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Časopis pro pěstování matematiky, roč. 109 (1984), Praha 

SEMIELLIPTIC SINGULARITIES 

JOSEF KRAL, Praha 

(Received December 21, 1983) 

INTRODUCTION 

Let m = [ m 1 $ . . . , m -̂] be a fixed N-tuple of positive integers. Given a multi-
index a = [a 2, . .^a^] we put 

N 

| a : m | = £ a jm*; 
* = i 

for the sake of brevity we put 

(0) b = |1 : m\ , 

where 1 = [ 1 , . . . , 1] 6 RN has all components equal to 1. Let U be an open set in 
the Euclidean N-space RN. We shall suppose that with each multiindex a satisfying 

(1) |a : m\ = 1 

is associated an infinitely differentiable function aa in 17. Writing dk for the partial 
derivative respect to the fc-th variable and i for the imaginary unit we use the 
usual notation 

Dk= -idk, D* = Dl>...D>N» 

and consider the differential operator (acting on functions or distributions in U) 
given by 

(2) , P{D) = YdatD\ 
a 

the sum being extended over all multiindices satisfying (l). 

By a distinguished parallelepiped we mean an N-dimensional interval 

(3) K = XI* 
k = l 

arising as a Cartesian product of one-dimensional intervals Ik of the corresponding 
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lengths rl/Wk (k = 1, ...,1V); the value of the parameter r > 0 will be denoted by |K| 

or, in case of need, more explicitly by |K |m. 
If u is a function integrable with respect to the Lebesgue measure X over K, we 

denote by 

1 Г 
uк = — — u 

dД 

its mean value on K. For any locally integrable function w in U and each compact 
set Q c U with a non-empty interier Q° we put 

(4) Ql(6, u) = sup I |u - uK\ dX , 
* JK 

K ranging over all distinguished parallelepipeds satisfying, for the given 5 > 0, the 

conditions 
Kc= g , |K |m = O\ 

Writing 

1*11- = 11*. 
N 

'mk 

* = i 

for x = [xj, . . . , xN] e ^ N we define for any locally bounded function v in U and any 
non-void compact set Q c U: 

(5) om

Q(5, v) = sup {|v(x) - v(y)\; x, y e Q, \\x - y\\m = 3} , d>0. 

Finally, we employ the distinguished parallelepipeds for constructing measure of 
the Hausdorff type. By a measure function we mean any real-valued function fin R 
for which there is a Sf > 0 such that f is non-negative, non-decreasing and con­
tinuous on (0, Sf). Given such an f we define for any nonvoid set L c= RN and any 
ee(0,df) 

jr£fi(L) = inf 1/(1^1), 
n 

where the infimum is taken over all sequences of distinguished parallelepipeds Kn 

satisfying the conditions 
\Kn\^s, Lcz\JKn. 

n 

Setting -^fm£(0) = 0 we define the (outer) Hausdorff measure of type m for any 
L c RN by ' 

^i(L) = \im^itB(L). 
E l O 

Using this notation we may formulate the following results proved in [12]. 

Theorem 1. Let 0 ^ y ^ 1 and let g ^ 0 be a function of the variable t > 0 
satisfying 

limMg(t) ry~b > 0 . 
no 
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Let u be a function in U such that each multiindex a fulfilling (l) can be split 
into a sum 

(6) a + a = a 

in such a way that 

(7) |a : m| =" y 

and D*u is locally integrable in U and satisfies 

(8) Q%(5, D*u) = 0(g(5)) (6 J 0) 

on each compact set Q a U, Q° 4= 0. Further, let F a U be relatively closed in U 
and suppose that 

(9) P(D) u = 0 in U\F 

in the sense of distributions. If 

f(t) = g(t)t-y (t>0) 

defines a measure function and F has a locally finite J^m-measure, then there 
exists a locally integrable (with respect to 3^m) function h in U vanishing on U \F 
such that 

(10) P(D) u = h^f
m in U 

in the sense of distributions (which means that, for any infinitely dijferentiable 
test function \j/ with support in U, the value of the distribution P(D) U at \j/ is given 
by the integral J f \j/h d«2f£). In particular, if J^m(F) = 0, then F is removable 
for u and P(D) u = 0 in the whole of U. 

