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SVAZEK 98 * PRAHA 10.5. 1973 % &ISLO 2

ON ALGEBRAS HAVING AT MOST TWO ALGEBRAIC OPERATIONS
. DEPENDING ON n VARIABLES

ANNA SEKANINOVA, Brno

\ (Received October 25, 1969)

INTRODUCTION

Let A = (X, F) be an algebra in the sense of Professor Marczewski. In this paper
it is supposed that card X > 2. Let w, denote the number of essentially n-ary algebraic
operations in 2, it means, n-ary algebraic operations depending on each variable.
Observe that w; = 1 in view of the existence of the trivial unary operation f (x) = x.

Professor MARCZEWSKI suggested the examination of possible sequences {w,,} in
general algebras. In this paper we give a complete description of possible sequences
{w,} under the condition w, < 2 for all n (Section 2). In Section 1 we look for
a representation of algebras in which w, = 1. This concrete topic has been suggested
to me by J. PLONKA in connection with my attending of seminar of Prof. G. GRATZER
in Winnipeg.

Sometimes we shall omit the word “‘algebraic”’, when we speak about algebraic
operation. The representability of an algebra is defined as in [6].

1.
In the first part we shall be interested in an algebra A = (X ; F), where w, = 1 for
n=0,1,2,... So, if not stated otherwise, 2« means such an algebra.
Remark 1. It is clear that an algebra with w, = 1 for all n possesses at least two

elements.

Lemma 1. If x .y is essentially binary in U, then it must be symmetric and
associative.

Proof. The first part follows from w, = 1. If (x . y) . z is essentially ternary, then
x.(y.z) =(y.z).x is also essentially ternary and in view of w; = 1 it must be
(x.y).z=x.(y.2). If(x. y). zis not essentially ternary, it can be equal to one of
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the following functions: x, y,z,x.y,x.z, y.z or to the constant ¢, which exists
in view of w, = 1.

It cannot be (x. y).z = x or y because the operation . is symmetric and cannot
be equal to x . z or y . z, because in this case we get x . z = y . z, which contradicts
to the assumption that . is essentially binary. If it were (x . y) .z = zor(x.y).z =
= x .Y, then putting z = u.v we would get in the first case x.y = u . v, hence
x.y = ¢ — a contradiction. The second case is analogous. Thus itis (x.y).z = c.
And similarly we prove x . (y.z) = c. It means (x.y).z = x.(y. 2).

We have two possibilities: either x . x = x or x. x = c.

Lemma 2. If x.x = x, then W can be represented as an at least two-element
semilattice with 0 or 1.

Proof. It follows from Lemma 1, that . satisfies the axioms of semilattice. Because
wo, = w; = 1 it must be x.c = x or x. c = c. Every operation x, . x, . ... . x, for
n = 3 is essentially n-ary. In fact, in the opposite case we have x; . x,.....x, = c.
Then putting x; =x, =... =Xx,= X, wWe get x,.x, =c — a contradiction.
Then every essentially n-ary operation is of the form x, . x, . ... . x,, which proves
our lemma.

Lemma 3. If x.x = c and x.c = x, then W can be represented as an at least
two-element Boolean group.

Proof. First we use Lemma 1. Each of the operations x, . x, . ... . X, is essentially
n-ary. Otherwise it would be x, . x, . .... x, = c. Putting ¢ on each variable x; for
i =3 we get x;.x, =c — a contradiction. So any operation in U is of the form
X1 eXg e Xpe

Remark 2. If x.c = c and

1) X{.Xy.....X, =cC forsome n2=2,

thenx.x =cand x; . X5 ..... X, = ¢ for m > n.

In fact, it cannot be x . x = x, because in this case, identifying all variables in (1),
we get x = ¢, which is a contradiction to Remark 1. Further in view of (1) we have
X1 X e uee e Xy = X1 e Xg e reeeXpeXpggooeeo Xy =0CoXpygooeeoXpy=0C

Theorem 1. If U is a groupoid (it means the operation x .y can be taken as
fundamental), then A can be represented as an at least two-element semilattice
with 0 or 1, an at least two-element Boolean group or a semigroup.fulfilling the
equalities x . x =x.c=¢, x.y=y.x, (x.y).z=x.(y.z) and the equality
X{.X3.....X, = cdoes not hold for any n = 1.

