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Časopis pro pěstování matematiky, rol. 102 (1977), Praha 

ON HADAMARD'S CONCEPTS OF CORRECTNESS 

MIROSLAV SOVA, Praha 

(Received January 21, 1976) 

In the present paper, we first continue in Section 2 the study of well-posedness or 
correctness of the Duhamel initial value problem in the sense as introduced in [l]. 
In Section 3, a weakened form of correctness, called here Hadamardian correctness, 
is newly introduced and studied. It is characterised by the fact that the continuous 
dependence of solutions on the initial values is omitted, so that the Hadamardian 
correctness becomes of almost algebraic character. The main results concern the rela­
tions between correctness and Hadamardian correctness in Banach spaces. Finally, 
in Section 5, we obtain the equivalence between these both notions, naturally only 
under strong restrictions, i.e. for a special system of coefficient operators in Hilbert 
spaces. 

In the text, we use the notation and definitions introduced in [1]. In particular, 
it is necessary to be acquainted with the points 1.10, 5.1-5.3, 7.1, 7.4 and 7.7 of [1]. 
Moreover, we need some results of [ l], which will be quoted when necessary. 

1. PRELIMINARIES 

1.1 The complex number field will be denoted by C. 

1.2 Lemma. Let <p, \j/, # e R+ -» R. If the function <p is continuous on R+ and 
bounded on (0, 1), the functions i/t, x are nondecreasing and 

\<p(t)\ ^ *H0 + X(t) J |<K*)| <1T for every teR+ , 

then 
\<p(t)\ £ \l/(t) etx(t) for every teR+ . 

Proof. See [3], p. 19. 

1.3 By a Fr6chet space F we mean a metrizable complete linear topological convex 
space. 
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1.4 Lemma. Let Fl9 F2 be two Frechet spaces and T a linear transformation 
from Ft —> F2. If the transformation Tis closed, then it is continuous. 

2. BASIC NOTIONS AND RESULTS 

The notions of definiteness, extensiveness and correctness are introduced or recapitu­
lated and some of their properties, needed in the sequel, are discussed. This part 
should be regarded as a completion and extension of the paper [1]. 

2.1 Let Al9 A29..., Ane L+(E)9 n e {1, 2, . . .}. The system of operators Al9 Al9... 
..., An will be called definite if every null solution for the operators Al9 A2,..., An 

is identically zero. 

2.2 Theorem. Let Ax, A2, ...9 Ane L+(E)9 ne {1, 2, ...}.Ifthe operators Al9 Al9... 
..., An belong to L(E)9 then the system Al9 A2,..., An is definite. 

Proof. Let u be an arbitrary null solution for the operators Al9 Al9..., An. By 
[1] 5.6 

(1) t / " - 1 ^) + Ay f t ^ - ^ d T + ... 

. . . + A„[ (t - •c)"-1uin-1\x)dr = 0 for every t e R+. 
(« - 1)! Jo 

Let us denote 

(2) X = maxfl|.41 |, |.42 | f..., 1 .̂11). 

It follows from (l) and (2) that 

(3) ||«<""1)(0II =~ K(fV""1^)!dT + * f'l"""1^)!dT + ••• 

^ L - L f ' | „ - - - ( x ) | d T , \ for every teR+. 
{n ~ l)Uo / 

We can rewrite (3) in the form 

(4) ||«(""1)(0| ^ Ke' f'lu*""1^)! dT for everv teR+ • 

Using 1.2, we obtain from (4) that u("-1)(i) = 0 for every te R+ which implies 
according to [1] 2.10 that u(t) = 0 for every t e R+. 

The proof is complete. 
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2.3 Theorem. Let Al9 Al9 ...9Ane L+(E)9 n e {l, 2,. . .}. If the operators Al9 A29... 
...9An are closed and if there exists a sequence Pk9 ke {1, 2, . . .}, 0f operators 
from L(E) such that 
(a) P2

k = Pk for every k e {1, 2,. . .}, 
(P) Pkx -> x (k -> oo) for euery x e £ , 
(y) P*x eD(ylf) for euery x e £ , fce {1, 2,...} and i e {1, 2,.. . , n}, 
(5) Pk-4fx = AtPkx for every ke {l, 2, . . .} , i e {1, 2,.. . , n} and xeD(At)9 

then the system of operators Al9 Al9..., An is definite. 

Proof. Since the operators Al9 Al9 ..., An are assumed to be closed, we see 
from (y) by virtue of [1] 1.11 that 
(1) AtPke L(E) for every fee {1,2,...} and i e {1, 2,..., n}. 

Let now u be an arbitrary null solution for the operators Al9 Al9 ...9An. 
Let us denote uk(t) = Pk u(t) for every t e R+ and k e {1, 2,. . .}. 
It follows without difficulty from (a), (y) and (8) that 

(2) for every k e {1, 2, . . . } , uk is a null solution for the operators -4iPk, A2Pk9 ... 

Using now 2.2 we obtain from (l) and (2) that 
(3) uk(t) = 0 for every t e R+ and k e {1, 2,. . .}. 

On the other hand, it follows from (p) that 

(4) uk(t) -» u(t) (k -• oo) for every t e R+ . 

It follows from (3) and (4) that u(t) = 0 for every t e R+ which was to be proved. 

2.4 Remark. A different criterion of definiteness (of spectral type) was given 
in [1] 7.3. 

2.5 Theorem. Let Al9 Al9 ...9Ane L+(E)9 ne {1,2,...}. If the operators Al9 A29... 
..., An are everywhere defined and bounded, then for every xeE there exists 
a Duhamel solution u such that u(n-1)(0+) = x and for every t e R+ 

KOI =g (1 + max(|^|, \\A2\\,..., \\M))~^y_ 

[«pO+max(|A1 | , |>«2 | f . . . , |4 . | )V] |x | . 

Proof. Let us denote 

(1) K = max (\At\t \A2\\, ...,\\An\) . 

Further, let us choose a fixed xe E and let us put for t e R+ 

(2) g(t) = AlX + tA2x + ... +- — Anx. 
(n - 1)! 
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Obviously, by (l) and (2), 

(3) ||g(*)|| ^ K e'||x|| for every t e R+ . 

Let us now denote by C the set of all functions veR+ -> E which are continuous 
on R+ and bounded on (0,1). 

It is clear from (2) that 
(4) geC. 

Further, let us take for w e C and t e R+ 

(5) Tw(t) = A A w(x) dx + A2 j (t - T) W(T) dT + ... 
Jo Jo 

... + — 1 _ ^ f V ^ T r ^ w ^ d T . 
("~1)! Jo 

It is clear from (5) that 

(6) T transforms C into itself. 

Further, we see without difficulty that 
(7) if wk e C, k e {l, 2,. . .}, w e R+ -> E and wk -* w (k -* oo) uniformly on bounded 

subsets of R+, then weC and Twk -> Tw (k -» oo) uniformly on bounded 
subsets of R+. 

On the other hand, if follows from (1) and (5) that 

(8) || T w(t)\\ ̂  Kt sup I W(T)| for every weC and teR+ . 
0<t£t 

By induction in virtue of [ l] 1.8 and [1] 2.9 we obtain immediately from (8) that 

(9) ||r*w(0||^\uP|KT)|| 
kl O ^ i f 

for every w e C , teR+ and fce{0, 1,...}. 

It follows from (9) that 
00 

(10) Yi (""* T)k w converges uniformly on bounded subsets of R+ for every weC. 
ft = 0 

Let us now write 

(11) v=-t(-Tfg. 
k = 0 

It follows easily from (3), (6), (7) and (9) that 

(12) veC, 
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(13) |i;(t)|| £KeiK+»'\\x\\ for every teR+, 

(14) _ v + Tv = -g. 

According to (2) and (5) we can write (14) in the form 

' (15) v(t) + A, f V T ) dT + ... + — L — An \\t - T ) - ' t<T) dT = 
Jo (« - 1)! Jo 

= -[A 1x + rA2x + . . . + ^ - l [ ^ x ] 

for every f e R+. 
Let us now define for t e R+ 

(16) u(t) = — i — f'(. - T ) - - <T) dT + - ^ X . 
(« - 1)! Jo (n - 1)! 

It follows from (12), (13) and (16) by means of [ l ] 1.7 and [ l ] 2.8 that 

(17) the function u is /.-times difFerentiable on R+, 

(18) u(B) = v , 

(19) M(0+) = u(0+) = . . . = M ("" 2 )(0+) = 0 , «("-1)(0+) = x , 
t< • 

(20) uin)(t) + Ax uin-l)(t) + ... + An u(t) = v(t) + lAt f t;(T)dT + Atx\ + . . . 

- +1 / * ^ A » I (' ~ T ) " ~ 1 ^ T ) d T + / f ^ A » A f o r e v e f y < e * + > 
l(n - 1)! Jo (» - 1)! J 

(21) ||W(0|| ^ (iC + l ) ^ ^ ^ - - 1 ^ ^ ! ! for every t e R+. 
(n - 1J! 

By (12) and (18) we conclude that 
(22) the function u(n) is continuous on R+ and bounded on (0, 1). 

Further, by (15) and (20) 

(23) u(n)(t) + A, uin~l)(t) + ... + An u(t) = 0 for every t e R+ . 

Since xeE was chosen arbitrarily, we see that the statement of our theorem is, 
with regard to [1] 5.1, contained in (1), (17), (19) and (21)-(23). 

2.6 Let Au A2> ...9 Ane L+(E), n e {1, 2 , . . . } . The system of operators Al9 A2,... 

..., An will be called extensive if there exists a subset Z c £ dense in D(At) n 

n D(A2) n ... n D(An), such that for every xe Z, we can find a Duhamel solution 
u for the operators Ai9 A2,..., An so that w^" 1^*) = x. 
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2.7 Theorem. Let At, Al9 ...,Ane L+(E)9 ne {1,2,...}. If the operators Al9 Al9 ... 
...9An belong to L(E)9 then the system Al9 Al9..., An is extensive. 

