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Casopis pro p&stovani matematiky, ro€. 88 (1963), Praha

MULTIPLE FOURIER INTEGRAL

JAN KUCERA, Praha
(Received December 18, 1961)

In the present paper the Fourier integral for a complex function of several
real variables is defined and some criteria for its convergence are presented.

INTRODUCTION

All the convergent integrals, which occur in this paper, will be Lebesgue integrals,
unless otherwise stated. The r-dimensional Euclidean space (where r is a positive
integer) will be denoted by E,. For any set M < E,, the symbol L(M) represents the
set of all complex functions f, which are defined on the set M and have a convergent
Lebesgue integral [,,|f| dx. The boundary of any set M < E, will be denoted H(M).
The scalar product of points

X = (xl’ x2; sy xr) € Er’ y = (yl’ y2a‘"a yr)EEr

will be written (X, y) = X;¥; + X,¥2 + ... + X,¥, and the norm of x will be ||x| =
= /(x, x). Further, we shall use the symbols f* = max (f, 0), f~ = max (—f, 0),
for the positive, negative, part of a real function f, respectively. For the sum, product,
of a family of sets we shall use the Greek letter ) , [ |, respectively. Finally, the set of
all points x € M, where M < E,, which have a property P(x), will be denoted E(x € M;

. P(x)).

Definition 1. A real function f, which is defined on a set M < E,, will be called
monotone on the set M, if it is monotone (as a function of one variable) on every set
MANE(x€E,; x,=x5, 1Sk=r, k+i)),

for all points (x3, X3, ..., X0 1, X041 ..., x0)€E,_;and for i = 1,2,..., 7.
Definition 2. Let f be a complex function, which is defined on E, and satisfies either
of the following conditions:
I. feL(E,).
II. There exist functions f; (j = 1, 2, 3, 4) which are non-negative and monotone
on every closed octant ') and have the following properties: f = (fy— f2) + i(f3—f4)

1) Closed octant is each of the intervals I = E,, which is the Cartesian product of r intervals
either (— o, 0 or <0, + o).
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lim fi(x) =0( = 1,2, 3, 4). In the following we shall say that such functions f

llx|| =+ e

have property BV.
Then the integral

(1) <_1_>r ‘[ (J flu + x). 9 du) d¢, for xeE,,
2n Er \JE,

where the internal integral in case II is the improper Lebesgue integral and the external
integral is taken in the sense of Cauchy’s principal value,?) will be called the Fourier
integral of the function f.

Lemma 1. (Riemann-Lebesgue). Let —w0=<a < b <+o; o, fe{a, b); yeE,.
Let us distinguish two cases:
L If feL({a, b)), then

B

) lim j f(*)sin A(x — y)dx =0,
A+ g

uniformly with respect to a, 8, 7.

II. Let K < E, be a compact set and let the function g(x, t), which is defined for
xe(a, b), teK, form a family of equicontinuous functions f(x) = g(x, 1) on
(a, b) for t e K. Finally let a function ¢ € L({a, b)) exist such that |g(x, 1)] < ¢(x)
for x e (a, b), te K. Then

B
?3) lim J g(x, t)sin A(x — y)dx =0
A=+ )y

uniformly with respect to o, B, 7, t.

Proof. I See [1]. II. To prove this, let ¢ > 0 be given. Then there are real numbers
a;, b, such that a < a; < b, < b and

a

ay b
j || dx +J lpldx < e.
by

Further, there exists positive integer n such that the implication

%y = xgl < 2(by — ay) = lg(xs, 1) — g(x D) <
n 1 - 01

holds for x, , € <ay, by), tekK.