It follows from Lemma 2, 3 and Remark 2.
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Example of the last algebra is the following algebra: we take an infinite set X and
let A be the set of all non-void subset of X. For A, B € A we define an operation . as
follows: if AnB=0,thenA. B = Avu Band A. B = X otherwise.

Lemma 4. For any natural number n > 1 and for any sequence {a,}, where
k=0,1,2,...,a, =1fork <nanda, = 0orlfork = n, there exists an algebra
A= (X; ., fi(X1, X3, ..., X;) for i 2 n, a; = 1) such that in A we have w, = a, and
X{.Xy.....Xgis essentially k-ary for1 <k <n,n>2and x,.x, = cforn = 2.

Proof. Let G be the set of elements of a free algebra ({g;}i<y,; -, ¢) With X, free
generators g; in the equational class defined by the equalities: (x. y).z = x.(y. z),

(2 X.y=y.x,
x.x=c.x=c,

X{.Xg.ueo . X, =C.

Let us denote by X = G U {b}, b ¢ G. We define the operation x . y as follows: if
X, y € G, then the operation . coincides with . in our free algebra. Letusputx.y = ¢
otherwise. Let a; # 0. We define the operation f{(x,, x,, ..., x;) as follows: for distinct
915 G2 - §; it 18 £G4, g2, .., g;) = b and f(x,, ..., x;) = c otherwise. It is easy to
check that each operation fy(x;, x5, ..., X;) is essentially i-ary and all required con-
ditions are satisfied.

Remark 3. The functions f; in previous proof satisfy the equation f(x, x, ..., x) =
= ¢. The following proposition will show that this property is necessary.

Proposition 1. Let A be an algebra, c € U. Let . be an essentially binary operation
in A, satisfying equations x . x = x.c = c and let in W be w; = 1 for all i. Let
n = 2. Let f(xy, ..., x,) be an essentially n-ary operation in A. Then it must be
fx,%,...,x) =c

Proof. Let us suppose
(3) fx,x,..,x) =x

and n is even. Putting in the operation f x = x, for i = 1,2,...,n/2 and x; = y for
remaining variables we get f (x, cees Xy Py uen y), which is binary, symmetric because f
is symmetric, and idempotent. So, it is essentially binary and different from ., which
contradicts w, = 1.

Let us suppose now (3) and n is odd. It must be

(4) f(xl’ X2, xz,-..,xz) =X, .

In fact f(xy, x,, ..., x,) cannot be binary in view of w, = 1. If it were f(Xy, X2, --
.-+ X3) = X, then we would have

(5) F(f(x1, X2, 00 X3), Xg5 o0y Xg) = Xy .
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But the operation f(f(xy, X35 ---s Xp)s Xp4 15 - -» X24—1) i €ssentially (2n — 1)-ary and
therefore symmettic in view of w,,_; < 1. Namely let f(f(xy, X5, ...y Xp)s Xpigs -
.+ss X25—1) be independent on xi, ..., X, Then f(f(X1 - s Xp)s Xpu 15 +o0s Xgp—q) =
= f(f(xl’ S STRREH xl)’ Xn+1s+e0 x2n—1) = f(xl’ Xp+1s e 009 xZn"l)' But f(xi’ Xpt1s 0o
.+.s X2,—1) depends on each variable, also on x,. Thus f(f(x;, X5, ..., X,), Xp4 1, -
... X25—;) depends on xy, ..., x,. Let us suppose now, that the function f(f(x,, ...
vees Xp)s Xt 15 o0y X2p—y) dOes not depend ON X1y --e Xzp—1- SO f(X1, Xpuys .o
vees Xapo1) = F(F(Xgs X15 oees X1)s Xpt1s -oos Xame1) = S(F(X1s 2v0s Xp)s Xg5 o0y %) =
= f(xy, ..., X1) = x,, which contradicts the fact, that f(x,, ..., x,) is essentially n-ary.

