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ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY 
Vydává Matematickf ústav ČSAV, Praha 

SVAZEK 88 # PRAHA 2 3 . V l i l . 1 9 6 3 # ČÍSLO 3 

ON AN ORDERING OF THE VERTICES OF A GRAPH 

MILAN SEKANINA, Brno 

(Received August 1, 1961) 

This paper contains some results on the ordering of the set of vertices of 
a connected graph. 

1.1. Let G be a set. Then D(G) will denote the system of all two-point subsets of G, 

D(G) = {X; X = {x9 y}9 xe G9y eG9x * y} . 

For a two-element set {x9 y} we shall also use the symbol (x, y). 

1.2. By a graph we shall understand a nonempty set G (the elements of which we 
shall call the vertices of the graph) together with a system Q C D(G). This graph is 
then denoted by (G, Q). A two-point set (a9 b)eQ will be called the edge of the graph 
(G, Q) connecting a and b. If Q = D(G) we shall call the graph (G, Q) complete. If 
card G = K0, we call (G, 0) an enumerable graph. If card G is finite, then (G, g) is 
called a finite graph. 

1.3. Let (Gl9 QX)9 (G2, Q2) be two graphs, Gx c G2, £x cz g2. Then we call (Gl9 Qt) 
a subgraph of (G2, Q2). If £x = g2 n D(GX)9 we call (Gl5 gj) a saturated subgraph of 
the graph (G2, £2) (in greater detail: a saturated subgraph on the set Ga). 

1.4. Let G = {al9..., art+1}, n ^ 1 integer, be an ordered set (a3 ^# 2 ... S<*n+i) 
with n + 1 elements. Let Q = {(ata2), (a2

fli)>..., (am an+1)}. Then the graph (G, g) 
will be called a patf/i connecting ai and an+1. The number n (in [2], p. 13712 should 
be n — 1 instead of n) is the length of this path. The path may be denoted in a sim­
pler way by (al9..., an+1). Let n ^ 2 and ^ = /JU {(a,J+1, ax)}. Then we call 
(G, gt) a circle with length n + 1. We may also denote it by (al9..., an+l9 at). Let 
G = {al9a29...} be an enumerable set ordered in a sequence of type o). Let 
£ = {(«i, a2)9..., (an9 an+1),...}. Then we call the graph (G, Q) an one-sided infi­
nite path, and denote it by (al9 a29...). 
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Let (G, Q) be a graph, Gt = {al9..., an+1} Q G a finite ordered subset. Let the path 
(fli,..., aw+1) be a subgraph in (G, Q). Then we say that (al9...9 an+1) is the path 
connecting ax and tfn+i in (G, #). 

Similarly we can define circles in (G, g). 

1.5. A graph (G, #) is called connected if each pair of vertices is connected by 
a path. 

Let (G1? Qt) be a saturated subgraph of a graph (G, #) such that 1) it is connected, 
2) x e G — Gt => (Gx u {x}, D n D ^ u {x})) i$ not a connected graph. Then (G%, Qt) 
is a connected component (or merely component) in (G, O). In every connected graph 
a metric can be defined as follows: to every pair of different vertices a and b assign the 
number fi(a, b), which is the least length of paths in (G, Q) connecting a and b; for 
a = b put /z(a, a) = 0. If -4 c G, £ c G, Al #= 0 =1= B, then /J(/4, B) = min pi(x, y)„ 

xeA,yeB 

1.6. Let (G, g) be a graph, a e G. Let there exist just one b e G such that (a, b) e Q„ 
Then a will be called an end-vertex in (G, #). Let (G, g) be a connected graph. Let be 
(a, b) e Q. Let (G, g — {(#, b)}) be a not connected graph. Then we call (a, b) a. 
bridge in (G, Q). 

1.7. Let (G, g) and (Gl9 Qt) be two graphs and let there exist a one-to-one mapping: 
fof G onto Gx such that for a, b e G, (a, b)eQ is equivalent to (f(a%f(b)) eQt. Then 
the graphs (G. Q) and (Gl9 Qt) will be called isomorphic and fan isomorphism between 
(G,^)and(G1 ,^1). 

It is obvious that for the isomorphism f the following assertions hold: 
a) The image of a path of length n is a path of length n. 
b) The image of a circle of length n is a circle of length n. 
c) If (G, $) is connected then (Gl9 Qt) is also connected. 
d) If (G, Q) is connected and the distance of a and b is n, then the distance in (Gt, .oj) 

of the vertices f(a) andf(b) is also n. 
e) The image of a component is a component. 
f) The image of an end-vertex is an end-vertex. 
g) The image of a bridge is a bridge. 

2.1. Let there be given a enumerable connected graph (G, Q). Let us order the set G 
in a sequence of type co, % = {a l 5 . . . , an,...} (so for a e G there exists just one index n 
such that a = aK). Let us denote the set of all these sequences by n(G). For given n9 let 
p(n) = {jifo, a2), fi(a2, a 3 ) , . . . , . . . } . Let P(G, #) = {P(7c); rc en(G)}. Further on we 
shall deal with the structure of sequences n and the set P(G, Q). 

2.2. Let S be a set, S c D(G). We shall say that S has a finite basis if there exists 
a finite set N c G such that (a, b)e S=>(a,b) n N 4= 0. 

266 



2.3. 1. Let (G, Q) be a complete graph. Then card P(G, Q) = 1. 
2. Let there exist in D(G, Q) two systems S and T such that neither S nor Thave 

finite basis and (a, b) e S, (c, d) e T=> jx(a, b) =)= [i(c, d). 
Then card P(G, Q) = 2*°. 
3. If neither 1 nor 2 then card P(G, #) = K0. 

Proof. 
Ad 1. The assertion is obvious. 
Ad 2. Let M be a set of all sequences {un} consisting of zeros and ones (i.e. un = 1 

or 0 for every positive integer n). As S and Tdo not have finite basis, they are infinite, 
and we can order G in a sequence n = {al9 a2,...} en(G) such that (a4n, a4n+1) e 
e S u T , (a4n, a4n+1) e S o un = 1, (a4n, a4n+1) e To un = 0, where {un} e M is 
any given sequence. For two different sequences of M we obtain two different sequen­
ces of P(G, Q) (these sequences differ in some member with index divisible by 4). As 
card M = 2Ko and card P(G, Q) <* 2*°, we conclude card P(G, Q) = 2*°. 