2y Cauchy’s principal value of the integral is

J.fdx= Hmj fdx.
E, 4>+ ﬁl<—4,4)

k=



If the set (o, f) N (a3, by) is empty, it is evident that

B
JA g(x, t) sin A(x — y) dx | <¢&;

@

in the opposite case let us divide the interval (o B) n (ay, b,) into n parts of equal
length by the points o (k = 0, 1, ..., n). Then

B a3 b
jg(x, {) sin A(x — 7) dx gj |<p1dx+j ol dx +
a by

a

n (473
+ 517 et = ot ) sin s =9 5 +
k=1 1) oy
+ 3 j g(oy, 1) sin A(x — y) dx| < & +
k=1 |J ey 1 — ay

n g n i 2
Zj sin A(x — )l dx + M .Y J‘ sinA(x—y)dx|<2t:+MnZ.
k=1 oy k=1 |J gy

Remark. If weputy =79 — /24 in (2) or (3), we get a similar lemma, where the
function sin x is replaced by the function cos x.

Lemma 2. Property BV is invariant with respect to a translation of the origin of
the Cartesian coordinate system of the space E,.

Proof. We can see this, if we translate the origin to the point (g, 0, 0, ..., 0), where
a > 0,and for j = 1,2; y € E,_, define the functions g;(x) in the following manner:

9fx1,¥) = fi{*x + a,y) for x; < —a,

9%, ¥) = f1(0, ) + 200, ¥) — f3_i(x; + a,y) for —a=x, =0,

9,(x1,¥) = fix1 + a,9) + (100, ¥) + £2(0, ¥) = fi(a, y) — fa(a, y)) (1 + x])~*

for x; =0. - ‘

Lemma 3. Let f be a function on E,, which has everywher"e the continuous deriva-
tive fy, .. .. >) and which has a Lebesgue integral on E,and lim f(x) = 0.
’ flxf|~+o
Then the function f has the property BYV. :
Proof. It suffices to prove this only for the real part of the function f. For x €

r
€[] <0, +o0) let us write
k=1

Fi(x) = j C Gam)t ©d, Fa(x) = f C Gamn) @ dc.
I {x,+ ) kEl<xk'+w)

k=1

%) We write f, =’f— £ if
X13X250ees Xr axr 3xr_1 ax1 ;
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The functions F; (j = 1,2) are evidently non-negative, monotone on the set

H(O +o)and lim Fyx) =0( = 1,22).

Ix||=+c0

F1(""F2(’°)=f o) © = G @06 =

= J. . thxz,...,x,.(f) dé = ('— l)rf(x) .

I (X, +0)
k=1

Let K;, K,, ..., K, be a sequence of all closed octants of E,. On each octant K,
(1=1,2,...,2") there are non-negative and monotone functions f; (j = 1,2)
such that lim f(x) = 0 (j = 1, 2) and f(x) = f1,(x) — fai(x) for x € K,.

x|l + >

For x e ) H(K;), let us put pf(x) = max fu(x) (j=1,2).
1=1 E(l;xeKy)

Let us choose an octant, for example K. If we denote, for brevity, Y(x) = @,(x) —
— f11(x), for x € H(K,), it is evident that the function F(x) = min [Y(0, x,, x3, ..., X,),
Y(x1, 0, X35 o o0y X,), oo Y(Xg, Xy -eny Xp-15 0)], where x € K, is non-negative and mo-
notone on the octant K;, lim F(x) = Oand for x € H(K,) is F(x) = ¢4(x) — f11(x)-

Ix]=+
xeK1

If we put f(x) .= fj; + F(x), for xe K, (j = 1, 2), then the identity f,(x) = f1(x) +
+ @4(x) — f11(%) = ¢;(x) (j = 1, 2) holds for x € H(K). If we define the functions
f;(G = 1, 2) on other octants in a similar manner, then the functions f; (j = 1, 2) have
the required properties. '

Definition 3. Let f be a complex function of r real variables. Then the difference
A;:f(X) = f(xh X35 eeey Xjo15 Xy + h, Xid1s eees xr) -
- f(XI, XZ, ooy xi_l, x,-, xi+1, ceey x,.)
will be called the difference of 1st order of function f in the point x with respect to the
i-th variable with the h distance (if the right-hand side is meaningful).
If we define the difference of n-th order A2 f(x), then the difference
A F ) = A A (%)

will be called the difference of (n + 1)-th order of the function f.4)

Lemma 4. Let (1’ 2 om ) be a permutation. Then

P1> P25 -5 P
Bl S = AR e £

Pz’

#) Usually the difference is defined in this manner: Let be x ¢ E,, h¢E,, then A,f(x) =
= f(x + h) — f(x). But the special case in which we demand that the point 4 ¢ E, has only one
coordinate different from zero is adequate here.
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The proof is evident.