Thus f(f(X1, X25 +.0s X2)s Xg5 ces X1) = F(F (%15 %15 - 000 X1)s X200y X3) = (%1, X2,
...y X3) = X,. And in view of (5) we get x, = x,. Then (4) must hold.

The operation f(x;, X, c, ..., ¢) is symmetric and binary, so it must be equal either
to x; . X, or c. Putting x, = ¢ we get in both cases by (4) x; = c¢. So formula (3) leads
to a contradiction and it must be f(x, x, ..., x) = C.

From Lemma 4 we get

Theorem 2. For every n = 2 there exists an algebra withw, = 1,k =0,1,2,3,...,
for which a set of fundamental operations can be chosen as {.,fy fy+1s---}>
where . is a binary operation and f; for i = n an essentially i-ary operation
different from x, .....x;.

Proof. To prove this theorem it is enough to form algebras 2, from Lemma 4 for
n=234,..and w,=1, k=0,1,2,... Observe that any algebra 2, satisfies
equalities (2) and all equalities of the form f(x,,, ..., x,,) = ¢, where some of variables
Xp,s --+s Xp, are the same, or equalities of the form ¢ = ¢, where ¢ is some proper

superposition in which operations f; appear.

2.

Now we start to examine all possible representable sequences wg, @4, ®,, ... such
that w, <2 forn =0,1,2,... A sequence ay, a,, d,, ... is called representable, if
there exists an algebra 2 in which w, = a, for every k. From Theorem of [1] it follows
that:

Proposition 1. Every sequence wg, @y, ..., @y, ..., Where wy, @, > 0, is repre-
sentable.

Thus let us suppose from now that w, = 0. Further we shall use the following
proposition:

Proposition 2. Let n > 2. The alternative subgroup A, (i.e. the subgroup consisting
of all even permutations) of a symmetric group S, is the only subgroup in S, with
index 2.
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Lemma 1. Let for W w, = 0 and 0 < w,;, < 2 for some k > 1. Then there exists
in A a symmetric binary operation.

Proof. Let.f(xl, Xgsenes ka) be an essentially 2k-ary operation. As w,, < 2, it
must be either symmetric or it fulfils equalities f(x, x5, ..., X1) = f(Xi;5 Xis -
<vos Xi,), Where (iy, iy, ..., i) runs over all even permutations of the numbers
1,2, ..., 2k (see Prop. 2). One of the equalities f(xy, X5, ..., X2¢) = f(¥200 X26=1> - -~
e X2, %1)s f(Xg5 X250 X2) = f(Xak—15 Xaks X2k—25 -+, X3, X;) must be fulfilled,
because one of the permutations (2k, 2k — 1,...,2,1) and (2k — 1,2k, 2k — 2, ...
..y 2,1) is even. Now putting x; = x; = ... = X = X, Xgyq = ... = Xz = } We
get a symmetric binary operation.

From Theorem 1 of [3] we have:

Proposition 3. If w, = 0 and there exists in W an essentially binary symmetric
operation, then w, > 0 for n = 2.

E. MaArcCzEWSKI calls (see [2]) a k-ary operation f quasi-symmetrical, if for each
pair I, m integers such that 1 < I £ m < k there eXists a permutation p;, p,, ---, Pk
of the numbers 1,2, ..., k such that p, = m, p, =1 and f(x;,..., X)) = f(Xp,s .-

.» Xp,). He proved

Proposition 4. If there are no algebraic constants and f is a k-ary quasi-sym-
metrical operation in an algebra %, then every iteration of the form f(f(xy, ..., X\),
Vas oo Vi S(F(f (X5 <5 Xi)s Y25 - oss Yi)s Z25 - o> Za)s - .. depends on each variable.

J. Plonka called my attention to the fact, that Proposition 4 is valid for the func-
tions f(xy, X3, ..., X,), for which the group of all permutations ¢, such that

f(xl’ ) x,,) = f(xw)’ cee xq,(,,)) s

is transitive. One can prove this assertion only by formal alternations in the proof of
Proposition 4.