Ad 3. For every positive integer let x(d) be the set of all those pairs of vertices of 
(G. Q), which have distance d (in the metric pt). First we shall show that under our sup­
positions there exists at least one d such that t(d) does not have finite basis. Let D a 
c D(G, Q) be a decomposition on G, i.e. (a, b), (c, d) e D, (a, b) 4= (c, d) => (a, b) n 
n (c, d) = 0, (J (a, b) = G. Put D(d) = D n x(d). Assume that all sets D(d) are 

finite. Then we choose from each of these sets (if possible) one element and the system 
thus obtained (evidently infinite) may be divided into two infinite disjoint subsystems 
5 and T. Then S and Tsatisfy the assumption of point 2 of our lemma, which is in con­
tradiction with the assumption of point 3. So there exists a dx such that D(dt) is an 
infinite set. It follows from the definition of D that D(dx) does not have finite basis, and, 
because D(d1) cz t(dx), x(dx) also does not have finite basis. The set D(G, Q) — t(dx) 
is nonempty (this is obvious for dx 4= 1, for d1 = 1 this follows from the assumption 
that (G, Q) is not a complete graph). As (a, b) e D(G) - x(d1) => \i(a, b) =f= du 

(a, b) e T(di) =-> pi(a, b) = dl9 therefore the set D(G) — T ^ ) must have an finite 
basis N. Let {an} en(G). Then there exists an mx such that n > mx=> an non eJV, 
and thus \i(an, an+1) = dx. Therefore every sequence from P(G, Q) consists of dx with 
a finite number of exceptions. Thus card P(G, Q) ^ K0. Furthermore, for every m 
there exists a sequence {an} en(G) such that \i(ax, a2) = fi(a3, a4) = ... = /x(a2w_1, 
<*2m) = x̂ * Ka2m+i? ^ + 2 ) , and thus card P(G, 0) = K0. 

2.4. In the following sections (2.4—2.12) let (G, Q) denote an enumerable connected 
graph, {an} en(G). For every positive integer n let (cx,..., C/) be a path connecting 
an and a„+i in (G, O.) (thus an = cx, an+x = c;), and having length fx(an, an+1) (thus 
ji(an, an+x) = j — 1). This path will be denoted by Cn. Note that, generally, ju(cil5 ci2)= 
= i2 —• i*! for l ^ i ^ i2 g j . If 1 < i < j then we shall say that the vertex c£ is 
skipped over at the ?i-th step. For i, 1 = i < n, define rc(i) in the following manner: 
if a | is skipped over at some m-th step for ml>n, denote by n(i) the smallest such m. 
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Otherwise put n(i) = n. Denote Max (n(i)) + 1 by H(n). Let M(n) denote the sum 
0<;i<n 

tfflw a n+l) + ••• + Kam»)-1> aH(n))-

2.5. Let n ^ 2 be a positive integer, d a nonnegative integer. We shall say that 
the system of positive integers 

ul9u29...9un 

satisfies all polygonal inequalities with defect d if, for 1 ^ i ^ n, 

ui S ul + ••• + ui-l + ui+l + ••• + un + d • 

If d = 0, we shall say that the given system satisfies all polygonal inequalities. 

2.6. Let d be a nonnegative integer. Let uiii9..., uitni; u2tV ..., u2,n2; um,i,..., 
*Wm ^ m systems of positive integers each of which satisfies all polygonal in­
equalities with defect d and let d < m. Then the system 

w l , l ? • • -5 ul)«!>•*•> um,U • • •> umtnm 

satisfies all polygonal inequalities. In particular, if the systems of positive integers 
ui9..., un; vi9..., vm satisfy all polygonal inequalities, then the system ui9..., un9 

vi9..., vm satisfies all polygonal inequalities. 
The proof is evident. 

2.7. Lei n, (G, Q)9 Ctt, H(n) be the notions from 2.4, n fixed. Let s ^ ii'(n). For 
ai9 ak (i, k ^ s), respectively, let i |> n and k ^ n or alflk) be skipped over at the 
f-th (k'-th) step, where i' ^ n (fc' ^ n) and k ^ n (i ^ n) or at be skipped over at 
the f-th step and ak at the kr-th step and fc' ^ n, i' ^ n. TAen 

(1) V<(ai> ak) -S M(«n, an+i) + ... + /x(a^1? as) . 

Proof. 

a) If i ^ n, fc ^ n, (1) is obvious. 
b) Let be i < n, fc ^ n. For example let n(i) < fc. 

Then fi(ai9 ak) ^ /j(an(£)5 #„(.)+1) + •-• + lrfflk-i> ak)> from which (1) follows imme­
diately. The proof for n(i) ^ fc is analogous. So is the case for k < n9 i *> n. 

c) Let i, fc < n and e.g. n(i) ^ n(fc). Then v(ai9ak) g /<a„(i), a„ ( i )+1) + ... + 
+ #(#»(*)> fl«(*mX fr°m which (1) follows immediately. 

An analogous reasoning applies to n(i) ^ n(fc). 

2.8. Le* s § H(n), g a positive integer, n £ g < s. For all i, n <Z i < s, with the 
eventual exception of i == g9 let 

tiat> at+i) =S Ha»> a»+0 + ••• + /*(«i-i> *«) + M -̂-i> ai-i) + ... + 
+ K^s-i^s) + 2. 

Then f/iere exists an e > s such that for all i9n <L i < e9 with the eventual excep­
tion of i = g, there holds 

(2) fi(ai9 ai+i) <: ft(an9 an+i) + ... + fi(ai-u «0 + f4fli+u ai+2) + ... + 
+ K«e-l5«e) + 2 . 

268 



Proof. Let Cs = (cl5 ...5 Cjj. Let us distinguish two cases: 

a) If {c2,..., Cj„t} c {al5 ...5 a J then, according to 2.7, fi(c2, c^x) _ /i(aM5 an+1) + 
+ ... + n(as„u as)9 n(as, as+1) _ 2 + n(an, an+1) + . . . + /t(as_l5 as). It suffices 
then to put e = s + L 

b) Let {c2 , . . . , Cj„t} non e {al5 ...5 a j . Let cm be the first element in Cs such 
that c m none {al9..., as+1}. Let cm = af. Thus t > s + 1. According to 2.7 (cm_ t + 
* as+i)ti(as, cm-i) _ Ka„, an+1) + ... + /*(as_l5 as). From the fact that fx is a metric 
it follows that 

Kcm> as+1) _ /i(as+l5 a s + 2) + ... + /i(a,_l5 at) . 
Therefore 

MA> ^s+l) _ K^»5 «»+.i) + ... + /*(*,-1, as) + Kas+i> ^,+2) + ••• + 
+ i4at-l9at) + 1. 