Proof. An immediate consequence of 2.5. 

2.8 Theorem. Let Al9 Al9 ...9Ane L+(E)9 n e {1, 2,. . .}. If the operators Al9 A29... 
..., An are closed and if there exists a set P̂ of operators from L(E) such that 
(a) P2 = P for every P e <P, 
(p) the closure of the set {Px : P e ty, x e E} contains D(At) n D(A2) n...n D(An)9 

(y) Px e D(At) for every Pe% xeE and ie {1, 2,.. . , n}9 

(8) PAtx = AtPxfor every Pe% ie {l, 2,.. . , n} and xeD (At)9 

then the system of operators Al9 A2,..., An is extensive. 

Proof. Since the operators Al9 A29..., An are assumed to be closed, we see from 
(y) by virtue of [l] 1.11 that 

(1) A{Pe L(E) for every Pe <P and ie {1, 2,.. . , n} . 

Using 2.5 we obtain from (1) that 
(2) for every xeE and Pe % there exists a Duhamel solution vP for the operators 

AtP9 A2P,..., AnP such that vP
n~ 1}(0+) = x. 

Let us now define for P e $ 

(3) uP = PvP . 

It follows easily from (a), (y) and (8) that 
(4) for every xe E and Pe% the function uP is a Duhamel solution for the operators 

Al9 Al9 ...9An such that i#~ 1}(0+) = Px. 
The extensiveness of the system of operators Al9 A2,..., A„ follows from (P) 

and (4). 

2.9 Let A1,A2,...,AneL+(E), ne{l9 2, . . .}, and me{0, 1,...}. The system of 
operators Al9 A2,..., An will be called subcorrect of class m if 
(A) it is extensive, 
(B) there exist two nonnegative constants M, co such that for every Duhamel solu­

tion u for the operators Al9 A2,..., An, for every t e R+ and i e {l, 2,.. . , n} 

1 P II II II 
- \(t - T)m^fw

(n-°(T)dT = Afe"f w(n~1)(0+) . 
"!jo II II || m 

2.10 Let Al9 A29..., A„e L+(E), n e {1, 2, . . .}. The system of operators Al9 Al9... 
..., An will be called subcorrect if there exists an m e {0, 1,...} so that the system 
Al9 Al9 ...9An is subcorrect of class m. 
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2.11 Theorem. Let Al9 A2,..., Ane L+(E), ne{l ,2 , . . .} and me{0,1, . . .}. The 
system of operators Al9 A2,..., An is correct of class m[correct] if and only if it is 
subcorrect of* class m\subcorrect\ and the set D(Aj) nD(A2) n ... nD(An) is 
dense in E. 

2.12 Theorem. Let Ai9 Al9 ...9Ane L+(E)9 n e {1, 2,. . .}. If the system of operators 
Al9 A2,..., An is subcorrect, then it is also definite. 

Proof. Use 2.9(B). 

2.13 Theorem. Let Al9 A2,..., Ane L+(E), we {1,2,...}, and me{0, 1,...}. If 

(a) the operators Al9 A2,..., An are closed, 

(p) the set D(AX) n D(A2) n ... n D(An) is dense in E, 

(y) the system of operators Al9 A2, ...,An is subcorrect of class m, 

then there exists aifreR+xE-*E such that 

(a) for every xeE, the function iV(.,x) is continuous on R+ and 

m! „/./ x 
— iT(t9 x)—* x, 
tm V ' 7 , - . 0 + ' 

(b) j0(t - T)1"1 iT(T, x)<ITeD(At) for every xeE, teR+ and TG {1,2,..., n}, 

(c) for every xeE and i e {1, 2,.. . , n}, the function At J0 (t — T) , _ 1 nHr(r9 X) 6T is 
continuous on R+ and bounded on (0,1), 

(d) HT(t, x) + Al f HT(T, X) AT + A2 | (t ~ T) TT(T, x)dT + ... 

1 C* tm 

... + An (t - T)W 1 iV(T, x) dT = — x for every xeE and t e R+ , 

(e) for every te R+, the function if~(t, •) is a linear mapping, 

(f) there exists two nonnegative constants M, co so that for every xeE, t e R+ and 
J G { 1 , 2 , . . . , n} 

A< l—r- I U - TV"1 7r(T,x)dT|| £ Af rtcll . 
(» - 1)! Jo II 

Proof. It follows immediately from 2.12 that 
(1) the system of operators Al9 A2, ...,An is definite. 

Further, we can choose a dense linear subset Z ^ E and two nonnegative constants 
M, co so that 
(2) for every x e Z , there exists a Duhamel solution u for the operators Ax, A2,..., An 

such that w(n-1>(0+) = x, 
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(3) for every Duhamel solution u for operators Au A2,..., A„, for every t e R+ and 
. 6 {1,2, . . .} 

l i-fV-Tj-V-OÍT) 
|m!j0 

< Meat u<"-1)(0+) 

Now we see easily from the assumptions and from (1)—(3) that the hypotheses 
of [ l ] 7.10 and [1] 7.11 are fulfilled. Hence the assertion of our theorem easily 
follows. 

2.14 Proposition. Let Al9 A2,..., Ane L+(E), n e {1,2 , . . .} , m e { 0 , 1 , . . . } and 
HTeR+ x E-+E. If 

(a) the operators Al9 A2,..., An are closed, 
(P) the conditions 2.13 (a) —(d) are fulfilled, 
then for every I e {0, 1,...} 

(a) for every xeE, the function (d/df) J0 (t — T)1 #"(T, X) dx is continuous on R + 

and bounded on (0, 1), 

(b) J0(r ~ T ) ' " 1 + , K T ( T , X ) dTGD(Af) for every xeE, t e R+ and i e {1, 2, ..., n}, 

(c) for every xeE and i e {l, 2 , . . . , n}, f/ie function At J0 (f — T)1" X + l W(r, x) dx 
is continuous on R+ and bounded on (0,1), 

(d) T, T f V " T)' ̂  *)dT + A* T, f'(' ~ T)' ^ ( T ' x)dT + ( ! d t j 0 / ! J 0 

+ ^(7Toil>-'»'*'^" )d'+-+^ (T7^|>-^'"' 
#"(т, x) dт = 

„l + m 

/ + m! 
x for every xeE and teR +, 

(e) for every teR+, the function (djdt) J0 (t — T)1 ^ ( T , •) dT is a linear mapping, 

(f) there exist two nonnegative constants M, a> so that for every xeE, teR+ and 
ie{l,2,...,n} 

%-J + flJ)' * ^"1 + , ^ ^ ) d t | ^ W'£ |x|| . 

Proof. An easy consequence of 2.13 by means of [1] 1.8, [ l ] 2.4, [1] 2.7 and [ l ] 
2.9. 

2.15 Proposition. Let Al9 A2,..., An e L+(E), n e { l , 2 , . . . } , me{0, 1,...} and 

7 T e K + x E-+E. If 

(a) f/ie operators Aly A2,..., An are closed, 

(P) rhe system of operators At, A2, ...,An is definite, 

(y) the conditions 2.13 (a) —(d) are fulfilled, 
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then for every x e D(At) n D(A2) n ... r\ D(An) and for every teR+ 

if(t, x)+ \ Hr(x, AlX) dT + f (f - T) -)T(T, A2x) dT + . . . 

.... + — ^ — [\t - T ) - 1 W(x,Anx)dx = ~ x. 
( w ~ l ) ! J o ml 

Proof. Let us fix an xeDx(Al9 A2,..., An) and let us put for t e R+ 

w(t) = ar(t, x) + J ar(%, A,X) dx + (\t - T) IT(T, A2x) dT + ... 

... + —L- \\t - T)"1 7T(T,Awx)dT - -X. 
(n - 1)! Jo m! 

A simple calculation using conditions 2.13 (a) - (d) and 2.14 (a) - (d) shows that the 
function w has properties [ l] 7.10 (l)-(4). Hence by Lemma [l] 7.10, w(t) = 0 for 
every te R+ and this proves our proposition. 

2.16 Proposition. Let Al9 A2, ...,Ane L+(E), ne{ l ,2 , . . . } , and me{0,1, . . .}. / / 
(a) the operators Al9 Al9..., An are closed, 
(P) the system of operators Al9 A2,..., An is definite, 
(y) there exists a function HT e R+ x E -+ E such that 2.13 (a)-(f) hold, 
then 
(a) for every xeDm+i(A1, A2, ..., An), there exists a Duhamel solution u for the 
operators Ai9 A2,... ,An so that 

w<»-1>(0+) = x , 

(b) there exists a nonnegative constant x such that for every Duhamel solution u 
for the operators Al9A2,...9An satisfying u{n~-l)(0+)eDm+i(A1, A2,..., An) 
and for every i e {1, 2,. . . , n}r the function e~HtAiu

im"mi>{i) is bounded on R+, 
(c) there exist two nonnegative constants M, co such that for every Duhamel solu­

tion ufor the operators Al9 A2,..., An,for every t e R+ and every i e {1, 2,..., n) 

II— t\t - x)mAt u^\x)dx\ ^ Afcw|ii<»-1)(0+)|. 

(d) the set D(AX) n D(A2) n...n D(An) is dense in E. 

Proof. For the sake of simplicity we shall write 

(1) 9l=={l ,2, . . . ,n}. 

Further we choose, by assumption (y), a fixed function if eR+ x E -> E for 
which 
(2) the conditions 2.13 (a)-(f) are fulfilled. 
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We begin with proving the assertion (a). 
To this aim let us fix an arbitrary xeDm+i(Al9 A2,..., A„) and let us write for 

teR+ 
fti-í ţn-l+ai 

(3) «W - 7 - ^ — * - Z — — - .4..* + 
(n - 1)! «iesi(n - 1 + a j ! 