Corollary 1. Let 0 ^ y ^ 1 and let co ̂  0 be a function of the variable t > 0 
satisfying 

lim Mco(t)t~y > 0 . 
f lO 

Let u be a function in U such that each multiindex <x fulfilling (1) splits as in (6), (7) 
in such a way that D*u is continuous in U and satisfies 

(11) 0)1(5,0^)= 0(a)(8)) ( n o ) 

on each compact set Q a U. Let F a U be relatively closed in U and suppose (9). If 

f(t) = (o(t).tb-y (t>o) 

defines a measure function and F has a locally finite Jtf'm-measure, then there 
exists a locally bounded Baire function h in U vanishing on U\F such that (10) 
holds in the sense of distributions. In particular, if J^m(F) = 0, then P(D) u = 0 
in the whole of U. 
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These results give, in terms of the measure Jfm, sufficient conditions for the re­
movability of a singular set F <= U for functions which together with certain deriva­
tives satisfy suitable conditions concerning their integral modulus of continuity (4) 
or their anisotropic modulus of continuity (5). In order to obtain necessary conditions 
one has, of course, to impose adequate restrictions on the type of the differential 
operator P(D). We show in § 2 that for semielliptic operators it is possible to get, 
again with help of the measure J^m, sharp estimates of the size of the set of singulari­
ties, which can be combined with the above results into necessary and sufficient 
conditions on the removability of singularities. These estimates are based on a pre­
liminary investigation, included in § 1, of the behaviour in RN of potentials derived 
from kernels in RN x RN with a specified singular behaviour near the diagonal. 

§ 1. BEHAVIOUR OF POTENTIALS 

Let G(x, y) be a complex-valued Baire function on RN x RN (x, y e RN) which is 
bounded on every set of the form 

{[x,y]; r^\x-y\^R, \x\ g R} , 

where 0 < r < R < oo. Such a G will be called a kernel. We assume that there is 
a ft > 0 such that the estimate 

(12) G(x, y) = 0(\\x - y\\^) as |x - y\ [ 0 

holds locally uniformly with respect to x e RN. 

Given a complex-valued Borel measure n with a compact support spt \i we denote 
by |/i| its variation and define 

(13) vm(b,li) = ^{\[\(K), \K\m^5) 
K . 

for 3 > 0 with K ranging over all distinguished parallelepipeds with |K|m not exceed­
ing S. We shall see that, under adequate restrictions on vm(a, JJ), the potential 

(14) Gfi(x)= f G(x,y)dfi(y) 
JRN 

is defined a.e. (or everywhere) in RN, and additional information concerning the 
behaviour of G near the diagonal permits to obtain estimates of the integral modulus 
of continuity Qm(', •) (or, respectively, the ordinary modulus of continuity cum(', •) 
of the potential (14)). 

1.1. Lemma. Let cp be a measure function such that 

dt < oo 
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for a suitable 6 = d^ > 0. Put 

B(x, r) = {ye RN; \\x - y\\m < r] (x e RN, r > 0) . 

Then for any s > 0 there is a c = c(s) > 0 such that, for each compact Q c RN 

and each complex-valued compactly supported Borel measure p satisfying 

(16) v'n(r, ii) = 0(q>(r)), r j 0 , 

the estimate 

(17) f \G(x.y)\d\n\(y)=o(r(p(t)rl'-ldt), rjO, 
J B(x,sr) \ J o / 

holds uniformly with respect to x e Q. 

Proof. In view of our assumptions on G there are positive constants cl9 r0 such 
that, for all x e Q and y e B(x, sr) with r e (0, r0), the following estimate holds: 

\G(x,y)\^Cllx-yl-'. 
Hence 

f | G ( x , , ) | d | f a | 0 ' ) r S c 1 f l* - yf d\n\(y) -
J B(x,sr) J B(x,sr) 

/•oo 

= cx |/i| (B(x, min (sr, t~l/p))) at = 

= cl(sr)~^\n\(B(x,sr)) + cx f°° \p\ (B(x, t~ l/p)) d t . 

hsr)~P 
Note that 

N 
B(X, T) C X <Xk - Tl/m\ Xk + T 1 / m k > 

fc=l 

can be covered by 2N distinguished parallelepipeds K with |K|m = T. Assuming that r0 

has been fixed sufficiently small and cx sufficiently large we have for r e (0, r0) in 
view of (16) 

P \fi\(B(x,ri">)) = 2"Cl f" ^r'/'Jd . = 2»Cl/? r ^ r ' - M r . 
J(sr)~/» J(sr)"P Jo 

Consequently, 

f |G(x, j,)| d|/i| (y) = 0 (Vv(sr) + f%(0 <~'_1 dA , r j 0 , 
JB(x,sr) \ Jo / 

uniformly with respect to x e Q. Since q> is non-decreasing on (0, 6) we have the 
inequality 

/•2sr f»2s2r 

r~pcp(sr) = c2 (p(st) T~P~1 dr = c2s
p cp(t) t~p~l dt 

J sr J s2r 
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provided (s + 2s2) r0 < S and c2 = fisp(l -2 p)~1 which yields the estimate (17) 
with c = s + 2s2. 