Hence (2) follows immediately for i = s and e = f. 

For integral f, s + 1 _ i < t9 there holds 

Kfl-> a .+i) _ Ka-+i> ai+2) + . . . + ju(at_l5 af) + /<af5 a s + 1) + ... + 
+ idfli-l9 at) _ /^(ai+i, a i + 2) + .. . + /4>r~i> <**) + Kas> as+1) + ... + 

+ Kfli_i, a , ) . 

(2) follows with t instead of e. It suffices to put e = t. 

2.9. Let all the suppositions 0/2.8. be satisfied. Then there exists an L such that the 
system of numbers 

Kan>an+1), ..., i4aL-l9 aL) 

satisfies all polygonal inequalities with defect 2. 

Proof. It suffices to apply 2.8 m times, where m _ \i(ag9 ag+1). 

2.10. Let r, p be positive integers, r _ p9 with the following properties 
i) p _ n __ i _ M(n) (for the definition of M(n) see 2.4). 

2) C£ c { a ^ - . ^ a ^ i } for n _ x < P. 

Then for n _ i < P5 

(3) /x(ai5 a i + 1) _ /i(an5 an+1) + . . . + i4fli-u a() + /x(ai+l5 ai+2) + ... + 

+ p(ar-l9ar) + 2 . 

Proof, a) Let n _ i < H(n). Then 

/*(ai5 a i + 1) _ M(n) _ /i(a„, an + 1) + . . . + //(a£-.l5 at) + /i(a i+ l5 a i + 2 ) . . . 
+ ii(ap-l9 ap) 9 

according to assumption 1. From this follows (3). 

b) Let H(n) _ z < P. Let Ct = (c%,..., c,-). Define the function <p(u) for a = 
= 1, ...,j thus: 

û = ^ ^ _ n => <p(u) = n„ 5 c„ = aWu5 ntt < n => <p(u) = n ^ J . 
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Then n <: cp(u) < r for all u = 1, 2, ...J. For k, n S k < H(n), the number of 
those u for which q>(u) = fc at most equals ii(ak,ak+1). (Thus card gT^fc) =" 
-S Ma*> a*+i)-) Indeed, if <p(u) = fc, then either a„M = ak or anw is skipped over at the 
fc-th step. But at the fc-th step there are skipped over fi(ak, ak+1) - 1 vertices. The 
same estime holds fork £ H(n) because then card <p~x(k) S 1 -5. Mv%, ak+1). Further­
more card ^-1(i) = 1, because only <p(l) = i? which follows immediately from 
i ^ H(w). Therefore 

Ka» at+i) = J - 1 = card (p"\n) + card ^ ( n + l) + card >̂~1(f—1) + 
+ card^"1^) + ... + c a r d ^ i V - l ) S v(an,an+1) + ... + rKai-i>ai) + 

+ 1 + u(ai+i, ai+2) + ... + [i(ar-.l9 ar). 

This implies (3). 

2.11» There exists a number s, s > n, such that the system of numbers fi(an, an+1), 
,.., fi(as^t, as) satisfies all polygonal inequalities with defect 2. 

Proof. Let p be the number from 2.10. Let now r be a number such that r ^ p and 
that: 

i < p, ak is skipped over at the i-th step => fc < r . 

Two cases can occur: 
1. If ak is skipped over at the i-th step, i < r, then also fc < r. 
Then the assumptions from 2.10 are satisfied with r instead of p. Then for n ^ i < r 

wehave/i(a.,ai+1) g ^(aH5an+1) + ... + fi(a^t, a£) + K^T+I>
 ai±i) + — + Kar~i> 

ar) + 2 and it suffices to put s = r. 
2. Let there exist an ak such that fc ^ r and ak is skipped over at the i-th step, 

i < r. Let us denote by g the first index i for which there exist such ak. Evidently 
g *• p. Let Cff = ((?!,..., c7). Let n •<; i < #. Then according to 2.10 (put g for p) 

liPi* ai+t)S Kam an+l) + ••• + /*0*i-l> «i) + Kai + 1> ai+2) + ..- + 

+ fi(ar-.1,ar) + 2, 

and thus 

K ^ ^ i + l ) ^ M^n^n+l) + '•• + Kai~U ai) + rffli+l, ^ | + 2 ) + ••• + 

+ /<afc„1, ak) + 2 . 

Let g + 1 <; i < fc. Then (as /x is a metric) 
K^tfi+i) =" Ka*+i- ai+2) + ••* + /4>*-i> <**) + Ka*> **+i) + ••• + 

+ p{a^ua^ S fi^n, «»+i) + •-. + tffli-i* ad + Kai+i, ai+i) + ••• + 
+ Ju(ak^1,afe). 

Thus the relation 

K^.^i+i) -S p(am> «*+i) + ••• + /^i~i> *.) + p(a i+1, a i+2) + ... + 
+ l<aJfc_lsaJk) + 2 
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holds for all i, n £ i < k, with the eventual exception of i = g. Also k ^ r 2> p ^ 
^ M(n) -f- 7i + 1 > H(n). Then it suffices to choose the L described in 2.9 and put 
i « L. 

2.12. There exist infinite infinetely many k9k > n9 such that the system of 
numbers jx(an, an+1),..., fi(ak^t, ak) satisfies all polygonal inequalities. 

The proof follows imediately from 2.6 and 2.11. 

3.1. Let (G, Q) be a finite graph. Let a none G, Gt = G u {a}, beG, QX = QU 
u {(a, 5)}. The graph (Gl5 £t) is called an a-prolongation of the graph (G, Q). 

Let 7i > l.be a number greater then the length of an arbitrary circle in (G, Q). Let 
beax, ..., annoneG, Gt = G u {a l3..., art}, 6, ceG, b + c, ju(b, c) < rc, #x = # u 
u {(b, a±), (al9 a2), ..., (an, c)}. Then we call (Gl5 QX) a ^-prolongation of (G, Q) with 
norm n. 

Let n > 2 be a number such that is greater than the length of an arbitrary circle in 
(G, Q)9 al9 ..., an non 6 G, b e G, Gx = G u {al9 ..., an}9 QX = Q u {(b9 ax), ,.., 
(an9 ax)}. Then (Gl5 QX) will be called a y-prolongation of (G, #) with norm n. 