Lemma 5. Let us have a vector h = (hy, h,, ..., h,) and a function f defined on the
interval f[ s Xy + M)

Then =

@ SerD =A@ T B S0+

. i,

1 r
_ ) A O+ AR, f(x)
(r = 1! ne=1; kel ) !
¥y

The proof can be carried out by induction.

Lemma 6. Let us have n positive integers iy, iy, ....0, (kS 1; k=1,2,...,n),
n real numbers h;, h,,, ..., h; and a point x € E,. Let M be a convex hull of points
(%15 X250 Xp)s (X1 X5 ey X g5 Xip + By X150 %) (K=1,2,..,n).
Let a function f have a partial deriuatwefxil iyeenry, O the set M.%)

Then there is a point é € M such that

A “h; f(x) = h;hph, ... hi,.fx,-l,xl-z,...,x,-n(f) .

11’ lz'

The proof follows with the successive use of the mean value theorem for functions
of one real variable.

Lemma 7. Let us have r real numbers hy, h,, ..., h, and a point x € E,. Let a func-
r
tion f have a finite derivative f,, ., . . €L(J) on theinterval J = [] {xy, X3 + hy).
k=1

(4 similar note about the points on H(J) applies here as in footnote®).)
Then

) h1 hz, T f(X) = jfx;,xz, (W) du .

The proof follows with the successive use of Fubini’s theorem.

Theorem 1. Let a function f, defined on E,, be either integrable on E, or have the
property BV. For x € E,, A > 0 let us write

©) Ti() = (;;) j " ( L,( Fu + x) @D du) ac.

3% e

Then
1\ T sin Au
™ J(x)=(~- j flu+x).[] ——2du
T E, E=1 Uy
5) At the points on the boundary H(M), we mean always one-hand derivative.
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Proof. I. fe L(E,). If in accordance with Fubini’s theorem we change the order. of
integration in (6) and then compute the internal integral, we get formula (7).

II. There are functions f; (j = 1, 2, 3, 4) which are non-negative and monotone on
each closed octant and

f=U—=f2) +ilfs —fa); }Iim filx)=0 (j=1,23,4)..

lIx||=+e

Let us prove formula (7) on the octant [ ] <0, + o) for the function f;. Let 0 < a < A4,
k=1
0 < B; then

®) (l) J ( j fiw). e du) at =
2 a<|$k| <4 O<ur<B
k= k=1,2

=l,45...,T7 32 4000yl r

=J f1(w) .kl:[l(uk — x)"* . [sin A(u; — x) — sin a(u, — x,)] du.

1,2,...,r

- Because the function f; is monotone on the set [] <0, + o) and lim f;(x) = 0, the
k=1

[Ixl|=>+o0
r

U {a, 4)) and is also bounded on this set. Thus we can let B — + oo in equation (8).
In a similar manner we can show that the integral

T sin a(u, — xi)
fo <ux<+ oofl(u) "1;11 o

U — Xi

k=1,2,...,r

exists uniformly with respect to a € E, and that it has the limit zero asa — 0+.

CHAPTER I

In accordance with theorem 1 the Fourier integral of a function f satisfying the
requirements in definition 2 exists if and only if the limit
) lim J,(x)
A+
exists. In this chapter we shall find sufficient conditions for the existence of this limit

for integrable functions. Functions which have the property BV will be treated in the
next chapter.

