KeHus r-ro mopsiaxa H” MmaorooGpa3sus V, Mbl HaszbBaeM G-CTPYKTYpOii r-ro mopsiaka
Ha MHOrooOpasuu V,. OnpeneseHHON TakuM 00pa3oM CTPYKTYpe Ha MHOroo6pas3uu
V, cTaBUTCA B OJHO3HAYHOE COOTBETCTBHE BEKTOPHOE MPOCTPAHCTBO M H HaiileHO
KaHOHHMYECKOe MpeAcTasienue ¢ rpymnsl G B M. s G-CTpyKTYpBI HaiieH TEH30D ¢,
Ha H c 3savenusiMu B M tuna ¢(G).
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