Sometimes we shall also use the notation "(G, Q) -> (Gl9 QX) is a ^-prolongation" 
with f = a, jS, y. 

3.2. Let (G, O) be a connected subgraph in a connected finite graph (Gl9 Qi). For all 
points a9bs G, let the distance a from b in (G, Q) be the same as the distance of a from 
b in (Gl5 gi). Then we shall say that (G, Q) is metrically embedded in (Gx, gi). 

3.3. It is easy to see that the following statements hold: 
1. If (G, Q) is a connected finite graph and (Gl9 QX) its ^-prolongation (£ = a, j8, y), 

then (G1? D^) is also connected. 
2. Let (Gl9 QX) be a ^-prolongation (£ = a, /?, y) of a connected (G, o). Then (G, g) 

is metrically embedded in (Gl9 QX). 
3. Let (Gls £t) be a p- or y-prolongation of the graph (G, g) with norm n. Let 

(L, 1) be a subgraph in (G1? #0, which is a circle and L non c G. Then the length of 
the circle (L, X) is at least n. 

4. Let (G, D) be a finite connected graph and (Gl9 Qt) its y-prolongation with norm 
n. With the notation of 3.1, (b9 ax) is a bridge in (G1? QX)9 a1 lies on the circle (al9..., 
a„, ax). 

3.4. Let (Gl5 #x) be a graph with only one vertex. Define by induction the sequence 
of graphs {(Gn9Qn)} thus: (Gn+l9Qn+1) originates from (Gn, Qn) by ^-prolongation 
(£== a,j3,y)anditholds: 

If (Gn, Qn) -* (Gn+l9 £„+1) is an a- or y-prolongation and i > n + 1, then x 6 G„, 
j ; e (Gt — Gf_ -) ==> (x, y) non e Qt. Let us call such a sequence an co-sequence. If we 
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put G = (J Gn and o = U Qn we shall say that (G, Q) is the co-limit of the sequence 
rt=-l 7 1 = 1 

{(Gn, Qn)Y 

3.5. The following simple statements hold: 
1. For every n, (G„, Qn) is a connected finite graph. (G, e) is a connected enumer­

able graph. 
2. If (Gn, o.n)->(Gn+1, ^rt+1) is an a-prolongation, then (Gn+1, Qn+1)-+(Gn+2, 

Qn+2) is an a- or y-prolongation (it follows immediately from the condition for co-
sequence). 

3. If (G„, Qn) -> (Gn+1, Qn+1) is an a-prolongation, and if Gn+1 - Gn = {6} then b 
does not lie on any circle in (G, Q). If (a, b) c. Qn+1 then (a, 6) is a bridge in (G, g). 
(This follows from 2.) 

4. Let Gj = {a}. Then a is the only end-vertex in-(G, Q) (this follows from 3). 
5. For all n, (Gn, Qn) is metrically embedded in (G, 0) (this follows from 3.3.2). 
6. Let (L, k) be a circle with length e which is a subgraph in (G, g). Let m be the first 

index such that (L, A) is a subgraph of (Gm, &J. Then (GOT_ x, £m_ 1) -* (Gw, gm) is a p- or 
y--prolongation with norm at most e. (This follows from the definition of prolongation 
and the property of norms.) 

7. Let (a, b) be a bridge in (G, g). Then there exists an n such that (G„, £„) -> 
- • (Grt+1, en+1) is an a- or y-prolongation; if it is an a-prolongation then aeGn and 
be Gn+1 — G„ (possibly after exchanging a and b); if it is a y-prolongation it is 
necessary to exchange a and b in the definition of y-prolongation. Further more, if 
ceGn, deG — G„ and (c,d) #= (a, b), then (c, d)non e Q . 

3.6. Lef {(GB, £tt)}, {(G ,̂ ̂ n)} be two co-sequences, (G, e), (G', Q') their co-limits. 
Letf be an isomorphic mapping of the graph (G, Q) onto (G\ Qf),fn the partial map­
ping off on the set Gn. Then 

h the prolongations (Gn, Qn) -> (Gn+1, Qn+1) and (Gn,Qn) -» (G'n+1, Qn+1) are of the 
same kind and, for /?- and y-prolongation, have the same norms. 

2. fn is an isomorphic mapping of (Gn9 Q„) onto (G'n, Q'„). 
Proof. Let Gx = {a}, G't = {a'}. According to 3.5, 4, a and a' are the only end-

vertices in (G, Q) resp. (G\ Q'). Thus a' = f(a). 
Let n be a positive integer. Suppose that /„ is an isomorphic mapping (Gn, Qn) on 

(G'n,Q'n)-

a) Let (Gn, Q„) --> (Gn+1, Qn+1) be an a-prolongation. Let Gn+1 - Gn = {b}9 then 
(a, b) is a bridge in (G, Q) (3.5.3). So (f(a)9f(b)) is a bridge in (G', e') (1.7g). As 
f(a) e G'mf(b) # G; and (/(a), /(b)) e </, according to 3.5 7 there must be (G'n, Qn) -+ 
-* (Gi+i> £i+i) a11 a" °r y-prolongation and/(b ) e G'n+U for a-prolongations/(b) e 
eGi+j ~ <*» for y-prolongations /(b) = at (at from the definition on y-prolonga­
tion). According to 3.5 3 b does not lie on any circle in (G, Q). So/(b) does not lie on 
any circle in (G\ Q'). But if (G'n, Q'„) -» (G'n+1, Q

r
n+1) were a y-prolongation, then ax 

would lie on a circle (33.4), a contradiction. So (G^, Q'„) -> (G;+1 , gn+1) is an a-pro­
longation and / n is an isomorphism between (Gn+1, Q„+1) and (Gn+1, Q'„+1). 
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b) Let (Gn9 Qn) -> (Gn+l9 Q+i) be a y-prolongation. Analogously as in a) we get that 
(G», Qn) -+ (G'n+l9 Q'n+ i) is a y-prolongation. 