Theorem 2. Let us have a function f € L(E,), a point x € E,, a real number § > 0
and an integer n, (0 < n <r). Pulling, for brevity, y = (X1, X3, ..., X,), U=
= (Up+1> Ups25 ---» Uy)> let the function f(,v) be integrable as a function of v on
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E,_, and let the following integrals converge:

ull 012,

(10) J‘ (usu, ... LAl ou; SO, v) duy, duy, ..o duy do,
|<8;k=1,2,...,8 :

DEEr—n

where the indices (i1, iz -+ i;) assume every combination of the numbers 1,2, ..., n,
taken s at a time (s = 1,2,..., n).

Then
. A
@11 fim j fu + )HS‘“ “k gy
. A=+ o0 Jluy)<s,(1Spsn) Uy
lug|>8,(n<q=r)
Proof. Without loss of generality, letus put x; = x, = ... = x, = 0. If we denote,

for brevity, D =[] (—46,68) x [] [(—o0, —=d)u (8, + )], we have by (4)
k=1 k=n+1

(12) Jf( )HsmAukd jf(o )HsmAu"d .
ij‘ F(0,v )HSIHAukd + . J.Ailzuz, " 10, )UsmuAukd

All the terms of the right-hand side of (12) tend to zero as A — + 0. Let us show this,
for example, for the integral

: n '] .
(13) j ALt SO TT A% g = T j sin Auy
8

D Ug k=s+1 Uy

. sin Au
J. ( II sin Auk)( I ———")
lup] <8,(1<p=s) 1<kSs » n<ksr U

ug| >8,(n<g=r)

-3

s ;
. Ugly ... ) L AL 2 £(0, v) . sin Auy duy ) du, dus ... dug do.
1,82, sUs

The internal integral on the right-hand side of (13) tends to zero as A — + oo for
almostallv e E,_,, (u,, s, ..., u,) € [ | (-9, 6) and according to (10) the integrand on
k=2

the right-hand side of (13) has the integrable majorante 6" ". |uju,...ul"t.
IA"‘.I:z‘:Z) ".!f(o v)l
Thus we can take the limit as A — + co within the integral sign.

Theorem 3. Let us have a function f € L(E,) and a point x € E,. Let a real number
0 > 0 exist such that the assumptions of the theorem 2 are fulfilled forn = 1,2, ...

(r — 1) and for all permutations of the coordinates. Let the integral
%

(14) j (ugtty oo u) L AL f(x) du
lu] <8

k=1,2,..,r
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be convergent. Let the limit (9) exist and be equal to the value f(x) for all functions
which we get from the function f(u) if we fix the variablesu; = x; (k= 1,2,...,s),
where the indices iy, iy, ..., iy g0 through all the combinations of the numbers
1,2,...,r, taken s at a time, fors = 1,2, ..., (r — 1).

Then the Fourier integral of the function f is convergent at the point x and equal

to f(x).

Proof. Let us put again x; = x, = ... = x, = 0. According to theorem 2 it will
do to prove that
(15) lim F) TT 324% 4 — 2 7(0) .
A+ =0 ]Lm(‘l<6 k=1 Uy
=1,2,...5r

k= Uy Ug

(16) J‘ H sin Au, du J 0) 11[ sin Au, du +
lux| <8 luk|<6

k=1,2,.

+3 j 80 [T """d + Y f AL F©).
luk]<6 Iﬂkl<5

,J 1

k=1,2,...,r o 4
.H_lnAukdu+...+f ,,_f(O)HS“‘A“"d
k=1 U luxc] <3

=1,2,..r
Obviously
A
lim j (0)1'1Sln Y qu = 7. £(0).
A=+ Jur| <5

k=1,2,...,r

All the other addends in (16) have the limit zero. Let us show this for

17 J AYarm f(O)H sin Au" =du =
|ue] <8

k=1,2,...,r

r

% sin Au " sin Au
- 10 j . [ b O] % g
-5 Iuk|<6

k=n+1 Uy Uy
k=1,2,...,n

If on the last integral on the right side of (17) we compute the 1ntegral of each ad-
dends in the difference separately, we get

fim 77" f A O

A—+oo

sin Auk

du 20(— 1) (Z) J(©0)=0.