.и— 1 + a i + a 2 

+ -- ? T 7 — I — r , AA»* - ••• + 
m ,«2.91 (n — 1 + a. + a 2 ) ! 

j»— 1 +ai +a 2 + ... + awl 

+ ( - i r Z 7 — — — 7 —-T, A,A - Am* + 
«i,a2,...,am6^(n - 1 + oii + a 2 + . . . + a m ) ! 

ft (f \ » - l + a i + a 2 + . . .+a m + 1 - m - l 

+ (-l)", + 1 £ ^ ~ 
ai,a2,...,am+l65Kj0 (n - 1 + a x + a 2 + . . . + a m + 1 - m - 1)! 

By means of [1] 1.8 and [1] 2.8 we obtain easily from (3) that 
(4) the function u is n-times differentiable on _R+, 

® u ( " " ° W - r ^ x " £ , • f'"T i ,^ x + 

(* — 1)! aie%(l — 1 + a t ) ! 
Л- 1 + a i + a 2 i l _ l T « l T « 2 

+ I T : — — ;—-A^x-...+ 
ai,a26«» (i — 1 + a t + a 2 ) ! 

. i - l + a i + a 2 + . . . + a m 

- + (-i)m I 77———-—-—~i;V,...V + 
«i,«2,...,«me««(i - 1 + a x + a 2 + . . . + a m ) ! 

ft (f _ \ i- 1 + a i + a 2 + ...+*m+i - m - 1 

4- (_l)» + m + l y v v  

oti,«2,...,am + ieft J o ( i ~ 1 + a t + a 2 + . . . + a m + 1 - m - 1)! 

. W{%, AaiAa2... Aam+ tx) dr for every t e R + and i e {1, 2, ..., n} , 

(6) ««•>(<) - - E - ^ - Aaix + £ I'" 1 " 1 , , , A A » - • • • 
ai_9t(ai — 1)! ai,a2e%(a1 + a 2 — 1)! 

.ai+a2 + . . . + a m - l 

• •• + (-i)m Z _ - - — - 7 — 7 7 r , A A - A m x + 
«i,a2,...,ame««(a1 + a 2 + . . . + am — 1)! 

A ft (t — TY-i+a2 + .. . + «m + i - m - l 

+ (_i)-+i £ _. — _ _ — _ . . 
«i,«2 «m+.e9. d t J 0 ( « i + <*2 + • -• + am+i — m - 1 ) ! 

• ^ f a A A , — A - . * ) d T for every t e i ? + . 

It follows from (2) and (5) that 

(7) M (--1>(0+) = X. 
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With regard to the assumptions of our proposition, we see from (2) that Theorem 
2.14 may be applied and therefore 
(8) the conditions 2.14 (a)-(f) hold for every / e {0,1,...}. 

Using the properties 2.14 (b) and (c) with / = i — 1 + ax + a2 + ... + am+1 — 
— m — 1, a1? a2,..., am+1 e % we see easily from (5) and (8) that 

(9) uin~i\t)eD(Ai) for every teR+ and ie {1, 2,. . . , n) , 

(10) the functions A^""0 are continuous on R+ and bounded on (0,1) for every 
ie{ l ,2 , . - . ,n} , 

(11) AiU*-%t) = - i l i - Atx - V fl ' * " AiAaxx + 
(l — 1)! aie«R(l — 1 + a j ! 

A— 1 +ai +a2 

+ I r.—— ;—rA*A*A*2*- ••• + 
a,,a2e9i (l — 1 + ax + a 2 j ! 

. i - l + a i + a 2 + ... + am 

- + (-ir E „, 77-77-—-———-T.M.4-4J + 
«i,«2 *men (1 - 1 + OLX + a2 + . . . + am)! 

/•t / , __ \ i - l + a 1 + a 2 + ... + am + i - m - l 

+ (- i)-+ i 2 ^ - — ^ — y . 

ai,a2,...,am+,e9* J 0 (i - 1 + ax + a2 + . . . + a m + 1 — m — 1)! 

. ->T(T, -4a A 2 . . . Aam+ tx) dt for every t e R+ and i e {1, 2,..., n) . 

Our next objective is to find out that 
(12) uin\t) + At w

(n" 1}(r) + ... + 4 , u(0 = 0 for every * e R+ . 
To this aim we first consider the terms of the expressions (6) and (11) except the 

last ones. After a simple calculation we verify that 

[ *«i - l ^a i+a 2 - l 
- I 7 :T:4.I*-+ I ; r-^aA2x - ... + 

ai€«R(a1 — 1)! a,,a2e«R (<Xt + a2 — 1)! 
^ai+a2 + ... + a m - l - | 

+ ^ ^ -- „ / a. -u 1 77, 4 . A , - ^m* + 
«i,«2,...,«m«» («! + a2 + . . . + am - 1)! J 

[ n A-1 n A-l+at 

Z T T ^ ^ - E E ,. ' v>M-.» + 
i = i ( i — l j ! i=i aie«R(j — 1 + a x)! 

n A— l+a ,+a 2 

+ E E 77—; r, M , V - • • • 
i=i «,,«26S« (i — 1 + a t + a 2 j ! + - ( - i Г 1 E E 

Л - l + a i + a 2 + ... + a m - i 

i=l ai.a2,...,am-,є«K (i — 1 + OLt + a 2 + . . . + a^^^) ! 

• ^i-4«i-4a2 . . . Л a w _ jX + 
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n . i - 1 + a i + a г + ... + a-и -j 

+ (- l ) m E I Ţ. : ъ-AtA.íA,г...AЯmx\ = 
' 1Г1 .„...ľГ^m-я (i - 1 + a. + a2 + ... + ara)! m J 

^ a i + a 2 + ... + a w + i - l 

«i.«2,...,«m + 16K ( a x + a 2 + . . . + a m + 1 - l j ! 

for every t G R+ . 

On the other hand, using the properties 2.14(b) — (d) with / = ax + a2 + ... 
... + am + 1 - m - 1, a1? a2,..., am + 1 e 91, we obtain from (8) that for the last term 
of (6) and (11) the following identity holds: 

[ A ft (f _ \ a i + a 2 + ... + a m + i - m - l 

£ \LLV . 
dt Jo (ax + a2 + ... + am+1 - m - 1)! 

m - l 

m - 1)!' 

n pt (t — r \ i - l + « i + * 2 + ... + «m + i - m - l 

Tr(T,AaA2-^m+1x)dT + X ^ - / ' i — - — 
i = 1 JO(Í - 1 + at + a2 + ... + ara+1 -

i,a2,...,am + iєft ( a x + 0L2 + . . . + a m + 1 - l ) 

1T(x,AxlAX2...AXm+lx)dx = 

AXiAX2...AXm+íx for every teR+. 
. a i + a 2 + ... + a m + i - l 

Now the identity (12) follows at once from (6), (11), (13) and (14). 
The above considerations, namely the points (4), (7), (9), (10) and (12), show that 

(15) the function u is a Duhamel solution for the operators Al9 A2,..., An such that 
w(«-1)(0+) = x. 

Since x e Dm+1(Al9 A29..., An) has been arbitrary, the property (15) shows that 
(16) the statement (a) holds. 

Let us now turn to the statement (b). 
By (8) [2.14 (f)], we can find fixed nonnegative constants M, co so that 

(17) IU, ľ'(í - тy-1 + '-Г(т,x)dт| < M e ° " - ||j 

II ( i - i + o U o I l' 
for every xe E, te R+, ie {1, 2,..., n} and le {0, 1,...}. 

Let now u be an arbitrary Duhamel solution for the operators Al9 A2,..., An 

such that 

(18) «("-1}(0+) e Dm+t(Au A2,..., A.) . 

Using the definiteness assumption, we obtain from (15) and (18) that 

(19) the solution u may be expressed by the formula (3) with x = «("_1)(0+)-
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It follows from (11), (17) and (19) that 

**-! 
(20) ' ІA^-Щ й ------- I-V-ҶOЛІI + 

J-l+a 
+ *w- ' . + „ll^.»(""1)(o+)ll + 

a,6«R(ř — 1 + a ^ ! 

ai,a2€% (i — 1 + ax + a 2 ) ! 

A- 1 +ai + a2 + ... + am 

. oci,a2,....«m6tR ( Í - 1 + ax + a 2 + . . . + a m j ! 

fa i+a 2 + ... + a m + i - m - l 

Me°" 
ai,a2,...,am+1e% (a x + a 2 + . . . + ocm+l — m — l ) ! 

J i l . A a - - - ^ * ! ^ " " 1 ^ 0 * ) ! ^ every teR+ and i e {1, 2,..., n} . 

Let us now choose 

(21) x > co . 

Since co was chosen nonnegative, we obtain immediately from (20) and (21) that 
(22) the functions e~xtAt u(n-i)(r) are bounded on R+ for every i e {1, 2,. . . , n}. 

Now an immediate consequence of (22) is, if we take into account the assumption 
on the solution u, that 
(23) the assertion (b) holds. 

Now we have to prove the assertion (c). 
To this aim, let u be an arbitrary Duhamel solution for the operators Au A29..., An. 
Let us write for t e R+ 

(24) „(,) = A ( ^ 

It follows from [1] 2.9, [ l] 5.6 and [1] 5.7 that 
(25) the function v is continuous onR+ and bounded on (0, 1), 

(26) (t - x)1'1 v(x) dT e D(A() for every teR+ and i e {1, 2,..., n}, 

(27) the functions At, I (t — t)1'* v(r) dr are continuous on R+ and bounded 
Jo 

on (0, 1) for every i e {1, 2,.. . , n}, 

(28) . v(t) + Ax j t^r) dT + A2 J (r - T) I^T) dT + ... 
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( « - ! ) ! Jo m! 

for every t e R+, 

( 2 9) J - f (, - T)-^U<"-'>(T)dT = ^ I T T - 1 ^ f(< - ^ _ 1 »Wd* 
w ! j 0 (i - 1)! Jo 

for every t e R+ and i e {1, 2,. . . , n} . 