Let m and m' be the corresponding norms. Let a e Gn+1 — Gn. Then a lies on a 
circle of length m. Sof(a) lies in (G', Q') on a circle with length m. According to the 
definition of norm and 3.3 3, all the circles with any vertex in G — Gn+1 are of 
length greater than m. This means thatf(a) lies on a circle of the smallest length with 
vertices in G' — G'n. But (again according to 3.3 3) this is the circle with the set of ver­
tices Gn+1 - G'n. Hence it follows thatf(Gn+1) = Gn+l9m = m', and the fact thatf, 
is an isomorphic mapping of (Gn+1, Qn+1) onto (G'n+l9 Qn+1). 

c) If (Gn9 Qn) -> (Gn+19 Qn+1) is a /J-prolongation, then it follows from a) and b) that 
(Gn, Qn) -*(Gn+DQu+i) is a l s o a /^prolongation. As in b) we find that the norms are the 
same in both cases, f(Gn+1) = G'n+1 andfn is an isomorphic mapping of (Gn+ l5 Qn+1) 
onto(G'n+uQn+1). 

4.1. Let dl9 d2,..., dn,... be an infinite sequence of positive integers such that for 
every index n there exists an m with m > n and such that the system dn, dn+1,..., dm 

satisfies all polygonal inequalities. 
From 2.6 it follows that then there are infinitely many such numbers. Let dn + 1. 

We can show that then there are also infinitely many m such that the system of num­
bers dn — 1,. . . , dm satisfies all polygonal inequalities. It suffices to take systems 
dn9..., dm; dm+l9 ...,dp satisfying all polygonal inequalities. Then the system 

dn — I,..., dm, dm+1, ...,dp 

satisfies all polygonal inequalities. 

4.2. Let G be an enumerable set. Let us order it in a sequence {bl9 bl9...}. Put 

*i = bi, G1 = {ax}9 Qt = 0. 

We shall now define the co-sequence {(Gn9 Q„)} by induction in the following way: 

Let n be a positive integer and suppose that there are defined graphs (Gl9 Q±), ..., 
(Gn9 Q„) and that for a certain m there have been selected in Gn m elements al9..., am 

such that in (Gn9 Qn) 

ix(al9 a2) = dl9..., ii(am-l9 am) = dm-t 

and 
{bl9...,bn} cz {al9...,am}. 

a) Let {al9...,am} = Gn. 

2LX) Let J m = 1. Let p be the smallest index such that bpnoneGn. Obviously 
p = n + 1. Then put Gn+1 = Gn u {bp}, on + 1 = 0 u {(am, bp)}. Thus (Gn+1, e„+i) is 
an a-prolongation of the graph (G, Q). Put «OT+1 = &p. The suppositions of induction 
now hold for n + 1 (for m we put m 4- 1). 
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a2) Let dm =# 1. Choose r such that 

1. the system dm - 1,.. . , dr fulfills all polygonal inequalities. 

2. s = dm — 1 + dm+x + ... + dr is greater than the length of the greatest circle in 
(Gn, Qn), s > 2. 

Let p again be the smallest index such that bp non e Gn. Now choose in G ~ GB 

s points (bp among them) c l 5 . . . , cs and put Gn+1 = Gn u {c l 9 . . . , cs}, #rt+1 = £M u 
u { ( ^ ct)9 (cx, c2), ..., (cs, c^}. Then (Gn+1, Dn+1) is a ^-prolongation (Gn, £„) with 
norm s. Put am + 1 = cdm, am+2 = cdm+4m+1, ..., ar = cs_,ir+1, a r + 1 = cx. In con­
sequence of 1 in (Gn+1, Qn+1), it holds that 

t4am, am+1) = dOT, n(am+1, am+2) = dm+1, ..., fi(ar, ar+x) = dr. 

b) Let {ax,..., an} =f= Gn. Let t be the first index such that btsGn, brnone 
€ {ax,..., am}, p again the first index such that bpnon e Gn. Choose r so that the 
system dm,..., dr satisfies all polygonal inequalities, 

(4) s^dm+ ... + dr> fi(am,bt) + 1 

and that s — 1 is greater than the length of the greatest circle in (Gn, Qn). Choose s — 1 
points cl9 ...,ss^.1 from G — Gn (bp among them) and define 

Gn+1 = Gn \J {cx,..., c ^ J , Qn+1 = Qn u {(am9 cx\ (cx, c2),..., (c,_1? &,)} . 

Then (Gn+1, Qn+X) is a jS-prolongation of the graph (Gn, Q„). Put am+1 = Qm, 

^m+2 = cdm+dm+1> • -., ^r+i = &r According to (4), 

Kam> ^m+i) = dm, li(am+x, am+2) = Jm + 1 , . . . , ju(ar, a r + 1 ) = dr. 

Thus the assumptions are again satisfied (m in place of r + 1). 
From the construction mentioned above (in both cases a) and b)) it is evident that if, 

for an n, case a occurs then (Gn, Qn) -+(Gn+1, Qn+X) is an a- or y-prolongation; 
and if i > n + 1, then for a e Gn and b e G£ — G ^ we have (a, b) non e #.-, 
Thus {(Gn, £n)} forms an co-sequence, \JGn = G. Put £ = (J&i- The sequence {an} 
defined in the construction belongs to n(G) and p({an}) = {dx, d2, d3i ...}. In con­
sequence of this result and lemma 2.12, 

4.3. To the sequence of positive integers {dx, d2,...} there exists an enumerable 
connected graph (G, Q) and % e n(G) such that p(n) -= {dx, d2,...} if and only if for 
every n there is an m > n such that the system 

satisfies all polygonal inequalities. 

4.4. We shall now prove that to the given sequence from 4.1 there belong 2*° of the 
graphs (mutually non-isomorphic) which are spoken about in 4.3. 

a) First suppose that the considered sequence {dl9 d2,...} has the property that 
there exists an N so that for n > N there is dn = 1. Then apparently in the construc-
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tion 4.2 for a certain Nx it holds that n = Nt => {(Gn, Qn) -+ (Gn+1, Qn+1) is an a-
prolongation}. A saturated subgraph on the set G — GNl in (G, Q) is then a onesided 
infinite path (as, aJ + 1 , . . . ) (for a suitable j) . Let us choose the sequence 

(5) nt, n2,...,nt,... 

of integers not less than 2 and construct a graph (G, £*), where #* = £ u {(a;, a J + n i ) . 
. (cij+ni9 ai+„1+M2), . . . } . To two different sequences (5) there belong two non-iso-
morphic graphs (G, Q*). The cardinality of the set of sequences (5) is 2So, so that there 
are 2*° such graphs (G, £*). Simultaneously {an} e n(G) and {rfn} = p({an}) e P(G, O*) 
for arbitrary (5). 

b) Assume that the index N described in a) does not exist. Then in the construction 
4.2, for infinitely many n, (Gn, Qn) -* (G„+1, Qn+1) is a /?- or y-prolongation. As for 
every such prolongation we have X0 possibilities of choice of the norm of prolonga­
tion, there follows from 3.6 that it is possible, by the construction 4.2, to construct 2*° 
of the mutually non-isomorphic graphs mentioned in 4.3. 