Remark 1. In our algebras with w, = 2 there hold f(x,, x5, ..., %) = f(%i,, ..
.ves X ), Where iy, ..., iy runs over all even permutations of the numbers 1,2, ..., k
and f(x3, X1, X3, ..., Xi) = f(X},5 ..., X;,), where jy, ..., ji runs over all odd permuta-
tions of the numbers 1,2, ..., k. For k > 3 every operation f with this property is
quasi-symmetrical.

Lemma 2. If w, = 0, w, < 2 for every n, w,, = 0 for n > 1 and there exists an
essentially (2k + 1)-ary operation f(x,, X, ..., Xz4,) for k 2 1 in U, then there
exists an essentially ternary operation in U and it is ,,4+1 > 0for every n.

Proof. In view of 0 < w,,; < 2 and Proposition 2 we have

(6) F(X4, Xy eo0y Xapa1) = F(X3, Xy, X3, Xgp +o00 X264+ 1) -
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First we prove that there exists an essentially ternary operation in . If k = 1, the
given operation f is essentially ternary. Suppose k > 1. Consider the operation

(7 f(xgs X2, X3, ¥, .00 ¥)

In view of (6) the operation (7) depends on each variable x,, X,, x5 or none of them.
If it depends, the operation (7) is essentially ternary, because of w, = 0. If (7) does
not depend on X, x,, X3, then it must be f(x,, X,, X3, ¥, ..., ¥) = y or g(y), where
g(y) is a non-trivial function. Consider the operation

(8) f(f(xls X325 eees Xogt 1), Xok+2s ++0s Xak+ 1) .

By Proposition 4 and Remark 1 it follows that (8) is essentially (4k + 1)-ary. Thus
every even permutation of variables of (8) is admitted. So we can write one of the
following equalities:

f(f(xn X2y eney x2k+1)a Xok+25 s x4k+1) =

= f(f(xp X25 X35 X2k+45 + -5 Xak+ 1), Xok+25 X2k+35 X4 « - s x2k+1)

or
f(f(xn X35 ooy Xog+ 1), Xok+25 00 x4k+1) =
= f(f(xl’ X35 X35 Xok+4s + 05 Xak+ 1): X2k+25 X2k+3s X55 X45 Xgy + -5 X2k 1) .
Putting x, = x5 = ... = Xpp41 =y and Xpp 4 = Xppi5 = ... = Xggp4q = Z We get

z = yor g(z) = g(y), which contradicts w, = 0. Thus the operation (7) is essentially
ternary. Let us denote it f*(x,, x,, X3). By (6) it is cyclic, so, by Propos. 4 and Remark
1wy,4+y > Oforeveryn > 0.

Lemma 3. If for an algebra U one has wy = 0, o, =1, w, =2, w3 <2 and . is
an essentially binary operation, then . is diagonal, it means it fulfils equalities:

x.x=x, x.(y.z2)=(x.y).z=x.z.

Proof. Operation . is not symmetric. Otherwise there would exist tWwo symmetric
essentially binary operations and at least eight essentially ternary operations (see (4),
Lemma 4), which contradicts our assumption w; < 2.

If one of the operations (x . y) . z and x . (y . z) is essentially ternary, say the first
of them, then we have by the assumption w; < 2 and Proposition 2

(9) x.»).z=(z.x).y=(y.2).x.
Thus x.y=(x.y).(x.»)=[x.»).x].y=[x.%).y].y=(x.»).y=
= (y.y).x = y.x against the first part of this proof. Hence none of the operations

(x.).2z x.(y.z) is essentially ternary and from the assumption of our Lemma
and Theorem 2 from (5) it follows that . is diagonal.
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Lemmad. If wy =0, o, =1, w3 £ 2, . is not symmetric, essentially binary

operation and there exists an essentially ternary operation f(xy, X5, x3), then there
exist at least 20 essentially 6-ary operations.