::::::

Remark 1. The assumptions in theorem 3 can be a little weaker. Let us show this
for the case of two variables. Let be f € L(E,), (x;, X,) € E, and let exist a real num-
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ber 6 > 0, complex number S and functions g, h € L(E,) such that the following
integrals are convergent: '

j u (FGey + % + ug) — g(xs + up)) duty duy
lu1|>o

luz| <o

j ur P (f(xq + uyg, x5 + uy) — h(x, + uy)) duy duy ;
|us|<é
|u2|>6

J] (uyuy) ™t (F(xq + uy, x5 + uy) — gy + uy) — h(x, + u,) + S)du,y du,
lug| <o

|u2|<5 i

and

6 .
- - in Au
lim n~*. g(x1+ul)sn Ldu, =8S;
A=+ -5 Uy

5 .
lim quj hix, + up) DAY 4 g

A=+ -3 Uy

Then the Fourier integral of the function f is convergent at the point (x4, x,) and
has the value S.

In many cases we can choose
g(uy) = %(f(uv X3 + 0) + f(uy, x, — 0),
h(uy) = ';_(f(xl + 0, u;) + f(x; — 0, uz));
S =3f(x; +0,x, + 0) + f(x; +0,x, — 0) + f(x; — 0,x, +0) +
+f(x1 - O,xz - 0))'

Remark 2. According to lemma 6 condition (14) holds if the function f has the
derivative f,, ,, ... bounded on the set ] (-3, d).
k=1
Remark 3. For the convergence of the integral

- 3250009
J (gt oo )™t AR, £, v) duy du, ... du,do
Jukl <83k=1,2,...,n

veE,-n

from (10) it is sufficient to show that for the function

F(xla X325 05 x,,) = J‘ |fx1,x;,...,x,.(x1’ X35 o0y Xy U)l dU
VEEr—pn

there exist numbers C > 0, > 0 such that F(xy, x5, ..., X,) £ Clx;X; ... x,|*"* for
Ix;| <6 (i=1,2,...,n) and derivative f,, ., . .(X;, X3, ..., X, v) is bounded when
|x] <d6(@(i=1,2,...,n)for each veE,_,.

The proof is obvious from the Fubini’s theorem and from lemma 7.
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Example. Integrability of the partial derivatives of the function f is not sufficient
* for the integrability of integrals (10) and (14). To show this, let us put

fe,»)=Q0-Igly)*.e™™ for xeE, 0<yl <1;
fx,y) =Pl for xeE,, [yiz1; f(x,0)=0 for xeE,.

The function f is then continuous and f, df/dx, of /0y, O*f /ax dy € L(E,). If, how-

e ver, we choose 0 < 6 £ 1, then
+ o

3
f ¥y ANf(x, 0) dx dy =f (f y 1 (f(x, y) — f(x,0) dy)> dx =
O<y<d -0 0
er;
+ 3
=f e~ dx f y (1 -1gy)tdy=+c.
-0 [}
Theorem 4. Let f € L(E,) be a conttnuous function on E, and let exist r functions
¢ € L(E,) such that

FEI = @ulx) for (x1, X2, %=1 X415« x,)€E,_; andfor k=12,...,r
Let), c E, (k= 1,2,...,7) be open intervals and J =[] .. If we put, for brevity,
k=1 .

V= (X105 X25 eees %)y 0= (Upp1, Upizs -5 Uy), let
(18) ,
lim lu, . xsl—l ’Aul oizeeees - ot f(y’ v)l dui: duiz duin dv=0

sWiyses
-0+ i ] <F3k=1.2,..08

VEE an
n

almost uniformly on the set []J; for all the combinations (iy, izs ---s i) of the
k=1
numbers 1,2, ..., n, taken s at a time (s = 1,2, ...,n), wheren = 1,2, ..., r, for all

possible combinations of the variables.
Then the Fourier integral of the function f is almost uniformly convergent on J to

the function f.
Proof. Let us choose ¢ > 0 and compact sets K; = J, (k = 1,2,...,r) and put