1.2. Remark. It follows from the above lemma that the potential (14) is defined 
everywhere for any compactly supported Borel measure \i satisfying (16), where q> 
fulfils (15). 

1.3. Lemma. If b > P (cf. (0), (12)) then the potential (14) is defined a.e. (X) and 
is locally integrable in RN (w.r. to X)for any compactly supported Borel measure [i. 
If, in addition, G(x, y) is continuously differentiable with respect to x off the 
diagonal and 

(19) d^^=o(\x-y\\-J-1^), \x-y\l* ( k = l , . . . , N ) 
dxk 

locally uniformly w.r. to x, then the integral modulus of continuity of Gfi admits, 
for every compact set Q a RN with Q° + 0, the estimate 

(20) Q£(S, Gp) = O ( £ 6b+llm" f V(í, n) r^-1-1'"* díY 6 i 0 . 

Proof. Note that, for any distinguished parallelepiped K, A(K) = |K|b. Applying 
1.1 to the transposed kernel G(y, x) and the measure function 

(p(t) = tb, t > 0 , 

we get for any s > 0 

f \G(x, y)\ dX(x) = 0 ( [ V ' - dt) = 0(r>->) , r I 0 , 
jB(y,sr) \J0 / 

which holds locally uniformly w.r. to ye RN. 

Now let n be an arbitrary non-trivial compactly supported Borel measure in RN. 
Given x° e RN then 

\lx\(B(x°,r)) = 2Nvm(r,fi) 

and, for s = X 2mk, 

(21) y e B(x°, r) => B(x°, r) <= B(y, sr) . 

Hence 

f ( í \G(x,y)\d\rl\(y))dl(x)^ 
J B(x°,r)\J B(x°,r) J 

= f ( Í |G(*, y)\ d ^ ) ) d|Ai| (y) = 0(rb-"vm(r, n)) , r 1 0 ; 
JB(x<>,r) \jB(y,sr) / 
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locally uniformly w.r. to x° e RN. We see that the potential u = G\i is defined a.e. (X) 
and is locally Lebesgue integrable. We now proceed to investigate its integral modulus 
of continuity on an arbitrarily fixed compact set Q a RN, Q° 4= 0- Let K c Q be 
a distinguished parallelepiped with |K| = r. Then 

f \u - uK\ dk = r-b IT \u(y) - u(z)\ dy dz = 
JK JJK*K 

= r-bJRN ( | £ jG(y, 0 - G(z, Q\ dy dz) d\»\(i). 

iV 

If x is the center of K and s = £ 2~m', then K <= B(x, sr). Note that vm(2r, JJ) = 
1=i 

g 2N vm(r, ^) (r > 0), so that vm(sr, fi) = 0(vm(r, /x)) as r | 0 for any s > 0. 

Hence 

f fff \G(y^)-G(z,i)\dydz)d\n\(^)^ 
J B(x,sr)\JJ KxK ) 

= 2rk f ( f |G(j, 01 d>> d|/t| ({) = o(r2"-" iT(r,,.)) , r i 0 , 
jB(x,sr) VJK / 

uniformly w.r. to K c Q, |K| = r. Now we shall make use of the estimates (19) of 
the derivatives djG = dG/dxj (j = 1,..., N). If £ e spt \x is not situated on the segment 
with end-points y, z e K, then for a suitable constant k and fij = /? + l/m; we have 

|G(y, {) - G(z, £)| = | f A G ( j + 0(z - y), {) do| = 

= 1 fh-^l-K-^ + ^ z - ^ ^ d ^ 
J=i Jo 

Sgfc i r 1 ' -> f | y + ( 9 ( z - y ) - f | | i ; ' i d e . 
; = 1 Jo 

Writing 

(22) m = max {my, 1 g ; = JV) 

we have 

b + e(~j - yj) - tj\mj = 2~m% - *j\m' - \yj + 0 ( z ; - yj) - xj\m) = 

=• 2~% - xp - r ; 

consequently, if s has been fixed large enough to guarantee that 

N 
h = 2-m-->0, 

s 
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we have for 6 e <0, 1> and 

{ e CB(x, sr) = {£e RN; \\x - £|| = sr} 

the inequality 

\\t - b + (z - y)]\\m = 2-M||^ - x\\m - Nr = fc||t. - x |m , 

which implies that £ is not on the segment with end-points y, z and 

\G(y, Z) - G(z, Q\ = fc _ r1/m>(h|j£ - xfl.,)-" , 
1=1 

f (Tf |G(y,a-G(z,0|djdz)dH(^) = 
JcB(x,sr) \JJK*K I 

_fc.r»£y/«. f |^-x||^dH(0, 
1-1 JcB(x,sr) 