It follows from (2) [2A3 (a)-(d)] and (25)-(28) by means of [1] 7.10 that 

(30) v(t) = Or(t9 u
(n~ 1}(0+)) for every t e R+ . 

Taking / = 0 in (17) we can write 

k — f (t - T)f_1 Kr(T,x)dT| = M ewf||x|| 
II {i — I) - J o II 

for every x e £ , feR + and f e {1, 2, ..., n} . 

Now we obtain from (29)-(31) that 

(31) 

II 1 f' 
(32) — (ř - x)m A, u("- ť>(x) dr 

!|wí Jo 
g Meat\\uin-1\0+) 

for every t e R+ and i e {1, 2,..., n} . 

Since the Duhamel solution u examined above was arbitrary we obtain from (32) 
that 
(33) the assertion (c) holds. 

Finally, by (2) and (8), we can apply 2.13 (a) and 2.14 (b) and we easily obtain that 
.(34) the assertion (d) holds. 

According to (16), (23), (33) and (34), the proof is complete. 

2.17 Theorem. Let Al9 A29..., Ane L+(E)9 ne {1,2,...}, and me{0, 1,...}. If 
(a) the operators Al9 A29..., An are closed, 
(/?) the set Dm + 1(A l 5 A2,..., An) is dense in D(AX) nD(A2) n ... nD(An), 
then the following two statements (a) and (b) are equivalent: 
(a) the system of operators Au A2,..., An is subcorrect of class m and the set 

D(At) nD(A2) n ... nD(An) is dense in E9 

(b) the system of operators Al9 Al9..., An is definite and there exists a function 
iTeR+ x E -> E such that the properties 2.13 (a)-(f) are fulfilled. 

Proof. An immediate consequence of 2.13 and 2.16. * 
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3, HADAMARDIAN CONCEPTS 

In chapter two of book one of his treatise [2], J. HADAMARD introduced different 
concepts of correctness for partial differential equations which are mostly very general 
or too weak. An abstract variant of these concepts (but not so general) is defined and 
studied in the remaining part of this paper. 

3.1 Let Al9 A2,..., Ane L+(E)9 n e {1, 2 , . . . } . The system of operators Al9 Al9... 
..., An will be called exponentially Hadamardian if 

(A) it is definite 

(B) there exists a constant x such that for every x eDjA^ Al9..., An) we can find 
a Duhamel solution u for the operators Al9 Al9..., An for which w(n~1)(0+) = x 
and the function e~xtAt u(n~l)(t) is bounded on R+ for every i e {1, 2 , . . . , n}. 

3.2 Let Al9 A2,..., Ane L+(E), n e {1, 2 , . . . } . In the sequel, we shall consider the 
linear space DjA^ A2,..., An) as a linear topological space determined by the 
following system of seminorms: 

|*ka~,...,«d = N l + \\A*1A*2--A*4X\\ 

for xeDo0(A1,A2,...,An), de{\, 2,...} and a1? a2 , . . . , a d e {l, 2, . . . n} . 

3.3 Lemma. Let Au A2,..., Ane L+(E), n e { l , 2 , . . . } . The linear topological 
spaceD^ij, A2,..., An) is convex and metrizable. 

3.4 Lemma. Let Al9 A2,..., Ane L+(E), n e {1, 2, . . . } . If the operators Al9 A2,... 
..., An are closed then the linear topological space DJ(Al9 A2,..., An) is a Frechet 
space. 

Proof. By 3.3 it is only necessary to prove the completeness of D^A^ A2,..., An). 
Hence, let xl9 I e {1, 2 , . . . } , be an arbitrary Cauchy sequence in the linear topo­

logical space D00(A1, A2,..., An). 
This implies by 3.2 that 

(1) xl9 I e {1, 2,. . .} is a Cauchy sequence in E, 

(2) for every de{l,2,...} and ccl9 cc2,..., ctde {1, 2 , . . . , n}, AaiAai... Aadxb le 
e {1, 2 , . . . } , is a Cauchy sequence in E. 

It follows from (1) that there exists an x e E such that 

(3) xt -> x (I -> oo). 
It is clear that it suffices to prove that 

(4) x e Dd(Ai9 A29..., An) for every d e {1, 2 , . . . } , 

(5) for every d€={l,2,...} and ctl9 a2 , . . . , a d e {l, 2 , . . . , n}, AaiAa2... Aadxt-+ 
->AaiAa2...Aadx(l-+ oo). 

248 



To prove this we proceed by induction on d. 
First, it follows immediately from the closedness of operators A!, A2, ...,An that 

(6) xeDi(Al9A29...,An), 
(7) for every ax e {1, 2,.. . , n}, Aaixt -• Aaix (I -+ oo). 

Now we suppose that (4) and (5) are true for some fixed d e {1, 2, . . .}. Using this 
assumption and the closedness of operators Ax, A2,..., An, we obtain easily that 
(8) x e D d + 1 ( 4 4 . . „ 4 ) , 
(9) for every ccl9 cc2,..., ocd+l, AaiAa2... A^^Xj -* AaiAa2 ... Aad+i x (I -» oo). 

This argument implies that the assertions (4) and (5) hold for every d e {1, 2,...} 
and this completes the proof. 

3.5 Proposition. Let At, A2, ..., Ane L+(E), n e {I, 2, . . . } . If the operators 
Al9 A2, ...,An are closed, then the system of operators Al9 A2, ...9A„ is exponentially 
Hadamardian if and only if 
(A) there exists a set Z £ O^A^ Al9..., An) dense in the linear topological space 

DJ^AU A2,..., An) such that for every xeZ we can find a Duhamel solution u 
for the operators Ai9 A2,..., An fulfilling u{n~l)(§+) = x, 

(B) there exist two nonnegative constants N, x and a finite sequence qi9 q2, ...9qre 
e {1, 2, ..., n\, r e {1,2,...}, so that for every Duhamel solution u fulfilling 
u(i,^1)(0+)eD0O(^1, A2,..., An)9for every teR+ and ie {1, 2,.. . , n) 

I^-'XOI SNe«<[\\u^\0+)\\ + \\AqiAq2...Aqy»-»(0+)\\-]. 

Proof. "Only if" part. . 
Let us assume that the system Al9 A2,..., An is exponentially Hadamardian and 

let us try to verify the properties 3.5 (A) and 3.5 (B). 
The property 3.5 (A) being evident we should only prove 3.5 (B). 
To this aim, let us introduce some notation. 
First we choose a fixed constant x such that the condition 3.1 (B) holds. 
We denote by Q the linear space of all functions feR+ -> E such that 

(1) fis n-times differentiable on R+, 
(2) f(n) is continuous on JR+ and bounded on (0, 1), 
(3) f(n"*>(*) e D(At) for every t e R+ and i e {1, 2,.. . , n}, 
(4) the functions ^4ff(w"0 are continuous on R+ and bounded on (0, 1) for every 

ie{l,2,...,n}, 
(5) the functions e'^Aif^'^t) are bounded on R+ for every ie {1, 2,. . . , n). 

The space Q will be equipped with the following system of seminorms: 

(6) | / |o"-supe--1 .4, /<- ' ) (0l , 

(7) |/|r=sup{||/(0|| + И 0 | | + - ; + ||/(',)(0|| + 
0 < ř < Г 

+ И./<-ҷoi + И-/("-a)(OÏ + - + WA"Ш for т>° 
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Clearly 
(8) Q is a linear topological space. 

Moreover, it is almost evident that 
(9) the linear topological space Q is convex and metrizable. 

Now, utilizing the assumed closedness of the operators Al9 A2, ...,An we obtain 
easily that 
(10) the linear topological space Q is complete. 

Hence, by (8)-(10), we can state that 
(11) the space Q is a Fr6chet space. 

After these preparatory constructions, we can define, in virtue of the properties 
3.1 (A), (B), a linear transformation UeDjA^ A2,..., An) -• Q in the following 
way: * 

(12) for xeDjAi, A2,..., An), we denote by Ux the unique Duhamel solution u 
for the operators Al9 A2,..., An fulfilling 

u(n-1\0+) = x . 

Using the assumed closedness of the operators Al9 A2,..., An we deduce easily 
from the properties defining the spaces DjA^ A2,..., An) and Q that 
(13) the operator U is closed as a transformation of the linear topological space 

Do0(A1, A2,..., An) into the linear topological space Q. 
Applying now the closed graph theorem 1.4 we get from 3.4 and from (11) and (13) 

that 
(14) the operator U is continuous as a transformation of the linear topological 

space Dao(Al9 A2,..., An) into the linear topological space Q. 
The required property (B) is an immediate consequence of (14). 
The proof of the "only if" part is complete. 
The "if" part. 
Now we suppose that the conditions 3.5 (A), 3.5 (B) hold and we try to prove 

3.1 (A), (B). 
Since the property 3.1 (A) is an immediate consequence of 3.5 (B), it remains in 

fact to prove only 3.1 (B). 
To this aim let us choose 

(15) xeDjA1,A2,...,An). 

Further, we choose fixed nonnegative constants N,x, a number r e { l , 2,...} 
and a finite sequence ql9 q2,..., qr e {1, 2,.. . , n} so that 3.5 (B) holds. 