K =[] K,. There is a 6 > O such that all integrals in (18) are smaller than & on the
k=1 .
set K. Let this é be stable, then for all x e K

J‘ Flu + )H sin Au"d J‘ f(x)kl-’[l sin Au"du <
lmel<5 =

Jux| <& Uy Uy
k=1,2,..., r cees? .
L anu
<Y f Al f(x )H ——Fdul + ... +
=14 Jo] <3 Ug
I;=1,2,...,r .
sin Au
s Aol B s @ - ...
|..,‘|1<a Uy
=1,2,.0.r
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If we substitute (4), with n instead of r, then in the integral

| e+ 0. [ 2 au,

Jup] <3(0<p<n) Uy
lug|>é(n<q=r)

we get 2" addends which all tend to zero with 4 — + oo uniformly on K. Let us show
this for

sin Au, du

1.2,...,
| A 000 + 2.1 <o
Jup] <8(0<p=n) k=1 Uy
|lug|>6(n<q=r)
- AL v+z sin Au
+ (2n)"5. j wins S 00 + )lél;lés——kdulduz...dusdv <2
A<]up|<8(0<p=s) n<ksr Uk

6<|ugl<c(n<g=r)

where, for brevity, we put y = (X1, %3, ... Xp)y Z = (Xpr1> Xpt2s - v Xp)s U=
= (Up+1> Uns 25 -+, Uy) for a sufficiently small number 4>0 sufﬁcxently great C > 0
and sufficiently great A>0.

Remark 4. Equation (18) holds, if the function

Bl X o) = | gm0 91 80

Er-n
is almost uniformly bounded on the interval n J, and for each veE,_, the derivative

k=1

fx; — ) u) is also almost uniformly bounded on the H I
1’712 g k=

CHAPTER 1L
Throughout this chapter we shall assume that the given function f has the property

BV and for such a function we shall seek a sufficient condition for the existence of
limit (9).

Lemma 8. For —0L a < by <+ (k=1,2,...,7), let 1,(t) (k=1,2,...,1)
be functions which satisfy the inequalities

S .
0 §f M)dt ¢ for &Gelap by (k=1,2,...,71).
3

.
Let the monotone function f be non-negative on the interval 1 =[] <a,, by).
=1

Then the integral [; f(x) [T A(x;) dx is convergent and
k=1
(19) 0 2| f(x)TT A(xp) dx < max f(x) . ] ¢ -
1 k=1 xel k=1
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Proof. For r = 1 inequality (19) is obvious from the 2nd mean value theorem.
Further for r > 1 the proof follows with mathematical induction.

Remark 1. The assumptions of lemma (8) hold for the function A(f) = t™* .sin ¢
for t % 0, A(0) = 1 on the interval 0, + c0). That is,

g
(20) Oéft'lsintdtgn for ¢€=0
0

Lemma 9. Let f be a non-negative, monotone and bounded function on the interval
I =T1<0, +o).
k=1
Then

(21) lim (E)P.J‘f(x)]‘:[ M‘dx =f(0+,0+,...,0+).
[ k=1 X

A=+ \TT

Proof. The integral

Tosin Axy . x T sin x;
J xf(x)kl;ll Xk & —J If (A) H &

k=1 Xj

is uniformly convergent on I so we take the limit within the integral.

Theorem 5. Let a function f have the property BV and x € E,. Then

(22) lim n~ J f(u + )H sin Auk du =27". Z_f(xl + 09 X2 * 0’ cees Xp * 0) .

A= +o0 Uy

Proof. Theorem S is the immediate consequence of both lemmata 2.9.

Example. The function f(x, y) = 0 for x.y = 0, f(x, y) = x~ 2y~ ?sin x> sin y*
for xy = O fulfils the assumptions of theorem 3 at each point (x, y) € E,, but it does
not fulfil the assumptions of theorem 5 because the function f has on each unbounded
interval the variation + co with respect to each of its variable.