4.5. (Corollary.) To every sequence p of positive integers smaller than a given 
number k there exists an enumerable connected graph (G, Q) such that there is an 
ordering %e%(G)for which p(%) = p. 

Proof. This follows immediately from 4.3, since obviously p satisfies the assump­
tions on the sequence {dt,d2,...}. 

4.6. In the next theorem the graphs mentioned in 4.5 for k = 4 will be character­
ised. 

Let kbe a positive integer, k ~ 4. A necessary and sufficient condition for the set 
of vertices of a connected enumerable graph (G, Q) to be ordered in a sequence 

(6) a l9 a2,..., an,... 

such that there holds for every n 

(7) li(an,
an+x) = k 

is the validity of the implication 

(8) A u B u C = G, with C finite and A, B infinite => /i(A, B) ^ k. 

Proof. Necessity. Suppose that G is ordered in a sequence (6) for which (7) holds. 
Let A, B be infinite subsets from G, C finite and A u B u C = G. There exists an 
index m such that for n > m,aneAu B. As A, B are infinite sets, then there exists an 
index p > m such that ape A, ap+1 eB. As pi(ap, ap+1) g k then also fi(A, B) <J k. 

Sufficiency. Order G in a sequence bx, b2, ...,bn,.... Let (K, Qn D(K)) be a finite 
connected saturated subgraph in (G, Q) containing bt and b2 among its vertices. Let 
(G — K, D(G — K) n Q) decompose into components Ll9 L2,..., Ln,.... To each of 
these components assign a vertex cn e K such that fi(cn, Ln) = L A component Ln will 
be called a component of the first kind if it is infinite or finite and there exist infinitely 
many other finite components Lj such that cn = Cj. Components not of the first kind 
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will be called components of the second kind. There are only finitely many components 
of the second kind (K is a finite set); let these be Lh,..., Lik. Let (G±, Qt) = (K u L h u 
u ... u Lik, Q n D(K u Lh u ... u L J ) . The components in (G - G^Qn D(G-GX)) 
(with respect to the graph (Gl9 QX) where the vertices Cj have the same significance as 
for (G, Q)) are components of the first kind only.1) We shall choose one of them and 
denote it by Lh. Order the vertices of the graph (Gl9 Qt) in a sequence 

aly..., ami, 

where am = Cjt in such a manner that (7) holds. Such a sequence exists according to 
Lemma 3 in [2].2) Let n ^ 1 and suppose that there is defined a connected saturated 
finite subgraph in (G, Q)(Gm Qn) with the following properties: 

L To each component L/from (G — Gn, Q n D(G — Gn)) there is assigned a vertex 
Cj e Gn in such a way that all the components are components of the first kind. 

2. The set Gn is ordered in a sequence a3,..., am such that (7) holds and pi(am, cJt)£l 
for a certain component Ljn. 

3. fcl5 &2»---> bneGn-
Let v be the smallest index with bv non e Gv. Then v _• n + 1. Let bv lie in a com­

ponent L, to which a vertex c is assigned in Gn. 
a) Let c = cin and Lbe finite. Then order Lin a sequence am+1,..., ap such that 

ju(am+1, cJn) ^ 2 and ^(a^ c-J = 1 and that (7) holds. 
We put then 

Gn+1=GnvL, Qn+1 = Q n D(Gn+1) . 

The set Gn+1 is ordered in a sequence al9..., am,..., ap. The set of components in 
(G — Gn+1, g n D(G — Gn+1)) differs from the set of components in (G — Gn, 
g n D(G — Gn) only by L. As Lis finite, c is assigned to infinitely many components 
in (G — Gn,Q n D(G — Gn)) so that the induction suppositions 1, 2, 3 are satisfied 
(with p instead of m; the assignement of vertices to components remains the same). 

b) Let c = cjn and Lbe infinite. There exists an a' e Lsuch that \i(a!, c) = 1 and an 
a e L for which a^af and \i(a, c) = 1 or 2. Furthermore, there exists in L a subgraph 
(S, o) of the first kind, which contains a, a' and bv. Let us order its vertices in a se­
quence am+1,..., ap such that (7) holds, am+1 = a or a! and ap is assigned to some 
component from (L— S, Q n D(L- S)). We put Gn+1 = Gn u S, Qn+1 = £ n 
n i>(Gn+1) and Gn+1 is to be ordered in a sequence 

(9) al9...,am,am+1,...,ap, 

*) A connected finite subgraph will be termed of the first kind if all of its components are of the 
first kind after suitable choice of vertices Cj. It may be observed in the just described construction 
that in a connected graph there exists a subgraph of the first kind containing a prescribed finite set 
of vertices. 

2) This lemma reads as follows: Let (G, o) be a finite connected graph, a, b c G, a 4= b. Then 
a set G may be ordered in a sequence alt ...,an(n = card G), where ax = a,an= b, f*(ai9 ai+1) 5* 
^ 3 for / = 1,...,«— 1. 
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for which (7) holds (fi(am, am+1) <I 3). The suppositions of induction are satisfied 
(the component L is replaced by components from (L — S, Q n D(L ~~ S)). If an 
element c is assigned to some other component II 4= L, then let this assignement be 
preserved. 

c) Let c =)= Cjn. Let us order the vertices from (Gn, Qn) to which there is assigned at 
least one component from (G — Gn,Q n D(G — Gn)) in a sequence c1,..., cr such 
that Cjn = c1, c = cr. Let the point c* be assigned to components L\,..., L*,.... Let 
K* = U4r Define a graph on the set of all Kh in following way: Kh and Kh' (h * ft') 

p 
will be connected by an edge precisely if in Kh there exist infinitely many vertices, 
which have a distance <Ik from K* and simultaneously in Kh' there exist infinitely 
many vertices which have a distance 51 k from Kh. We shall show that the graph thus 
defined is connected. Assume the contrary. Then we can decompose the system of all 
Kh into two disjoint subsystems Khl,..., Khs and Khs+1,..., Khr such that no two Kh 

from various systems are connected by an edge in defined graph. Put At = K*1 u 
u ... u Khs, Bx = Khs+i u ... u Khr. Both At and Bx are infinite sets, Gn is finite and 
Axu BjU Gn = G. By the assumptions of our theorem, n(AuBx) ^ k. Consequently 
there exist a' e Ax and V eBx such that fi(a', b') 51 k. Let A2 = Ax — {a'}, JB2 = 
= Bt — {ft'}. The assumptions of our theorem are again satisfied for the sets A2, B2, 
Gn u {a', b'}. Thus fi(A2, B2) g k and there exist vertices a" e B2, b" e B2 such that 
//(a", b") <I k. Analogously, one may define by induction vertices a(n), b(n) such that 
#(a(n), b(n)) 51 k. The points a(n)