JV 

where kt = k _£ /z"^'. We get 
1=1 

f ||« - xB_" d^l (€) - f"|,.| (e.) dx. 
J CB(x,sr) J 0 

where 
Qr = {yeRN; sr = \\x - y\\m < T " 1 ^ , 

Clearly, Qx = 0 for T > (sr)-f*J, while for the other T 

| / i | ( e t ) _ 2 ^ m ( T - i / ^ , / i ) , 

whence 
/•oo Msr)~PJ Лoo 

I^KßOdтgг" ^ ( т - ^ . ^ d т ^ г ^ . ^( f .^ r^-Ч ř . 
J 0 J 0 J sr 

We see that 

f (f |G(j.,(J)-G(z,^)d,.dzN)dH(0 = 
JcB(x.sr) \jKxK ) 

= 0 ( _ r 2 i + 1 / m ' f °V(f, /.) f"'-*-J dt) as |K| = r j 0 . 

Summarizing we obtain for K e g , | K | = r, 

f |u — MK| dA = O (rb-l'vm(r, n) + ~ rb+i'mj V«r"(t, /.) f"̂ "1 dfV r | 0 . 
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Note that, for r < 1, 

+ 1/.. f °V( ř > џ) Гß>~1 dí = ßjlrь-ßvm(r, џ) , 

so that 

rъ-ß„ tvm(r, ix)= o(Y. rb+l/mj f "W*. i*) t~fij~1 d ' Y r i 0 • 

Since s = 1, we arrive at (20). 

1.4. Lemma. Let q> be a measure function such that the integral (15) converges 
for a suitable S = S^ > 0. Then, for each compactly supported Borel measure 
satisfying (16), the potential (14) is everywhere defined and its modulus of continuity 
satisfies, on each compact set Q e (RN, the estimate 

com(r, Gfi) = of f V W " ' " 1 dt + X rx/mj f <p(t) r ^ " 1 " 1 ^ d t Y r 1 0 . 

Proof. Let / i b e a non-trivial compactly supported Borel measure satisfying (16); 
according to 1.2, the potential u = Gfi is everywhere defined. Fix a compact set 
Q c WN, r > 0 and consider y, z e Q with ||>> — z||w g r. Writing x = \(y + z) 
we have 

\u(y) - u(z)\ = f \G(y, t)\ d|/i| «;) + f |G(z, € ) | d|M| («) + 
jB(x,sr) J B(x,sr) 

+ f |G(y,0-G(z,^)|dH(0 
J CB(jc.sr) 

for s > 0, where CB(x, sr) has the meaning described in the proof of 1.3. As we have 
seen in the course of that proof, for s large enough and £ e CB(x, sr) we have 

|G(>a) - G(z,£,)\ = fc. I r""'||č - x||-^, 
1=1 

f |{; - x |;" dH (í) -= O ( f V(í, „) Í " * " 1 dlY r 1 
JcB(x,sr) \Jsr J 

N 

In view of the implication (21) (which is valid for s ^ J] 2m-/) we have the inclusions 
1=i 

B(x, sr) cz B(y, s2r), B(x, sr) a B(z, s2r), which yields by 1.1 for a suitable c > 0 

f \G(y, {)| d|̂ | ({) + f |G(z, 9| d|„| (9 = O ( f^t) r'-1 dt), riO. 
J B(x,sr) J B(x,sr) \J 0 / 

Since 

ri/mj f V ( / - p) t-Pj-i dt = O fr1/mj f vm(t, fi) t~Pj~l dt\, riO, 
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we obtain 
/ per N pd \ 

\u(y) - u(z)\ = 0 ( q>(t) r'~' dř + £ rUm> vm(t, p) r''~l d ř ) , r | 0 . 
VJo J=l Jsr I 

If c > 1, then for small r > 0, 

Г<p(í) Г'-1 át й c1!mj Г<p(t) Г ' " 1 í-\ UmJàt й e1 '""-1 '"' ľ<p(t) Г''-lát. 

Consequently, 

com(r, u)= of ^cp(t) r ' _ 1 dt + X r1/w ' f <K0 ^~^ _ 1 <*A , r | 0 . 

The above estimates can be conveniently combined with the following version of 
Frostman's lemma which immediately follows from Lemma 7 proved in [8]. 

1.5. Lemma. If (p is a measure function on (0, 3) and F <= RN is a compact set 
with ^fm(F) > 0, then there exists a nontrivial Borel measure f.i = 0 with its support 
contained in F such that 

H(K) ^ <p(\K\m) 

for all distinguished parallelepipeds K with |K|m ^ 3. 