Now it is easy to conclude from 3.5 (A), 3.5 (B) that there exists a sequence 
uteR+ ->£, /e{l ,2 , . . .} so that 
(16) for every / e {1, 2, . . .}, the function ut is a Duhamel solution for the operators 

Ax, A2, . . . , An, 
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(17) u
(r1\0+)eDa>(Ai,A2 An) for every J e{ l , 2 , . . . } , 

(18) ur^O^-.xa-oo), 
(19) AaiA.2... Aadu

(r 1}(0+) -> AaiAX2... Atdx (I -> oo) 

for every d e {1, 2,...} and a., a2,..., a,, e {L 2,... , «}, 

(20) iAyro(o^.«r°(OM 
S WTK" 1^) " utl\0+)\\ + I I A ^ - ^ K - 1 ^ . ) " uri\0,))\\] 

for every teR+ and ie (i, 2, . . . , «} and iu l2 e {l, 2,...} . 

It follows from (20) that 

(21) \ufflt) - < ( 0 | ^ «!Ve-[|ur J)(0+) - - O O l +! 

+ |A,lA42...ASr(ur1)(0+)-ur1)(0+))|] forevery t e R+ and llt l2 e {l, 2,...}. 

Now using [1] 2.10, we obtain from (21) that 

(22) K\0 - «if(0| ̂  

+ iA4l^2...A€r(uri)(o+)-«ri)(o+))i] 
for every te jR+ ,Ie{0,1, . . . , n} and /X) / 2 e{ l , 2, . . .}. 

It follows from (18), (19) and (22) that there exists a function u e R+ -> E such that 

(23) ut(t) -+ u(i) (I -> oo) for every t e R+ . 

Since the operators Al9 Al9..., An are assumed to be closed, it is easy to obtain 
from (18), (19), (22) and (23) by means of [1] 2.6 that u is a Duhamel solution for the 
operators Al9 Al9..., An such that u(w"1}(0+) = x and this was to prove. 

The proof of "if" part is complete. 

3.6 Remark. The exponential Hadamardian property is related with the Hadamard 
notion of "correctly set" problem (cf. [2], p. 4). Since it does not involve the class of 
correctness, it is interesting to study its relations with the notion of correctness. 

In the sequel, we prove that correctness always implies exponential Hadamardian 
property, but as to the converse we are able to get it only under strong a priori restric­
tions on operators Al9 Al9..., An as shown in the section 5. 

It should be said that a more general property would be adequate to the (roughly 
described) Hadamardian notion of correctly set problem, i.e. it would be necessary 
to replace the property 3 A (B) by 
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(B') for every xeD00(Av A2,..., An), there exists a Duhamel solution u for the 
operators Ai9 A2,..., An such that uin-l)(0+) = x. 

Such systems will be called Hadamardian. 
It is easy to see that every exponentially Hadamardian system is also Hadamardian. 

3.7 Theorem. Let Au A2,..., AneL+(E), n e {1, 2,. . .}. If 
(a) the operators Ai9 A2,..., An are closed, 

(p) the set D(At) n D(A2) n ... n D(An) is dense in E, 
(y) the system of operators At, A2,..., An is subcorrect, 
then this system is also exponentially Hadamardian. 

Proof. An immediate consequence of 2.9, 2.10, 2.12, 2.13 and 2.16. 

3.8 Example. There exist a Banach space E and an operator A e L+(E) so that 

(a) the operator A is closed, 
(b) the system of operators 0, — A is subcorrect of class zero, 
(c) the system of operators 0, A is definite, 
(d) the system of operators 0, A is extensive, 
(e) the system of operators 0, A is not exponentially Hadamardian and con­

sequently also not subcorrect. 

Proof. Let 

(1) E = L2(0, n) 

and assume that the operator A is defined as follows: 
(2) x e D(A) if and only if x e E, x(0+) = x(l_) = 0, x is differentiable on (0, n) and 
there exists a y e E so that for every 0 < ^ < f2 < n, there is x'(f2) — x'(£i) = 

= J«i yW An\ then Ax = y. 
It is easy to prove by elementary means that the assertion (a) holds. 
Let us now denote 

(3) ek(£) = (2/TT)1/2 sin k£ for every 0 < £ < n and k e {l, 2, . . .}, 
(4) Z = {a^i + a2e2 + ... + cckek; al9 a2,..., ccke C, ke {1, 2,...}}. 

It is easy to prove that 
(5) 2*6 0(4) and Aek = k2ek for every ke {1, 2,. . .}, 
(6) the sequence efc, k e {1, 2,. . .}, is orthonormal, 

(7) the set Z is dense in E . 

Now the assertion (b) can be derived easily from (5)—(7) by means of Fourier 
series developments. 

The assertions (c) and (d) follow from (5)-(7) by means of 2.3 and 2.8 or simply 
by direct verification. 
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It remains to prove (e). 
00 

Since 0^(0, A) = f) D(Ar)9 we prove easily that 

(8) Z is a dense subset of the Frechet space 0^(0, A). 
Further, let us denote 

(9) uk(t) = sinh kt ek for every t e R+ and k e {1, 2,. . .}. 
It is obvious that 

(10) for every k e {1, 2, . . .}, the function uk is a Duhamel solution for the operators 
0, A such that u(

k'
1)(0+) = ek. 

We see from (4) and (8)-(10) that the condition 3.5 (A) is fulfilled. But it is an 
easy matter to show by means of the sequence uk9 k e {1, 2,. . .}, that 3.5 (B) cannot 
be fulfilled due to the exponential growth of hyperbolic sinus. 

Hence the system 0, A cannot be exponentially Hadamardian and, by 3.8, not even 
subcorrect. 

But this says that (e) holds. 
The proof is complete. 

3.9 Remark. The above example 3.8 is a somewhat elaborated version of the 
famous example of a non-correctly set problem, given for the first time by Hadamard 
in 1917 (cf. [2], pp. 33 and 37). 

4. SOME AUXILIARY RESULTS 

This section collects some mostly known results on polynomials, on solutions of 
ordinary differential equations with constant coefficients and on normal operators 
in Hilbert spaces which will be necessary in Section 5. 

4.1 Let al9 al9..., ane C, ne{ l , 2,. . .}, and <peR+ -+C. The function <p will 
be called a standard solution for the numbers al9 a29 ...9an if 
(1) the function <p is n-times differentiate on _R+, 
(2) the function <p{n) is continuous on R+ and bounded on (0, l), 
(3) <pin\t) + at <p(n-1)(f) + ... + ancp(t) = 0 for every teR+

9 

(4) <p(0+) = <p'(0+) = ... = (?<"-2>(0+) = 0, <p<"-1)(0+) = 1. 

4.2 Lemma. For every al9 al9 ...9ane C, ne{ l ,2 , . . . } , there exists a unique 
standard solution cpfor the numbers al9 a29 ..., an. 

Proof. Well-known result which is also an immediate consequence of 2.2 and 2.5. 

4.3 Lemma. Let al9 a29 ...9ane C, zi9 z2 , . . . , zne C, ne{ l ,2 , . . . } , to a real 
constant and <pe R+ -+ C. If 
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(a) zn + axz
n~% + ... + an = (z - zx) (z - Z2) ... (Z - Zw) for every zeC, 

(p) Re Zj 5* c» for et;ery i e {1, 2,..., n}, 

(y) the function q> is a standard solution for the numbers ax, a2,..., an, 
then 

(a) \q>(t)\ S 3W(1 + t)n e"' for every teR + , 

(b) 
І * íV -*Г 1 <p(т) dт 

0-
Є{1. 

- l )Jо ( Ѓ 

2,..., n}. 

-*Г 1 <p(т) dт = 3n(l + r)" emt for every teR+ and ie 

Proof. We proceed by induction on n. 
The case n = 1 is verified by a simple calculation. 
Now let us assume the estimates (a), (b) take place for n — 1, n > 1 and try to 

prove them for n. 
To this aim, we need some preparatory considerations. 
By Fundamental Theorem of Algebra, we can find numbers <xeC and bx, b2,... 

..., &„_! so that 

(1) zn + axz
n~l + ... + an = (z - aXz""1 + bxz

n~2 + ... + &„_,) 

for every ZeC. 

For the sake of simplicity we shall write 

(2) b0 - 1 . 

It is easy to see from (1) and (2) that 

(3) at = bx - ai>0, «2 = b2 - afct,..., a*.! = bn.x - a6n_2, a„ = -abn_, . 

Let now 

(4) ijj be a standard solution for the numbers bx, b2,..., bn^x . 

It is an easy matter to prove using (1) and (4) that 

(5) q>(t) = f V ( f- f ) ^(T) dT for every t e R+ . 

Using (5), we obtain easily the following identities: 

(6) ' i- f (t - T)P <?(T) dT = f eait'x) — f \T - <r)p ^(a) da dT 
F U O JO l>.fJo 

for every f e R+ and P e {0,1,...} , 

(7) a f <p(%) dT = f (e a ( r- f ) - 1) ^(T) dT for every t e R+ , 
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(8) a — 1 — f'(. - T ) " + I (p(T)dT = f V < - l > - 1 ) 1 f(T - <7)"^(a)dffdT 
( P + l ) ! j o Jo JPUO 

for every teR+ and p e { 0 , 1 , . . . } . 

On the other hand, we have by induction hypothesis that 

(9) \ij/(t)\ = 3"_1(1 + t)n~l e°" for every teR+ , 

(10) = 3"-I(1 + í)—V VH)iJ>- , ) ,' ,'w* 
for every t e R+ and j e {1, 2, ..., n — 1} . 

The desired estimates are now simple consequences of (2), (3) and (5) —(10). 