 SLXQ distinct and belong to some of the sets Khl,..., 
Khs, and then the points b(n) are distinct and belong to some of the sets Khs+1,..., Khr. 
Therefore there exist infinite sequences a(nx),..., a(rtm),..., and b(ni),..., b(nm),... such 
that all points from the first sequence belong to the same set Kh and all points from the 
second sequence belong to the same set Kh\ Then K* and Kh' are connected by an 
edge, which is the contradiction. Thus the graph on the set of Kh is connected. 

We shall now return to the definition of the graph (Gn+i, Qn+ x). Let Khl,..., Kht be 
a path connecting K1 and Kr (thus Kftl = K1, Kht = Kr). 

Assume \x(a, cjn) = 1 for a e K1. Let a belong to the component L. Let a' eK ' , 
a' 4= a, with ii(a', Khl) 51 k. Let a' belong to the component L\ 

a) Let L = L . 
ax) If Lis finite, we can order its vertices in a sequence 

(10) ax,..., as 

such that (7) holds and 

(11) ccx = a and as = a'. 

a2) Let Lbe infinite. Construct in it a subgraph of the first kind which contains a' 
and a and order its vertices in a sequence (10) for which (11) holds. 

b) Let L#L ' . 
blt) If L is finite, we may order it in a sequence (10)for which at = a and }i(ccs9 a) <I 

s i. 
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b12) Let Lbe infinite. Then construct in La subgraph of the first kind which con­
tains a and order its vertices in a sequence (10), for which there hold the relations 
mentioned in b n ) . 

b21) Let L' be finite. Then order it in a sequence 

(12) as+1, ...,an 

such that 

(13) v(<xs+i> cjn) « 1 or 2 , an = a'. 
b22) Let 11 be infinite. Then construct in L a subgraph of the first kind which con­

tains a' and a point as+1, for which }x(as+1, cjn) = 1 or 2, a' 4= as+1. Order the vertices 
of this graph in a sequence (12). 

In all cases in b) 
a1?..., as, as+1,..., an 

satisfies (7) (y(as, as+1) <S 4). 
c) Let be 1 < i < t and let there already be defined a sequence 

(14) a i , . . . , ^ 

such that ^(a,,, K*) <* k. Assume a e Kl, \x(a, a0) <* k. Then we may proceed as in a) or 
b) with the exception that instead of a vertex cJn we consider the point cl Which is 
assigned to the component from Kx and a has the meaning just defined.3) 

d) Next let i = t and assume we have a sequence (14). Let a again be a vertex in 
Kr (= Kht) with pt(a, av) 51 k. Let the vertex a belong to a component L(La K""). 

dt) Let bveL. 
d n ) If L is finite, there exists in Kr a further finite component L'. Order L in 

a sequence 

(15) au+1,..., aw 

such that (7) holds, av+1 = a and }i(aw, c) <g 2 (the point c is assigned to components 
from Kr). Order the component L in a sequence 

(16) aw+1, ...,az 

for which (7) holds and fi(aw+1, c) ̂  2, n(az, c) = 1. 
d12) Let L be infinite. Construct in it a subgraph (S, a) of the first kind which con­

tains a and bv, and order its vertices in a sequence (15) in which a^ has distance at 
most 1 from a certain point cf of this subgraph, belonging to a certain component from 
(L- S,gn D(L - S)) (thus pt(c\ aw) S 1). 

d2) Let by e L' * L. 
d21) If Lis finite, order it in a sequence (15) such that again ac+1 = a and ^(aw, c) ^ 

< 2 . 

3) We can choose a point analogous to a! such that a' =f= a because we have tf 0 possibilities for 
the choice of this vertex (according to the definition of a graph on the system of sets Kh). 
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^211) Let L' be infinite. Then construct in it a subgraph (S, a) of the first kind which 
contains bv and let c' be its vertex assigned to some component from (L' - S, Q n 
n D(IL — S)). Order S in a sequence 

(17) aw+1, . . . , a z , 

where /t(ocw+1> c) = 2, /*(az, c') = 1 and for which (7) holds. 
^212) Let II be finite. Order it in a sequence (16) with the required properties. 
d22) Let L be infinite. Then construct in L a subgraph of the first kind and order its 

vertices in a sequence (15) with the required properties. 
We order the component II as in the case d21. 
In all the cases d) we obtain a sequence 

(18) ax,..., an, a l 5 . . . , av, av+1,..., aw 

or 

v19) al9..., an, a l 5 . . . , av, av+1,..., aw, aw + 1 , . . . , az . 

As in all cases /i(av, av+1) = fc and fi(aw, aw+1) = 4, the sequences (18) or (19) sa­
tisfy (7). If we denote the set of all members in the sequence (18) or (19) by Gn+1, then 
(GM+1, Q n D(Gn+1)) is a graph of the first kind. Also, if some c" in a graph (Gn, Q„) 
belongs to infinite by many components, again there exist in (G — Gn+1, Q n(G — 
— Gn+1)) infinitely many components with distance 1 from c". In (18) or (19) the ele­
ments are from at most two components assigned to c" in (G — Gn, Q n D(G — G„)). 
The infinite components L from (G — Gn,Q n D(G - Gw)) whose elements appear in 
(18) resp. (19), are now replaced by the components of the graph of the first kind 
obtained in the construction of the sequences (18) and (19). If to such a component 
L there belongs a vertex c" which also belongs in (G„, Qn) to a component L' whose ele­
ments do not occur in our sequence, then again we assign c" to the component L' in the 
graph (Gn+1, Qn+i)(Qn+i = Q n D(Gn+1)). The assignement of vertices from Gn+1 to 
the new components let be taken over from the single subgraphs of the first kind 
obtained in the construction of the sequences (18) and (19). Then the induction as­
sumption concerning the last element of a sequence (i.e. aw or az) is also satisfied, when 
for cjn one takes c or c' (obtained in d12), d211) and similarly for d22)). 