As a consequence of 1.5, 1.3 and 1.4 we obtain 

1.6. Proposition. Let G(x, y) be a kernel which is continuously differentiate 
w.r. to x off the diagonal and satisfies (12), (19) locally uniformly w.r. to x. If cp 
is a measure function on (0, 3^) and F a RN is a compact set with 34?m(F) > 0, 
then there is a nontrivial Borel measure \i ^ 0 with its support in F such that 

vm(5, /t) ^ <p(S) , 5e(0,S9); 

the potential u = G\i of any such \i is locally integrable and satisfies, for each 
compact Q <= RN with Q° = 0, the estimate 

(23) Ql(3, u) = 0 (j. 6b+1/mj [ V ' ) r*-1-11"1* dtY 3 10. 

If 

(p(t) r ^ - 1 dt < oo , 

then u is everywhere defined and fulfils the estimates 

(23co) com(39 u) = o( [8<p(t) r*-1 dt + £ 31/m< | % ( r ) r ^ " 1 " 1 ^ dfY <5 i 0 . 
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1.7. Remark. Proposition 1.6 provides estimates of moduli of smoothness which 
can be achieved by potentials of nontrivial measures whose supports are contained 
in a compact set of a positive ^f^-measure for a given measure function cp. It is often 
useful to have, conversely, suitable conditions on the Hausdorff measure of a compact 
set F guaranteeing that F can support a nontrivial measure whose potential has 
a prescribed modulus of continuity. Such conditions are given in the following 
theorems. 

1.8. Theorem. Let G(x, y) be a kernel which is differentiable w.r. to x off the 
diagonal and satisfies (12), (19) with /? < b (cf. (0)). Let g = 0 be a continuously 
differentiable function on an interval (0, Sg) such that, for suitable c > 0, 

'*(0Y v(t)= -f+í+e-bíim 

defines a positive measure function on a certain interval (0, S^), 0 < S^ = Sg; 
if c > b + 1/m (recall (22)) then we suppose, in addition, that for a suitable 
a > 0, 

(24) t\-*g(t)ta-b-1/m 

is nonincreasing on (0, S^). Then any compact set F c RN with Jfm(F) > 0 supports 
a nontrivial Borel measure \i with 

(25) vm(S, ft) = cp(3), 8e(0,59); 

its potential u = G/z is locally integrable and satisfies, for each compact set Q <= RN 

with Q° 4= 0, 

(26) Om(3,u)= 0(g(S)), 8 10. 

Proof. If tffm(F) > 0 then, according to 1.6, F supports a nontrivial Borel measure 
/j whose potential u = G\i fulfils (23). Taking into account the definition of cp we have 
for any j 

Sb+l/mj [5\(t)r fi-l-Vmjdt = _5b+l/mj C'f-b- 1/mj Mf )V d , = 

= g(S) + (c - b - l/m,.)<5ft+1/m' f *g(t)rb-1-1,m'dt. 

If c = b + 1/mj, then this expression does not exceed g(S). If c > b + l/my then, 
making use of our additional assumption on g, we get for a suitable a > 0 

/•*«. *39 

Sb+1/mj g(t)rb-1'1/mjdt = db+1/mj g(t)f-b-1,mj.ra'1dt = 

Js Jd 

= db+1/m' g(3) . 6a-b-1/m' f V""1 dt = - g(S) . 
Js a 

Thus (26) is true in any case. 
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1.9. Theorem. Let G(x, y) be a kernel which is differentiable w.r. to x off the dia­
gonal and satisfies (12), (19) with P < b. Let g _ 0 be a continuously differentiable 
function on an interval (0, Sg) such that, for suitable ce(0,b + 1/m), 

(-7) w q>(t) = Ѓ+1+'-b(?Щ 

defines a positive measure function on (0, d9) (0 < S^ — Sg) and, in addition, 
there is an a > 0 such that the function (24) is nonincreasing on (0, 3^). Then each 
compact set F _ RN with J^m(F) > 0 supports a nontrivial Borel measure fi fulfilling 
(25); its potential u = G\i satisfies (26) for each compact set Q — RN, Q° + 0. 

Proof. This again follows from 1.6. Now we have for each; 

Sb+l/mj f\(t)r/>-l-l/m,d, _ 5b+1/m' C\c~b-1/mjf^\dt = 

g db+1/mJg(d<p)d;b-1/mj + (b + 1/m,- - c)bb+1/m> f \(t) rb-l-1/mJdt = 

= o(ôь+i"»j ҐVo*" - 1"1'"'-1'). 

because g cannot vanish identically on (0, 6^) in view of the assumption #?m{F) > 0. 
Since (24) is nonincreasing we conclude as in the final part of the proof in 1.8 that 

6b+i/mj p ^ r f c - i - i / m i d t = 0(g(ty9 d l 0 m 

1.10. Remark. If g(t) tends to zero more quickly than tb then it is natural to replace 
g(t)Jtb by y(t) and to estimate the ordinary modulus of continuity com(', •) by means 
of y. The following theorem deals with com(m, •). 