Remark 2. According to lemma 3 the assumptions of theorem 5 are fulfiled when
the function f is continuous on E,, has the continuous derivative f, ., ... »,» which has
Lebesgue integral on E, and lim f(x) = 0.

=l =+

Theorem 6. Let a function f have the property BV and let the functions f; (j =
= 1,2, 3, 4) be continuous in some open set G < E,.

s Xp?

Then the Fourier integral of the function f is almost uniformly convergent on the
set G to the function f.

Proof. Let K = G be a compact set, then the functions f; (j = 1, 2, 3, 4) are uni-
formly continuous on the set K. There is a number M such that |f{x)| £ M for
xeE,(j = 1,2,3,4). For each x € K there exist according to the lemma 2 the funct-
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ions g7 (j = 1, 2, 3, 4) which are non-negative and monotone on each closed octant
with the origin at the point x and for which

lim gj(&) =0; (g5 =2".M, for (e€E, (j=1,234);

&=+
flu + x) = (95() — g5(u)) + i(g3(u) — gi(u)) = g*(u), for uekE,.

Furthermore
(23)
T sin Ay, o 1 Sin Auy U\ o Sin g
flu+ )] du = | g"W)]] du=| g*(=) ] du.
E. k=1 Up E- k=1 E-

Uy, A k=1 uy

In a similar way as in lemma 9 we can show that the last integral in (23) is uniformly
convergent, independently with respect to x € K and on each bounded set the in-
tegrand has the integrable majorante 2" . M. So we can carry out the limiting cross

lim f(u + )H sin Aukd = lim J‘ gx<z> H S1n U, du =
E

A-+o g U, A~ +oo A)k=1 u,

=7n.g"0)=7".f(x).

CHAPTER III

Till now we have taken the external integral in (1) in the sense of Cauchy. In this
chapter we take it in the sense of Fejér, which means

(24) j F(x) dx = lim j H( """) F)dx.
| = gt N A

We shall search for the conditions for the convérgence of this Fourier integral (1).

Lemma 10. Let

(25) lim j f(x)dx =1.
A=+ o0 || <A
k=1,2,...,r
Then also
(26) lim f 11 ( """) f(x)dx =1.
A=+ kal<4 k=1
k=1,2,..., r

Proof. Let us take instead of the functicn f the function F(x) =Y f(Exy, %5 ..y
+x,). (This means the summa 2" addends by all possible combinations of signs.) The
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function F is even with respect to all its variables and

J‘ f(x)dx =J F(x)dx,
|xx] <4 . 0<xx<A
k=1,2 k=1,2

=1,2,..., r =1,2,..0 r
j f&TI (I-Jﬁ‘l)dx=f F)T (1~ﬁ)dx.
IX)¢]<2A k=1 A ’?<1xk<A k=1 A
=1,2.000, r =

,,,,,,

It is sufficient to prove lemma 10 for the function F on the octant [ | <0, + o0).
k=1

For any number ¢ > 0, there is a number 4, > 0 such that for any 4 > 4,

f F(x)dx —1

qu F(x)kI:[l(l -—'i%)dx—l ‘[ F(x)dx — 1) +

..... r ) = r

j0<xk<,4° F(x)< k];[l( _ifk»dx J0<xk<A F(x) dx

..... r max x> Ag

L,W F(x)H( )dx i

max x> Ao
k=1,2,...,r

<e€.

Then

=

+ + +

+ =L +L+1;+1,.

Obviously I, < ¢, lim I, = 0,15 < 2e. Let usfix A > A, such that I, < &. If we make

A=>+o0
up the indicated multiplication at I, and estimate according to the 2nd mean value
theorem each addends, we get the estimate I, < 2". 2e.

Theorem 7. Let f be a function, defined on E,, which is either integrable on E,
or has the property BV. Let us put for xeE,, A > 0

J f[ (l - El‘l—) . (j‘ flu + x).®9 du> d¢.
l¢k|<A k=3 4 \JE,

..... r

Lx) = @n)™".