Proof. As w; < 2, by Proposition 2 f(x,, x, x3) satisfies

(10) f(xn X2, xa) = f(xs: X1, xz) = f(xz: X3, xl) .

Consider g(xy, X, ..., X¢) = f(*y, X2, X3) . f(x4, X5, X¢). If g does not depend on x;,,
then by (10) it does not depend on x,, x5. Putting x; = X, = X3 = X, X4 = x5 =
=x¢=yand then x; = x, = X3 =2, X, = X5 = Xg =y Weobtainx.y =z.y.
Hence . is not essentially binary. Thus g must depend on x,, x,, X3 and analogously
it must depend on x4, x5, x¢. Thus g is an essentially 6-ary operation. If we had
F(X1, X2, x3) . (%45 X5, Xg) = f(X45 X2, X3) . (%3, X5, Xg), then it would be g(x,,
X35 +ees Xg) = f(X3, X45 X3) . f(X65 X15 X5) = f (X6 X4 X2) . [(%3, X1, X5) = f(%2, X6, X4) -
(x5 X3, x1) = f(%5, X65 Xa) - (%25 X3, X1) = f(X45 X5, Xe) - f (15 X35 X3).

Putting x;, = X, = X3 =X, X, = X5 = Xg =)y We get x.y = y.x against the
assumption about .. So we have at least (§) = 20 essentially 6-ary operations
Sf(Xip X4y x1,) - f(x4,5 X140 X;,), Where all iy are different and for different choices of
numbers iy, i,, i; we get different operations.

Theorem 1. If wy =0, w; = 1, w, = 2 and w, £ 2 for n > 2, then w, = 0 for
n > 2 and the sequence 0,1,2,0, ... is representable by a non-trivial diagonal
semigroup and reversely every algebra representing this sequence is non-trivial
diagonal semigroup.

Proof. By Lemma 3 there exists a non-trivial diagonal operation x . y and it is
clearly not symmetric. By Lemma 1 we get w,, = 0 for n > 1. Lemma 4 implies
w3 = 0 and Lemma 2 implies w,,,; = 0 for n = 1.

Corollary 1. If wy = 0, w; = 1, w, = 0, w, £ 2 for n > 2, then the only possible
sequences are the following: 0,1,0,... and 0,1,0,1,0,1,..., where a trivial
algebra gives a realisation of the sequence 0, 1,0, 0, ... and an at least two-element
Boolean group with the operation x; + x, + x5 taken as fundamental gives the
unique realisation of the other sequence.

Proof. From Lemma 1 it follows that w,, = 0. So the corollary follows form
Theorem 1 and 2 of UrBANIK (see [7]).

Lemma 5. Let w, = 0, w, = 1 and let there exist in A a symmetric and associative
binary operation .. Suppose that we have a sequence of operations f*"(xy, x,, ...
. . . -1
cews Xpu), such that every f¥(xy, Xp,...,Xps) is symmetric, f*(f*"7'(xi,x3, ...
1 -1, 2 2 2 n=1/_2n _2n 2n . .
o Xgn=t)y fUT(xE X3 oo XRant)y o ST (XT, %37, L, X30-4)) is symmetric and
I = Then f*" =
(%, Xy eces X, ¥ ¥y ooy ¥) = X . Y. Then f2" (x4, X3, o0y Xgn) = X1 . X2+ eev s X2n
2n=1—times 27~ 1—times
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Proof. For n = 1 the lemma is obvious. Suppose that it is true for some n. Then
we have .

P2 (x5 X252y Xom+1) = fz"”(fz"(xl, X1y oees X1)s S2 (%25 X5 000 X3)s -

oo S (Rgme1y Xgmaty <oy Xgmat)) = TP (1 X25 oees X2n) s

fzn(xl, xz, casy xzn), . ..,fzn(x2n+ 1s x2n+2, ceey xz..“), ...) =

2n+1
= (X Xg e Xgmy Xg o Xg e Xgmyaay Xp - Xg e ene s Xony
Xongq-Xgng oo e Xontty ooy Xongg o« Xong v v .x2..+1) =
= Xq.X2 .00 Xon. Xongyq e Xongg e e e Xontt .