1.11. Theorem. Let G be a kernel fulfilling the assumptions of 1.9. Suppose 
that y — 0 is a continuously differentiable function on (0, 3y) such that 

<K0 = t'+V(0 
defines a positive measure function on (0, O^) (0 < S^ — Sy) and, for suitable 
a > 0, 

(28) t\->y(t)ta~1/m' 

is nonincreasing on (0, 6^). Then each compact set F a RN with 3^m(F) > 0 sup­
ports a nontrivial Borel measure p, fulfilling (25); its potential u = Gfi is every­
where defined and satisfies 

com(S, u) = 0(y(S)) as 5 J 0 

for every compact set Q cz RN. 
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Proof. According to 1.6, F supports a nontrivial Borel measure \i with (25); its 
potential u = Gfi satisfies (23co). It follows from the definition of cp that 

r«9(0.'"/,"ld.-= (V(t)d^y(<5), 
Jo Jo 

s1,mj cp(t)rfi-1-1,mj&t = S1,mj y'(t)r1,mjdt = 

J d J d 

= s1,mjy(s9)s;1,mj + — s1,mj f \(t) r'-'^dt = o {<51/m' I VO r 1"1/™M/], 

because ^£(F ) > 0 guarantees that y does not vanish identically on (0, S^). Using 
the assumption that (28) is nonincreasing we conclude 

^Imj f ^ t - i - i / ^ d t = y(3)da f V ^ ' d t = 0(y(S))9 ( 3 | 0 . 
J<5 J 5 

1.12. Remark. Estimates of potentials derived from kernels G satisfying (19), (12) 
included in § 1 slightly extend (to general moduli of continuity) those presented in 
[10]; anisotropic Holder continuity of such potentials was earlier proved in [8]. 
These results are related to the conditions on Holder continuity of Riesz potentials 
obtained by H. Wallin [15]; estimates of Riesz potentials in Morrey's spaces were 
also investigated by D. R. Adams [1]. 

§ 2. SINGULARITIES OF SOLUTIONS OF SEMIELLIPTIC EQUATIONS 

We shall consider a differential operator of the form (2), where now aa are complex 
constants and a runs over the multiindices satisfying (l). Let us recall that P(D) is 
called semielliptic if the associated polynomial 

(29) PM= I a A' 
| a : m | = l 

(where we put, as usual, £a = %\' ... £%N for = [£ l5 ..., £N~\ e RN) has no nontrivial 
real zeros in RN, i.e. 

(f e RN, Pm(£) = 0) => i = 0 (eRN). 

It is well known that in this case P(D) is precisely of order m} in the j-th variable, 
j = 1, .... N (cf. [14]). We shall suppose, for simplicity, that 

(30) b = i - > 1 . 
1=i ntj 

N 

Elementary examples of such operators include the Laplacian A = — £ Dj in RN 

1=i 
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with N > 2, the Cauchy-Riemann operator D2 — iDl (here / is the imaginary unit) 
.v-l 

in R2 and the heat conduction operator iDN — £ D\ in RN with N > 1. 
k = i 

If U cz RN is an open set and X(U) is a class of locally integrable functions (or 
distributions) in U, then a relatively closed set F cz U is termed removable for Jf (U) 
with respect to P(D), if every u e Jf (U) satisfying (9) (in the sense of distributions) 
satisfies P(D) u = 0 in the whole of U. The results of § 1 give necessary conditions 
concerning the removability of relatively closed sets for various classes of functions. 

2.1. Theorem. Let (2), (1) be a semielliptic operator with constant complex 
coefficients satisfying (30). Suppose that 0 = e < 1 and let g = 0 be a continuously 
differentiate function on an interval (0, 6g) such that, for a suitable c > 0, 

*(0Y -»--<-•(*?) 
defines a positive measure function on an interval (0, 8V)9 0 < 3^ = Sg; if c > b + 
+ \\m (cf. (22)) then we suppose, in addition, that for a suitable a > 0 the function 
(24) is nonincreasing on (0, S^). Then the condition 

(31) jr*(F) = o 

is necessary for a relatively closed set F cz U to be removable (w.r. to P(D)) for 
the class of all functions u in U which, together with their derivatives D*u cor­
responding to the multiindices a with 

(32) |a : m\ = e , 

are locally integrable in U and satisfy 

(33) Qm
Q(d, D*u) = 0(g(8)), «5j 0 , 

on each compact set Q cz U with Q° =}= 0. 