4.7. Theorem 4.6 does not hold for fc = 1,2, 3. An example for fc = 1 may be 
found on fig. 1, where K represents a complete enumerable graph, an example for 
fc = 3 on fig. 2. 

Suppose for instance that it is possible to order the points of the graph on a figure 2 
in a sequence a1? a2 , . . . , an,... such that ji(ab ai+1) ^ 3. Let b = ah, c = ah. Let 
N > h9 **2.. Let nt, n2,... be the sequence of all those n> N for which an = au 

<*n+i = dk (for certain i, fc). Let nj be an arbitrary member of this sequence and 
0CnJ+1 = dk for a certain fc. Letf̂  = at. We shall show that 

C20) i < nj + 1 or i = n} + 2 . 
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Assume that (20) does net hold. Then evidently ai^1 = ek and then necessarily 
ai+1 = c, which is a contradiction with i2 < i + 1 and c = dh. 

Further we shall show that if an =f£ for n > njy nj+1 > n9 then dt = an, with 
n' < nj+1. If n' < n there is nothing to prove, if nf > n then an_x = et and an+1 = 
= di9 and thus nT = n 4- 1 < nJ+1. 

Therefore there exists a j " such that n > nj,, ft = aw dt = an> => nf < n. Let 
j > / and a„i+1 = d i r According to the assertion proved above, anj+2 = fh9 

~ПJ +з eh. Thus a„ i + 4 = di2 for some i2 and again anj+5 = f 2 , a„ i + 6 = e* By 
induction it follows that an with n > ns is always one of the elements of the form 
dt, ci9ft; but this is impossible since the are infinitely many at. 

It is easy to prove that our graph satisfies the suppositions of theorem 4.6 for 
fc = 3. 

4.8. A sequence p = {du d2>...} will be called an A-sequence when one of fol­
lowing cases occurs 

1. dt = 1 for all L 

2. There is an index i t such that dh = 2, and d r = 1 for i =t= ix. 
3. There is an index ix such that dh = dh+1 = 2, and dt = 1 for i 4= ij., x 4= 

# it 4- 1. 
We shall say that an enumerable connected graph (G, Q) is of type A if there exist 

B cz G and b € G such that: 
1. card B = 2, card (G - J}) = 2. 
2. bnoneB. 
3. Q = D(G) - {(b, V) : 6' e£} or B - {bi, 62}, £ = D(G) - D({b, bl9 b2}). 

Then 

Ш. U 

/ л-
>',' \ v -

Л" 

a) Let 7i = {at,..., am ...} e n(G). Then X71) i s a n -4-sequence. 
b) Let p be an Al-sequence. Then there exists a n e iz(G) such that p(n) = p. 
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c) Let a) and b) hold for some graph (Gx, QX) (for G we put Gx). Then (Gv Qi) is an 
A-graph. 

From this example we can see that there exist non-isomorphic graphs (G, Q) and 
(G\ Q') for which P(G, Q) = P(G', Q'). 

*, 

Obr.2. 
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Výtah 

O USPOŘÁDÁNÍ VRCHOLŮ GRAFU 

MILAN SEKANINA, Brno 

Nechť (G, O) je spočetný, souvislý (neorientovaný) graf. Nechť \i je obvyklá metrika 
v (G, Q). Uspořádejme G do posloupnosti n = {ax, a2,..., an,...}. Nechť p(n) je po­
sloupnost {ii(al9 a2), ...,n(an, an+1),...}. V článku je vyšetřována množina P(G, Q) 
všech takovýchto posloupností p(n). Jsou dokázány tyto hlavní věty: 

1. card P(G, Q) = 1 nebo K0 nebo 2*°. 
2. K posloupnosti p = {dx, d2,..., dn,...} přirozených čísel existuje spočetný 

souvislý graf (G, Q) takový, že pe P(G, Q) právě tehdy, kdy pro každé n existuje 
m > n takové, že pro všechna i,n 5| i ^ m je 

diS dn + ... + di-x + di+1 -f . . . + dm. 

Je-li tato podmínka splněna, existuje takovýchto neisomorfních grafů 21*0. 
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3. ИесМ к }е рпгогепё сЫо9 к ^ 4. V тпоггпё Р(С9о) ехЫще ройоирпоП 
{й19 йъ > 4> •••}> я и$? 4 ^ &, ргаиё ХеЫу, ]е~И врЫёпа гтрЦкасе 

А и В и С = С, Л, Б пекопеспё, С копеспа => /ф4, В) ^ к. 

Пггепг перЫН рго к = 1,2, 3. 
4. Ехг8Ш]г пегзотог/т дга/у (С, ̂ ) а (С, #') ^акоVё9 ге Р(09 о) а Р(0'9 ^') $р\у~ 

ъа](. 

Резюме 

ОБ УПОРЯДОЧЕНИИ ВЕРШИН ГРАФОВ 

МИЛАН СЕКАНИНА (МОап Зекашпа), Брно 

Пусть (09 о) — счетный связный граф (без ориентации). Пусть р, — обыкно­
венная метрика в (С, о). Мы упорядочим С в последовательность % = {а19 а19.. .> 
...9ап9...}9 и пусть р(п) = {р.(а19а2)9...9р(ап9ап+1)9...}. В работе изучается 
множество Р(09 о) всех последовательностей р(п). Доказываются следующие 
теоремы: 

1. сагй Р(С9 #) = I или К0 или 2*°. 

2. Длл последовательности р = {с119 ...9с1п9...} натуральных чисел суще­
ствует счетный связный граф (О, ^) такой, что р е (С9 #), тогда и только 
тогда9 когда для всякого п существует т > п ткаое9 что для всех г, п ^ I <̂  т 
имеет место соотношение 

4 й <*» + - + 4-1 + 4+х + ••• 4 -

Когда это условие выполнено, то таких неизоморфных графов существует 2Хо.. 

3. Пусть к — натуральное число, к ^ 4. В множестве Р(09 о) существует 
последовательность {й19 й29..., йп...}, где йп^к9 точно тогда9 когда выпол­
няется следующая импликация: АиВиС = С9А9В бесконечные, С конечное 
=>р(А9В)^к. 

Теорема неверна для к = 1,2, 3. 

4. Существуют неизоморфные графы (С9 ^) и (<?', ^')9 для которых Р(0'9 ^') = 

= Р(0, <?). 
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