4.4 Lemma. Let al9 al9 ..., ane C, n e { l , 2, . . . } , and (p e R+ -+C. If the 
function cp is a standard solution for the numbers al9 al9..., an9 then 
(a) |p('>(*)| :§ eCl+-ax(|«1|,|a2|,...,|«„|)Drybr ^ ^ , g R + anrf , ' e {(), 1, . . . , R - l } , 

(b) |V
(">(r)| ^ |a i |e

[ 1 + m a x (l f l ll ' l f l 2«—W ) ] f/br ei*r>> f e R + . 

Proof. Using the properties 4.1 (1)—(4) we obtain easily the following two iden­
tities: 

(1) <p<-1>(() = 1 - a, fV"-»>(T)dT - a2 fV"-2 )(T)dT - .. . - a. fV(*)d* -
Jo. Jo Jo 

(2) <p(n)(t) = - a , - ax f V ' ^ d t - a2 [ V " " 1 ^ ) ^ - ••• - a« f <7>'(T) dT 

Jo Jo Jo 

for every t e R+ . 

The identities (1) and (2) give the estimates 

(3) | ^ - - > ( 0 | = 1 + max( | a . | , a 2 V . . , |a.|) ('(\<p(x)\ + |<P'(T)| + ... + |^"-»(T)|)dT, 

(4) \<p™(t)\ = h | + max( | a 1 | , | a 2 V . . , | a . | ) [ V ( T ) | + \cp"(z)\ + - + |?W (*)D d* 

for every teR+. 

Using the inequalities (3) and (4) we see easily that 

(5) i^l + Hoi + .-. + K-^oi + k - ^ h 

= I fV(t)dt | + I fV( t ) dT + ... + I fV"_1)(T)dT| + I^-^OI = 
IJ o I IJo I IJo I 
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= f W ) i + fV*(T)idT + ••• + fV(-2,(t)idT + fV" _ i ) wi^ + 
Jo Jo Jo Jo 

+ 1 + max(|a.|, \a2\,..., |a.|) |"(|«,(T)| + \<p'(x)\ + ... + \<p^\x)\)dx ^ 

- 1 + P + max(|a.|, |a2|,..., |«.|)] P(|<P(T)| + |«,'(T)| + ... + |<P<-2)(T)| + 

+ y- I ,(T)|)dT, 

(6) kiOI + k'ttl + .-. + k-^OI + kw(0l-

- f 9>"(T) dT + f 9>'"(T) dT + ... + f ^ T ) dT + \<p"(t)\ ^ 
IJ 0 I IJ o I IJo 

^ f '\<p"(t)\ dT + f'|<?>'"(T)| dT + ... + f V<B)(T)| dT + 
Jo Jo Jo 

+ \at\ + maxflaj, \a2\,..., \aM\) f V t o l + |<l>"(*)| + ... + |<P("}(T)|) dT ^ 

£ \ax\ + [1 + maxfl^l, |a2|,..., |a„|)] !\\<P\T)\ + |<P"(T)| + ... + I?0-"Ml + 

+ |<P(W)(T)| dT for every t e R+ . 

The inequalities (a), (b) follow immediately from (5), (6) by means of 1.2. 

4.5 Lemma. Let au a2>..., ane C, ne {1, 2,...}, zeC and (pe R+ -+ C. If 
(a) zn + ajz*-1 + ... + an = 0, 
(P) the function cp is a standard solution for the numbers al9 a2>..., an9 

then for every teR+ 

e" = ry- 'XO + a, <?><-2)(0 + ... + a..! p(.)] + 

+ z[y-2>(0 + a. <p<-3>(0 + . - + a„_2 <p(0] + ... + 

+ z-2[<p'(0 + a1«K0] + z-1<K0. 

Proof. Let us denote the right hand side of the identity to be proved by \j/(i). 
Now we have 

(1) r(t) - z *(.) = |><«(.) + a, ?<- "(0 + • • • + a._. <?'(0] -

- zf^-^O) + a, ?<-2)(0 + ... + a._i 9(0] + 

+ zry-'>(0 + «i ^(R"2)(0 + - + «.-_ ?'(*)] -
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- z2[<p<»-2>(0 + at 9<-»(t) + ... + an_2 <p(t)] + ... + 

+ z - V ( 0 + a, cp\t)] - z - ' f o 'W + a, <p(0] + 

+ z*-1 (p\i) - znq>(t) = 

= w\t) + a, „<»-*>(o + ... + «„., ?'(')] -

- [zn + a^"""1 + ... + u - j - i z ]^ ) for every t e R+. 

Since by assumptions (a) and (P) 

9<">(f) + *1 ^ - 1 } ( 0 + . - + «„-l <?'(0 = -*«*(')> 

zn + fl-z""1 + ... + an_!Z + an = 0 

we see immediately from (1) that 

(2) tfr'(f) - z i>(t) = 0 for every t e R+ . 

On the other hand, it is easily verified that 

(3) *(0+) = 1 . 

Now we prove without difficulty from (2) and (3) that for t e R+ 

W)-z(\é"-1f(T))dT = 0 

and consequently 

(4) \ezt - ij/(t)\ = \z\ f \ezx - ^(T)| dr for every t e R+ . 

Now it suffices to apply 1.2 and it follows from (4) that ezt — ^(0 = 0 for every 
t e R + which was to prove. 

4.6 Lemma. Let au a2, ...,an, bu b2, ...,b„e C and (p,^/ e R+ -* C. / / (p is 
a standard solution for the numbers al9 a2,..., an and \j/ for the numbers bt, b2, ... 
..., bn, then, writing 

K = maxda^, \a2\,..., |an |), 

L =max(|b1 | , |62 | , . . . , |bn | ) , 

5 = maxd^i - bx\, \a2 - b2\, ..., |an - bn\), 

we have for every t e R+ and j e {0, 1,..., n} 

f9U)(r) - ^U)(r)| ^ 5(x + i) e o + --+->'>*. 
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Iт = — a 

Proof. By [1] 2.10 we can write for every t e R+ 

(1) <p™(t) +.a. fVB)(T)dT + ... + — ± — f'(» - T ) - 1 <p(">(T)d. 
Jo ( n - l ) ! j o 

(2) ^»>(<) + 6. f ' ^ W d T + ... + - A — P ( . - T)- 1 ^<»>(T)dT = - * . . 
Jo ( n - l ) U o 

It follows from (1) and (2) that for every t e R+ 

(3) <PW(0 - >>(B)(t) - - ( a . - ft.) -

- [(a. - ftOJWjdT + ... + ̂ -ZA£ ( f _ t )-1 „(»)(,) dtJ _ 

- [*i JVX*) " ^(B)(T))dT + ... + - A — f'(. - TJ-VX*) - ^ ( T ^ T I . 

Moreover, we have by 4.4 (b) for every t e R+ 

(4) |<p<">(0| __Ke (1+* ) r . 

It follows from (3) and (4) that for every t e R+ 

(5) \<p<"\t) - ^\t)\ _ 

- 5 + 4 fr<B)(T)| dT + • •+(TTni Q ' • T)B~I I ^ T ) I d T ] + 

+ -- [JVW - ^(B)(t)| dT + ... + T^r^j'i* - if'1 W"\r) - ^(">(T)| dxl _ 

_ <5 + S\t max U ("XT)| + . . . + — max M"^)) ! + 
[_o<t<t n!o<t<t J 

+ - JJVW - ^B)(T)| dT + ... + - ^ - f ' I ^ T ) - -A(">(T)| _T1 ._ 

_ <5 + <5e' max (|<p(">(x)|) + Le' f |<?>(">(T) - ^<">(T)| dT _ 
0<t<t Jo 

_ <5 + <5e'*:e(1+K" + Le' f'|<p(B)(T) - ^"Wl <** _ 

_ <5(K + 1) e(2+*>' + Le' f V n ) ( T ) " *°°(T)| d t . 

Applying now 1.2 to the inequality (5) we obtain immediately for every t e R+ 

(6) |<p(">(f) - «/<<»>(t)| _ 5(K + 1) e ( 2 + K + t">' . 
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Now the desired inequality follows easily from (6). 

4.7 The system of all Borel subsets of C is denoted by J(C). 

4.8 Lemma. Let ai9 al9 ...9ane C -* C, n e {1, 2,. . .}, and me R+ x C -+ C. If 
(a) the functions al9 al9 ...9an are Borel measurable, 
(P) for every seC9 the function m(*,s) is a standard solution for the numbers 

«i(s)>«2(s) , . . . , 0 „ ( s ) , 

then for every t e R+ and j e {0, 1, ..., n}9 the functions m[j)(t, •) are Borel 
measurable. 

Proof. It follows from (a) that there exist a sequence Xk9 ke {l, 2,. . .}, of Borel 
subsets and a sequence Kk9 k e {1, 2,. . .}, of nonnegative constants such that 

(1) \JXk = C9 

(2) |a»(s)| = &k f° r every seXk and i e {1, 2, ..., n} . 

Let us now fix t e R+ and s > 0. 
We take for fee {1,2,...} 

(3) ^ ( K . + i y 3 ^ * ^ ' * 

By (a), there exists for every k e {l, 2,...} a subset «dfc ^ J (̂C) such that 

(4) . UAk = Xk9 

(5) for every ie {1, 2,.. . , n} , Xe Ak and s 1 , s 2 e Z , 

we have ( a ^ ) - af(s2)| = 5fc. 

Now we use 4.6 with 8 = 5k9 K = L = Kk for every k e {1, 2, ...} and we obtain 
from (p), (2), (3) and (5) that 
(6) for every j e {0, 1, ..., n}, X e Ak and sl9 s2 e X9 we have 

\m\\t, s.) - m!j>((, s2)\ g ^ + 1) e<
s+--«-")» = e . 

Let us now denote A = U dk. 
k=l 

Then by (l), (4) and (6) 

(7) U-4 = C , 

(8) for every ye {0, 1,..., n} , XeA and s^ 52e.X", we have 

\m\J\t,Sl)-m</\t,s2)\^e. 