Proof. If (31) does not hold then F contains a compact subset of a positive JF^-
measure; we may thus suppose that F itself is compact. Let us fix a fundamental 
solution E corresponding to P(D). It is known that E coincides in RN \ {0} with an 
infinitely differentiable function whose derivatives admit the estimates 

|^£(x)| = o(||x||r»-'-"). WiO 
(cf. [4]). Let now ft be a nontrivial measure supported by F with (25) and consider 
an arbitrary multiindex a satisfying (32). We then have Dxu = G\i, where the kernel 

r( \ /D*E(x-y)> *±y 
G ( X ' y> = \n 

x0 , x = y 
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satisfies the assumptions of 1.8 with P = b — (1 — s). Consequently, D*u is a locally 
integrable function whose integral modulus of continuity satisfies (33) on each com­
pact set Q cz U, Q° =f= 0. Since P(D) U = \i in the sense of distributions, F is not re­
movable for the class of functions described in our theorem. 

2.2. Remark. Let P(D) be the same as in 2.1 and suppose that g ^ 0 is continuously 
differentiate on (0, Sg), 0 ^ e < 1 and that 

(p(( •wҷfy 
defines a positive measure function on (0, <59) (0 < 5^ ^ (5 J for a suitable c e 
e (0, b -f 1/m"). Further suppose that (24) is nonincreasjng on (0, 3^) for a suitable 
a > 0. Then (31) is necessary for a relatively closed set F cz U to be removable 
(w.r. to P(D)) for the class of all functions u in U which, together with their derivatives 
D*u corresponding to the multiindices a with (32), are locally integrable in U and 
satisfy (33) on each compact set Q cz U with Q° =J= 0. 

This follows from 1.9 by the reasoning described in the proof of 2.1. In a similar 
way 1.11 implies the following result which was presented in [9] for the case e = 0. 

2.3. Theorem. Let P(D) be a semielliptic operator satisfying the assumptions 
of 2.1. Let 0 ^ e < 1 and suppose that y ^ 0 is a continuously differentiate 

function on (0, Sy) (dy > 0) such that 

<K0 = tfc+£y'(» 

defines a positive measure function on (0, O^,)(0 < Sv _" Sy) and the function (28) 
is nonincreasing on (0, 3^) for a suitable a > 0. Then (31) is necessary for a relative­
ly closed set F cz U to be removable (w.r. to P(D)) for the class of all functions u 
in U which, together with their derivatives D%u corresponding to the multiindices a 
satisfying (32), are representable by locally bounded functions satisfying 

c^(<5,DV) = 0(y(S)), SiO, 

on each compact set Q cz U. 

Proof follows from 1.11 where we put P = e + b — 1 and apply the reasoning of 
the proof of 2.1. 

2.4. Corollary. Let P(D) be a semielliptic operator satisfying the assumptions 

of 2.1. If 

(34) 1 g d g b , 

then 

(35) *d
m-\F) = 0 
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is necessary and sufficient for a relatively closed set F c U to be removable (w.r. 
to P(D)) for the class of all locally integrable functions u in U satisfying the 
condition 

(36) Q^(S, u) = 0(6d) , 5 . J0 , 

on each compact set Q cz U, Q° 4= 0. If 

(37) b < d < b + 1/m , 

then the same condition (36) is necessary and sufficient for F to be removable for the 
class of all functions u satisfying 

(38) cO2(O»= 0(Sd~b), <5j0, 

on each compact set Q c U. 

Proof. Let us first assume (34). Letting y = 1 and #(t) = td in Theorem 1 stated 
in Introduction we obtain that (35) is sufficient for F to be removable for the class 
of all locally integrable functions fulfilling (36). Conversely, if F is removable for 
this class then, letting e = 0, g(t) = td and c = d + 1 in Theorem 2.1, we obtain 
(35). Next, consider the case (37). If (35) holds, then we let y = 1 and w(t) = td~b 

in Corollary 1 stated in Introduction and conclude that F is removable for the class 
of all functions u fulfilling (38). Conversely, if F is removable for this class then, 
employing 2.3 with e = 0 and y(t) = td~b, we arrive at (35). 

2.5. Remark. Functions satisfying the Holder condition (38) are known to be 
merely a special case of functions fulfilling the condition (36) on the integral modulus 
of continuity; accordingly, the second part of 2.4 may be obtained as a consequence 
of its first part dealing with d > b. 