Theorem 2. If w, =0, w; = 1, 0, =1, w, £ 2 forn > 2, then w, = 1 forn > 2
and an at least two-element semilattice gives the unique realisation of the sequence
0,1,1,1,... between groupoids.

Proof. Suppositions w, = 1 and w, < 2 imply that all operations are symmetric.
Namely x .y is symmetric, X; . X, . ... . X is then an essentially k-ary symmetric
operation. So if there exists further essentially k-ary algebraic operation f(x, x,, ...
..., X;) it must be symmetric, too. Further the operation . is associative because
of w3 £ 2. Namely by Proposition 2, it fulfils (9). Thus we have (x. y).z = (y.z).
.x =x.(y.z), hence . is associative.

Now let for every n f2" be an arbitrary essentially 2"-ary operation of 2. Then the
sequence { f%"} satisfies the assumptions of Lemma 5 and hence f2"(x,, x,, ..., X;4) =
= X;.X3.....Xzn Thus ,, = 1. Consider the operation f(x,, X, ..., X;) . Xg4q - ---
...+ Xz This operation si essentially 2"-ary what can be checked by suitable identi-

fication. So it must be f(xy, X35 ..0s Xp) . Xg4gcor o Xon = Xy . Xz oon . Xgno PUt
X+t = Xg42 = ... = Xgn =y, We have f(x;, X5 ...,%). V=% .%X.....%. ).
Thus f(x1, X2, «.0s X3) = f(X15 Xg0 0oty X) « f(Xpo X2 e00s Xg) = X1« Xgeeen o X
(X1 X2y o0 X1) = f(Xgy Xy ey X) o Xg o Xg e eee X = Xg X e Xy Xg X e
cee o X = X3 .X;.....X,. Hence w, = 1 for every n > 2.

Theorem 3. If w, < 2 forn = 0, 1,2, ..., then sequences having algebraic realisa-
tion are exactly one the following forms:
1) @y > 0, w; > 0, w, arbitrary for n > 1;
2wy =0,0, =1, 0, =0forn>1;
3) wo=0,0,=1forn21;
4) 0;, =0, 0,5, = 1 forn = 0;
5)wo=0,0,=1,0,=2 w,=0frn>2;
6) w =0, w, =2 w,21forn>1;
7) wp =0, @ =2 6, =0forn>1;
8) w, = 0, ®, =2, 0,=2wm,=0forn>2;
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9) wo =0, w; =2, 0y, ~0forn=1and wp+1 > 0forn21;
10) wo = 0, 0y = 2, 0, = 2, Wy, = 0 for n > 1 and wy,; > 0 forn = 1.

Proof. First we prove that sequences 1)—10) are the only possible. Let us recall
that it is w, > 0 in any algebra because of existence of trivial unary operation.
If wy = 0, w; = 1, then sequences 2), 3), 4), 5) are the only possible, which follows
from Theorem 1, Corollary 1 and Theorem 2. If wy, = 0, w; = 2 then sequences
6)— 10) are the only possible, which follows from Lemma 1, Proposition 3 and Lemma
2 and from the observation, that if w, = 1, then by Proposition 3 w,, = 1 forn = 2.

Sequence 1) has a realisation by Proposition 1, sequences 2), 3), 4), 5) by Theorem
1, Corollary 1 and Theorem 2. Sequence 6) and sequences 7), 8), 9), 10) have realisa-
tions by Theorem of (1).

For several sequences we have got representations in such sense that we can show
equational classes of algebras realizing given sequences. It is illustrated in the
following table:

sequence representation
1,1,1,1, ... if x . x = x, semillatice with 0 or 1

if x.x =¢, c.x = x, at least two-element Boolean group
0,1,0,0,... trivial algebra
0,1,1,1, ... at least two-element semilattice
0,1,0,1,0,1,0,... idempotent reduct of at least two-element Boolean group
0,1,2,0,0,... diagonal semigroup
0,2,0,0,... algebra (X, f(x)), where f(f(x)) = f(x) or x.
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