Since f e R+ and e > 0 have been arbitrary, the assertion of our lemma follows 
immediately from (7) and (8). 
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4.9 A Banach space E will be called Hilbert space if ||x + )>||2 + ||x - j>||2 = 
= 2 ( | x | 2 + I >>|2) for every x, y e E. In a Hilbert space E we introduce the so-called 
scalar product <JC, y} for every x, y e E in the following way: <x, y} = i[ | |x + y\ 2 -
- ||x - y||2] in the real case, <x, y} = i[ | |x + y\\2 - ||x - y\\2 + i||x + iy\2 -
- i |x — iy||2] in the complex case. This scalar product has the usual well-known 

properties. The notion of the adjoint operator A* to an operator A e L+(E) is intro­
duced in the usual way. 

4.10. In the sequel we always suppose that £ is a complex Hilbert space. 

4.11. An operator 'A e L+(E) is called normal if AA* = A*A. 

4.12. Let £ 6 88(C) -» L(E). The function <f is called a spectral measure if S(C) = / , 
$(X) is an orthogonal (symmetric) projector for every X e 88(C), $(X \J Y) = 
= S(X) + S(Y) - S(X n Y) for every X, Ye 88(C) and S(Xk) x - 0 for every 

fc-*oo 

xeE and every nondecreasing sequence Xk e &(C), k e {1, 2, . . . } , such that 

4.13. Lemma. For every spectral measure $ in E, an integral calculus can be 
developed (see [4, Chap. VII] and [5, Chap. XVIII]). The elementary rules of this 
calculus will be frequently applied in Section 5 and we refer to them by quoting 
this point. 

The following facts are particularly important 

(a) ||^(#) x||2 is a nonnegative measure on 08(C) for every xe E, 

(b) iff is a Borel measurable function from C -> C, then for some xe E and 
Xe 88(C): 

J f(s) <f(ds) x exists if and only if | \f(s)\2 \\<$(ds) x||2 and 

|f/(5)4d5)x|2= f |/(s)|2||^(d5)x||2. 
IIJx II Jx 

4.14. Lemma. Let A e L+(E). If the operator A is normal, then there is a unique 
spectral measure S such that 

(I) x e D(A) if and only if Jc s$(ds) x exists, 

(II) _4x = Jc 5 < (̂ds) x for every x e 0(A). 

Proof. See [4, Chap. VIII]. 

4.15. Let Au A2,..., AHe L+(E)9 n e {1, 2 , . . . } , be normal operators. This system 
is called abelian if the corresponding spectral measures S^,€1,...,Sn (cf. 4.14) 
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are commutative, i.e. ^ (K , ) &/Xj) = 6J(Xj) ^i(Xt) for every Xl9 X2 e @(C)9 

i9je{l929...9n}. 

4.16. Lemma. Let Al9 Al9 ...9 Ane L+(E)9 ne {1 ,2 , . . . } . If the operators Al9 Al9... 
..., An are normal and this system is abelian9 then there exists a spectral measure 
$e 38(C) -> L(E) and Borel measurable functions al9a29 ...yane C -* C so that 
for every i e (1, 2 , . . . , n} 

(I) x e D(At) if and only if Jc at(s) $(ds) x exists, 
(II) At(x) = Jc at(s) &(ds) x for every x e D(At). 

Proof. See [4, Chap. X, especially §3] . 

5. ABELIAN SYSTEMS OF NORMAL OPERATORS IN HILBERT SPACES 

In this section, we shall study linear differential equations in a Hilbert space over C 
whose coefficients form an abelian system of normal operators. In particular, we 
show that in this class of operators, the exponentially Hadamardian systems are 
correct. 

5.1 Theorem. Let Al9 Al9..., An e L+(E)9 n e {1, 2 , . . . } . / / 

(a) E is a Hilbert space over C, 

(P) the operators Al9 Al9..., An are normal, 

(y) the system of operators, Al9 Al9..., An is abelian, 
then the system of operators Al9 Al9 ...9An is definite. 

Proof. Let us choose by 4.16 Borel measurable functions al9 al9..., an and 
a spectral measure $ so that 4.16 (I), (II) hold. 

Let us now define for k e {1, 2,.. .} 

(1) Sk = {s: \a((s)\ ^ k for every i e {l, 2 , . . . , n}} . 

It is clear that the sets Sk are Borel measurable for every ke {1, 2,. . .} and hence 
we can take 

(2) Pk = $(Sk) for / c e { l , 2 , . . . } . 

It follows from 4.13 that the assumptions of 2.3 are fulfilled and hence the statement 
is true. 

5.2 Theorem. Let Al9 Al9 ...9 Ane L+(E)9 ne{\9 2, . . . } . If the assumptions 
5.1 (a) — (y) are fulfilled, then the system of operators Al9 Al9 ...9An is extensive. 

Proof. Let us choose by 4.16 Borel measurable functions al9 al9..., an and 
a spectral measure $ so that 4.16 (I), (II) hold. 
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Let us now define 

(1) Sf =~{S : Se @(C), the functions al9a2, ...,an are bounded on 5} . 

Now we take 

(2) <P == (<T(S) : 5 G Se} . 

It follows from 4A3 that the assumptions of 2.8 are fulfilled and consequently the 
statement is true. 

5.3 Remark. We see immediately that the preceding Theorem 5.2 gives more, 
namely, under the assumptions of 5.2, the Duhamel solutions exist in fact for initial 
data from a dense subset of E. 

5.4 Theorem. Let Al9 A2,..., An e L+(E), n e {1, 2, . . . } . If 
(a) E is a Hilbert space over C, 
(P) the operators Al9 A2, ...9An are normal, 
(y) the system of operators Au A29 ...9An is abelian, 
(8) the system of operators Al9 A2, ...9An is exponentially Hadamardian, 
then this system is correct (of class n — l). 

Proof. It follows from 5.1 that 

(1) the system of operators Al9 A2, ...9An is definite. 
Further, by 5.2 

(2) the system of operators Al9 A2, ...9An is extensive. 
With regard to (2), it suffices to prove that 

(3) the condition 2.9 (B) is satisfied. 
To prove (3), we need a series of preparatory considerations. 
First, using 4.16, we obtain from (ex) —(y) that there exist functions al9 a2, ...9ane 

eC -> C and a function cf e @(C) -> L(E) so that 

(4) the functions al9 al9 ...9an are Borel measurable, 

(5) the function $ is a spectral measure, 

(6) for every ie {1, 2 , . . . , n} , xeD(A() if and only if J at(s)S(ds)x exists, 

(7) Atx == at(s) £(ds) x for every i e {1, 2 , . . . , n} and x e D(A() . 

By 4.13, we obtain from (4) - ( 7 ) that 

(8) S(X) A{ ^ At S(X) for every i e {1, 2 , . . . , n} and X e ^(C) . 

Let us now denote 

(9) S? = {X :Xe ®(C) , the functions ax, al9 ...9an are bounded on X} . 
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11/2 

By 4.13, we obtain from (4)-(7) and (9) that 

(10) S(X)xeDO0(Al9A29...9An) for every xeE and Xe^> 

(ii) |Aa A 2 ... Aad s(x) 4 = [\x K(s) < (̂s) • • • **M2 W**) * i 2 ] 

for every xeE, XeSf9 de{l,2, ...} and a1? a2, ..., ad e {1, 2, .. . ,"} , 

(12) there exists a sequence Xv e Sf9 v = {1, 2,...} such that Xv £ Xv+i for every 
ve{l,2, . . .} and U{*v : ve {1, 2,...}} = C. 

On the other hand, by 4.2 there exists a unique function me R+ x C -• C such that 
(13) for every s e C, the function m(*9s) is a standard solution for the numbers 

a1(s)9a2(s)9...9an(s). 
Using 4.8, we obtain from (4) and (13) that 

(14) the functions m\(t9 •) are Borel measurable for every t e R+ and j e 
e{0, 1, . . . ,n}. 

Further, using 4.4 we obtain from (9) and (13) that 
(15) for every X e Sf9 there exists a constant K so that for every t e R+, seX and 

je{0, L. . . , n} 

\m[j\t9s)\^KeKt. 

By 4.13, we obtain from (13)-(15) that 
(16) for every xeE and X e Sf9 the function \xm(*9 s) S(ds) x is a Duhamel solution 

for the operators Al9 Al9 ..., An such that 

Q m(t9s)$(ds)x\^J(X)x9 

(17) —. I m(r, s) <f(ds) x = j m^f, s) £(ds) x for every 
d ' J J x Jx 

teR+
9 xeE9 XeSf and j e {0, 1,..., n} , 

(18) <v^J.('_ <>"-'^(j>^Hd' -
= a,(s) (* - T) '" 1 m(r, s)dT<?(ds)x for every 

Jx ( i ~ l ) ! j o 

teR+, xeE, XeSf and i"e {1,2,...,«} , 

(19) I f «.</>(., s) ̂ ds) xl = [ f \m^\t, stf \S(ds) xf\ 
IIJ x II L J x J 

for every t e R+ , xeE, XeSf and j e { 0 , l , . . . , n } , 

11/2 
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(20) I í а№ г-Ц^т í'(' - T ) i _ ' m ^ s ) d T ^ d s ) xll = 
Ux ( '-1)! Jo II 

= [ JJ-.W ^ ~ ] J V " tf"1 m(T' s) d*| V( ds ) HI2]1'' 
for every t e JR+ , xe E, X e £f and i e {1, 2,. . . , n} . 

Our next purpose is to establish some estimates of growth of the fpnction iw. 