Then

) e = @07 [ 1 (=4 ) M1 (52) 4

The proof is similar to the proof of the theorem 1.

Lemma 11. Let f be a function, defined and bounded on E,. For a function
A€L(E,) on each octant K let [y Au)du = 27"
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Then

(28) lim f f<x +l> Mu)du =27".Y f(x £ 0),
A-+oo g, A

for each point x € E, at which exist the limits f(x 1 0). If moreover the function f is

continuous in an open set G < E,, then (28) holds almost uniformly on G.

Proof. I. The integral [ f(x + u/A) A(u) du is uniformly convergent since f is

a bounded function, and the integrable majorante is [A(u)| . max |f(x)|. So we can
xeE,

take the limit A — + oo beyond the integration sign.

II. Let K = G be a compact set, then the function f is uniformly continuous on K.
Let us choose a bounded interval I so that K = I and [p _y|A(u)ldu <. (2M)7!,-
where M = max | f(x)|. Then for sufficiently great 4 and for all x e K

" L( f (x + %) - f(x)) () du

‘[ K (x + f) ) du — f(x)

+2M . |A(w)] du < 2e.

Er—1I

= +

Theorem 8. Let f be a complex function, defined and bounded on E,, which is
either integrable on E, or has property BV. Then the Fourier integral of the function
f is convergent in the sense of Fejér at each point x € E, at which both the limits
f(x + 0) and the sum 277. ) f(x + 0) exist.

If moreover the function f is continuous on an open set G < E,, then the conver-
gence of Fourier integral is almost uniform on G.

Proof. It is sufficient to put A(u) = (2z)™". [T ((sin 3u;)/3u)? in lemma 11.
, k=1 .

Theorem 9. Let f be a complex function, defined and bounded on E,, which is
either integrable on E, or has the property BV. Then at each point x € E,, at which
there exist the limits f(x + 0) and the external integral (1) is taken in the sense of.
Cauchy (it is fulfiled especially when the Fourier image of the function f is in-
tegrable), the Fourier integral of the function f is convergent to the value 27" .
2 f(x +0). '

Proof is the immediate consequence of the lemma 10.

Remark. Let the function f, defined on E,, be bounded and have the improper
Riemann integral on E,, then it is almost everywhere (in the sense of Lebesgue) conti-

nuous. Then according to the theorem 8 the Fourier integral of f is convergent in the
sense of Fejér almost everywhere to f.
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Vytah
MNOZNY FOURIERUV INTEGRAL

JAN KUCEra, Praha

V &lanku je formuli (1) definovan Fourieriv integral pro funkce f vice proménnych,
které jsou budto integrovatelné nebo maji v jistém smyslu koneénou variaci. JestliZe
konverguji vSechny integraly (10) pro vSechny moZné permutace (iy, iy, ..., i)
a integral {14) a jestliZe konverguje Fourieriv integral pro vSechny funkce, které
dostaneme zafixujeme-li u funkce f nékteré proménné, potom Fourierlv integral
funkce f konverguje a m4 hodnotu f.

Pe3roMme

KPATHEII UHTETPAJI ®VPLE

SAH KVYEPA (Jan Kugera), ITpara

B cratee ompenensercs dopmyioi (1) urTerpan ®yprve musa GyHKOUi f MEOTHX
TIEPEMEHHEBIX, KOTODhIE WM HHTEIPHPYEMBI W HMEIOT B ONPEINEICHHOM CMEICIE
orparmYeHHOe H3MeneHue. Ecau cxonsres Bee mETerpaist (10) A BceX BO3MOXHBIX
nePecTanoBOK (iy, iy, ..., i), Aalee maTerpan (14) u, Bakosen, waTerpan Pypse LIt
BCeX GyHKIMI, NOXYyYCHHBIX IyTeM 3aKpelieHusd Y GYHKIME f HEKOTOPHIX Hepe-
MEHHBIX, TO CXOOUTCS B wHTEerpal ®ypre QyHKIEE f X 3HAYCHHAIO f.
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