The result contained in 2.4 was presented in [10], Th. 3. When applied to the 
Cauchy-Riemann operator, it made it possible to extend to dimensions d ^ 1 and 
to Campanato spaces characterization (due to Carleson and Dolzenko) with help of 
the d-dimensional Hausdorff measure (J < d < 2) of removable singularities of 
holomorphic functions in Holder classes with exponent d — 1; in particular, for d = 
= 1, the relatively closed sets of linear measure zero were exhibited as removable 
singularities (with respect to holomorphy) of functions in BMO classes (cf. also 
[11]; MR8O1' : 30037). In 1982 R. Kaufman (MR 84b : 30050) treated a related 
result in the Besicovitch setting admitting sets of singularities which need not be 
relatively closed. 

Similarly, for the Laplacian (P(D) = A) in RN (N > 2), Th. 3 in [10] extended to 
dimensions d = N — 2 and to Campanato spaces the result of L. Carleson (1963) 
characterizing in terms of the d-dimensional Hausdorff measure removable singulari­
ties of harmonic functions in Holder classes with exponent d — N + 2(N — 2 < 
< d < N — 1); in particular, relatively closed sets with vanishing (N — 2)-dimen-
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sional Hausdorff measure were identified as removable singularities (with respect 
to harmonicity) of functions in BMO classes. For dimensions d > N — 1 the picture 
is naturally completed by considering functions whose derivatives belong to the cor­
responding spaces. In 1978 V. L. Shapiro (MR 58 # 11466) treated related topics 
for subharmonic functions. 

The following Corollary dealing with elliptic operators shows that Theorems 1 
and 2.1 permit to characterize, with help of ordinary Hausdorff measures in the full 
scale of dimensions between 0 and N, the removable singularities for functions 
which together with certain derivatives belong to adequate Campanato spaces. We 
write simply 

* * ( • ) = *"( • ) , CJ(', ') = fia(-, '). a>l(; •) = coQ(; • ) . 

2.6. Corollary. Let P(D) be an elliptic differential operator of order m < N 
with constant complex coefficients and suppose that k is an integer satisfying 
0 = k < in. If 

(39) 1 - kjm = d < (N + l)/m 

then 

(40) #*+*«-l\F) = 0 

is necessary and sufficient for a relatively closed set F a U to be removable (w.r. 
to P(D))for the class of all functions u which, together with their derivatives D*u 
of order 

(41) |a| = aA + ... + ajV = /c, 

are locally integrable in U and satisfy the condition 

QQ(3, D*u) = 0(6md), n o , 

on each compact set Q cz U. 

If 0 < d < 1 then 

(42) jrk+N+'-*(F) = 0 

is necessary and sufficient for any relatively closed set F cz U to be removable for 
the class of all functions u in U which, together with their derivatives D%u of order 
(41), satisfy the condition 

(43) coQ(S,D*u)= 0(Sd), <5 J O , 

on each compact set Q c [/. 

Proof. Employing Theorem 2.1 with e = kjm, g(t) = td and c = d + 1 we get, 
under the assumption (39), the measure function cp(t) = td~i+k,m such that (31) is 
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necessary for F to be removable. Observing that, for this cp and m = m . 1, 

tfl(F) = 0 <-> jfrk+m(d'l)(F) = 0 , 

we obtain the necessity of (40). Conversely, using Theorem 1 from Introduction with 
y = (m — k)]m, g(t) = td we get that the same condition (40) is also sufficient for F 
to be removable. If 0 < d < 1 then Corollary 1 from Introduction with the same 
value of y and co(t) = td/m provides the measure function f(t) = t(

d+N+k~m)/m
 s u c h 

that 

(44) JT£(F) = 0 

is sufficient for the removability of F for the functions u which together with the 
derivatives D*u of order (41) satisfy on each compact set Q c U the condition 

©3(5, D'u) = 0(bd/m) , (510, 

which means just the same as (43). Conversely, Theorem 2.3 with e = k\m and 
y(t) = td/m shows that (44) is necessary for F to be removable for the same class of 
functions. It remains to note that (44) is equivalent to (42). 

2.7. Remark. Hasudorff measures also permit to get necessary conditions for the 
removability of singularities for classes of functions admitting a specified growth 
near the singular set; on the other hand, sufficient conditions in known results of 
Bochner's type dealing with these classes usually employ Minkowskian content or 
comparable set functions (cf. [5], [6], [13]). Some natural questions in this direction 
remain open. We do not touch the vast field of various capacities (cf. [7]) and refer 
the reader to [9] for further references concerning the removability of singularities. 
The main results of this paper were presented in a lecture held in December 1982 
in the Mathematical Institute of the University of Copenhagen. 
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