It follows from Theorem 3.5 that we can fix two nonnegative constants N9 x, 
a number r e {1, 2,...} and a finite sequence ql9 q2,..., qr so that 
(21) for every Duhamel solution u for the operators Al9 Al9 ..., An such that 

«(w~4)(0+) e D^^i , A[2,. •., An)9 for every t e R+ and every i e {1, 2,. . . , w} 

| ^ ' - « ( 0 | ^Ne'lju^^W + ||.4fl^...^«<--»)(0+)||]. 
Since for every feR + 

„<•>(!) = - [ ^ u^-^t) + ,42 u
(w~2)(0 + ... + An «(*)] , 

for every t e &+ and k e {0,1,. . . , n — 1} 

M(k)W - / — r ~ ^ ft - * r ' " ' ^ H 
(n - 1 - ky.Jo 

and for every * e JR+, <5 > 0 and / e {0, 1,...} 
.' i „ 

(и - 1 - Л)! 
u ("-1 ,(0+) 

П ő' 

we deduce from (21) after a simple calculation that 
(22) for every Duhamel solution u for the operators Al9 Al9..., An such that 

n^'^O*) e D ^ j , -42,..., An)9 for every * e K+, j e {0, 1,..., n} and 5 > 0 

IM(i)(0l ^ ~=j(nN + «)^+nl«(""1X0+)I + k A 2 - ^«<-1 )(0+)|] • 

It follows from (1), (10), (16), (17) and (22) that 

(23) I f m(
t
j\t9 s) £(ds) x S 

\\jx 

^-^j("N + S) e("^[\S(X) x\\ + \AtlA9l ...A9r S(X) x||] 

for every teR+ , xejE, l e ^ and j e {0,1,. . . , n) . 

Now (11), (19) and (23) give, with regard to the inequality (a1/2 + b1/2)2 <£ 
£ 2(a + 6) for a £ 0, b £ 0 
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(24) j W \ t , s)|2 \\*(ds) x\\> ^-^IT)(nN + Sf ^ ^ ^ | < ( d * ) x^'* + 

+ (Jxk(») -a-) - °M\2 IK(ds) *|2)1/2 J = 

-- ^ r A n N + Wem+l}' J (* + k(-)-U-) - -Js)l2) lk(ds)x||2 = 

* ^ ( « N + ^)2^+ i ) ' J^( i + k(-) •*(»)•-.-a-)l)a IK^HI2 

for every f e R + , x e £ , X e S? and je {0, 1,...,«} . 

Let us now define for 5 > 0,te R+ andje {0, 1,..., n} 

(25) AT,,,j = | s : s e C , |m^(r, s)\ > 

> £ . (nN + S) e ^ \ l + \aqi(s) aq2(s) ... «,r(s)|)} . 

It is clear from (14) and (25) that 
(26) the set NdttJ is Borel measurable for every 8 > 0, t e R+ and j e {0, 1, ..., n}. 

Let us now put for 8 > 0 

(27) N6 = U{-Vaf,, / : ^ R + , f rational, j e {0, 1, ..., n}} . 

We see from (26) and (27) that 
(28) the set Nd is Borel measurable for every 8 > 0. 

It follows from (13) (the continuity of m(
t
J)(-, s) follows by 4.1), (25) and (27) that 

(29) C\Ns = L:\m(
t
J)(t,s)\^ 

^ ^ ( n N + *) ̂ V + K(*) <*« • • • aM) 
for every t e R+ and j e {0, 1,..., n} I for every 8 > 0 . 

Now we need to prove that 

(30) £(Nd) = 0 for every 8 > 0 . 

It is seen from (12) that it is sufficient for the validity of (30) to prove that 
S(Nd) S(X) x = 0 for every 8 > 0, x e E and X e if, i.e. that 

(31) S(Nd n l ) x = 0 for every <5>0, xeE and XeSf. 
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On the contrary, suppose that (31) is not true. Then there exist ^ > 0 , X G £ and 
XeSf so that S(N6nX)x =f= 0. Consequently, by (27) we can find teR+ and 
je {0,1,. . . , M} SO that 

£(N5ttj n X) x * 0 . 
Hence by (25) 

1 \m«Xt,sf\\S{ás)xf> 
Na,tj^X 

>id^(nN + *)2 e(K+i)' f 0 + k(») «,,(-) - %(s)l)2 IK(ds) *||2 • 
" jN6ittJnX 

Since N,j,f,/ n .K e Sf by (9) and (26), the last inequality obviously contradicts (24) 
and this proves (31). 

The statements (29) and (30) represent the needed growth properties of the func­
tion m and will now be used to estimate the roots of the characteristic polynomial. 

By Fundamental Theorem of Algebra, there exist functions'zl9 z2> •••> zn e C -*• C 
such that 

(32) zn + al(s)zn~1 + ... + an(s) = 

= (z - Zi(s)) (z - z2(s)) ... (z - zn(s)) for every s, z e C . 

Applying 4.5 to (32) we obtain easily 

(33) |e*«'>'| JS (1 + M . ) ! ) - ' (1 + |«.(s)| + |«a(5)| + • • • 

' + K_.(S)|)(|m(l,,)| + |m'('.s)| + ••• + K _ 1 V . - ) | ) 

for every ( e / J + , s e C and ie{ l , 2,. . . , n} . 

We get from (29) and (33) 

(34) eKt"™' = \e"wt\ £ (1 + Ms)!)""1 (1 + |a..(S)| + 

+ |«2(s)| + ... + K.^ ) ! ) . ^ ( l + j j r r + ». + £)(»* + «) • 

,.e<«+«'(l + K,(S)«,2(s)...«Js)|) = 

- ^ ' [ V - ^ + j2 + - + -L)(«W + 8){l + |«x,)D--. 

.(i + |«.(S)| + |«2(s)| + . . . + |«„(s)|)(i + M s ) «Js) •••%(*)!)] 
for every t e R + , <5 > 0 and seC\Nd. 
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Since the member in the last brackets does not depend on t9 it follows immediately 
from (34) that 

(35) Rezt(s) = x + 5 for every 8 > 0 and seC\Nd. 

Let us now put 

(36) N = U{iV1 M :k£{l,2, . . .}}. 

It follows from (30) that 

(37) <f(N) = 0 . 

On the other hand, by (35) and (36) 

(38) Re Zi(s) = * for every seC\N . 
The last results (37) and (38) allow us to estimate the growth of a general Duhamel 

solution which is our task from (3). 
However, to this aim we need still an auxiliary result, namely 

(39) for every Duhamel solution u for the operators 

Al9 Al9..., An, every teR+ and i e {1, 2,..., n} 

«<—xo.).1!"2. 

To prove (39) let u be an arbitrary Duhamel solution for the operators 
Al9 Al9..., An. 

By (12), we can choose a sequence Xv. v e {1, 2,...} such that 
(40) Xv e Se for every v e {1, 2, . . . } , Xv £ Xv+1 for every v e {1, 2, ...} and 

U{-Yv.ve{l,2,...}} = C, 

(41) $(XV) x -> x (v -> oo) for every x e E . 

By (16), (18), (20), (40) and (41), there exists a sequence uV9 v e {1, 2, . . .}, such that 
(42) for every v e {1, 2, . . .}, the function uv is a Duhamel solution for the operators 

Al9 Al9..., An such that 

(43) 

url)(o+) = 4^v)«("-i)(o+). 

I M — fV-T)-^ («(T)dT| = 
ll(« - 1)! Jo II 

- [ £ |-x») ^ JV - *rx -<T, .) dr|2 iK(ds) «<- - xo+)i-J 

for every teR+
9 ie {1, 2,. . . , n} and v e { l , 2 , . . . } . 
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On the other hand, we establish easily by means of (8) that 
(44) for every ve{l , 2, . . .}, the function $(X^)u is a Duhamel solution for the 
operators Al9 Al9 ...9An such that ($(Xy) uf' 1}(0+) = S(Xy) u^~ l)(0+). 

Now we get from (1), (42) and (44) that 

(45) uv = £{XV) u for every v e {1, 2,...} 

It follows from (43) and (45) that 

(46) 
110 

- i — Г'( ř-т)-^ í (Г(X v)u<»- f>(т)dт 
n - 1)! Jo 

s)u(п-1\0+) ]l/2 

By(8) 

(47) 

for every teR+

9 i e {1, 2,..., n} and ve{l, 2,...}. 

— i — f \t - T)»- 1 At *(XV) M<-'>(T) dT = 
(n - 1)! Jo 

- W [j^4l)F j 0 ' ( ' - T)"~'Ai M("" ° ( T ) d T ] 
for every teR+

9 i e {1, 2,..., n} and ve{l, 2,...}. 

Letting v -> oo, we see easily from (40), (41), (46) and (47) that (39) is valid. 
Using Lemma 4.3 we see from (13), (32), (38) and (39) that (48) for every Duhamel 

solution u for the operators Al9 Al9..., An9 every teR+ and i e {1, 2,..., n} 

ii t r f n 
(r - T)*- 1 4iM(n~*0(T)dT I = 3n(l + r)nexf | |M(rt-1)(0+)|| . 

But (48) clearly yields (3) if we take M = 3rt, co = x + 1, 
The proof is complete. 

5.5 Remark. The preceding theorem shows that the system of operators Al9 A29... 
..., An with the properties 5.4 (a), fp), (y) is correct if and only if it is exponentially 
Hadamardian. 

Moreover, in the course of the proof, we have shown that the system of operators 
Al9 A29 ...9An with the properties 5.4 (a), (P), (y) is correct if and only if it is cor-
rect of class n — 1. 

For Hadamardian systems, Theorem 5.4 does not hold and certain additional 
restrictive assumptions on the operators Al9 Al9..., An must be introduced. 
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One of such conditions is known from G&rding's theory of hyperbolic equations 
and says, roughly speaking, that the operators Ai,A2,...9An are polynomials of 
certain n fixed operators. 

We intend to return to these problems in another paper. 
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