Archivum Mathematicum

Reinhard Thron; J6rg Koppitz
Lattice-theoretically characterized classes of finite bands

Archivum Mathematicum, Vol. 39 (2003), No. 1, 1--10

Persistent URL: http://dml.cz/dmlcz/107849

Terms of use:

© Masaryk University, 2003

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/107849
http://project.dml.cz

ARCHIVUM MATHEMATICUM (BRNO)
Tomus 39 (2003), 1 — 10

LATTICE-THEORETICALLY CHARACTERIZED
CLASSES OF FINITE BANDS

R. THRON AND J. KOPPITZ

ABSTRACT. There are investigated classes of finite bands such that their subsemi-
group lattices satisfy certain lattice-theoretical properties which are related with
the cardinalities of the Green’s classes of the considered bands, too. Mainly, there
are given disjunctions of equations which define the classes of finite bands.

1. INTRODUCTION AND SUMMARY

For a semigroup S let L(S) be the subsemigroup lattice of S with the usual
lattice operations V and A.

In the following let 1 < n € N (where N is the set of the natural numbers) and
SDy(n) be the class of all finite bands (i.e., finite idempotent semigroups) S such
that for T, A, B, ... , B, € L(S) the following implication holds: If

T=AVBy=...= AV By,

then
T=Av\/{B;AB;: 0<i<j<n}.

Obviously, the class SDy (1) is equal to the class of all finite bands such that
their subsemigroup lattices are V-semidistributive or satisfy the so-called Jénsson
condition (cf. [3, 5, 6]), respectively.

Moreover, let AE(n) be the class of all finite bands S such that for A € L(S)
and g, ... ,i, € S\ A the following implication holds: If

AVig=AVii=...=AVi,,
then
{io,... ,in}| En

where AV i denotes AV {i} fori € S.
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The class AE(1) is equal to the class of all finite bands such that their subsemi-
group closure operators have the anti-exchange property (cf. [1]). Therefore, the
class AE(1) concides with the class of all finite so-called filtered bands, i.e., the
class of all finite bands S such that each 7" € L(S) has the least generating set
with respect to inclusion (cf. [5, 6]). A set U is called to be a generating set of T
if and only if U € T and T = (U) where (U) is the subsemigroup of S generated
by U.

For example, the finite left zero semigroups, right zero semigroups and semilat-
tices are finite filtered bands.

In the following it is proved that the classes SDy (n) and AE(n) coincide.

Moreover, there are given disjunctions of equations which define the classes
SDy(n) and AE(n), respectively.

For this let X := {z} U{x;:4 € N} U{y;:i € N} be a (countable) set of variables
and X be the free semigroup on X. Let S be a band and A € Xt xXT, i.e., Aisa
set of equations. Then it is said that A holds in S disjunctively, in symbols: ApS,
if and only if for each homomorphism f from XT into S there exists an equation
(p,q) € A such that the equality f(p) = f(q) is fulfilled (cf. [2]).

Let U be a class of bands. Then U is called to be disjunctively defined if and
only if there exists a system 2 of sets 4 €S XT x XT such that % is equal with the
class of all bands S where ApS for each A € 2, in symbols: Y = MOD(X).

For Y € X and e € N let Y¢ € X* defined as follows:

Y= {y1...y:y1,..., 3 €Y, 1<i<e} fore>1and YO:=0.
Let

Fi(n) :={(xm..-x0)(xn...x0)z: 0 <m < n},
Fa(n) :=={2(yo---yn)(Yo---ym): 0 =m =n},
Fs(n) :=={(xm .- . 20)(@n - 20)2U0 - - Yn)Wo .- -ym): 0 S m<n}.

Then for natural numbers e and i = 1,2, 3 let

Ai(n) :==A{(p,q): p,q € Fi(n), p#d},
Bi(n,e) = {(zn...x0)z} x {z0,... ,2n}%,
Ba(n,e) = {z(yo---yn)} X {0, -, yn}*,
Bs(n,e) :={(zn...20)2(Wo---Yn)} X {Z0,--- ,Tn, Yo,--- ,Yn}",
Ci(n,e) := A;(n) UB;(n,e),
€(n,e) :={Ci(n,e), Ca(n,e), Cs(n,e)}.

Let
W, : = MOD(E(n,e)).

Then for each finite band S it holds S € SDy(n) if and only if there is a natural
number e such that S € 20, ..
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Let D be that Green’s relation on a band S defined as follows: For a,b € S it is
aDb if and only if a = aba and b = bab (cf. [4]). Moreover, let S/D be the system
of the D-classes or Green’s classes (with respect to D) of S, respectively.

Then for each finite band S the following holds: It is |[D| < n for each D €
S/D if and only if S € W, 0 or S x F € SDy(n) for each finite semilattice F,
respectively.

Consequently, for a finite band S it is § € 2, if and only if (with respect
to the notations in Petrich’s structural theorem) S is a finite semilattice ¥ of
rectangular bands S, (which are the Green’s classes of S) such that |S,| < n for
v €Y (cf. Theorem 1, [4]).

2. RESULTS

At first it is proved that for each natural number n = 1 the classes SDy(n) and
AE(n) coincide.
For this let GEN(T) be the system of all generating sets of some T € L(S).

Proposition 1. Let S be a finite band and 1 < n € N. Then the following
statements are equivalent:

(i) S € SDy(n).

(ii) S € AE(n).

Proof. (i)=(ii): Let S € SDy(n), A € L(S) and 4o, ... ,in € S\ A. Then for
it is T # A. By the assumption it follows

T=Av\/{{ix} A{i}: 0Sk<lZn}.
Therefore, |{ig,...,in}| <nand S € AE(n).

(ii) = (i): Let S € AE(n), T € L(S). Obviously, for X & T it holds X €
GEN(T) if and only if for each maximal subsemigroup 77 € T with T\ T" # 0 it
is (T\THNX #0.

Moreover, |T'\ T'| < n. Otherwise, there exist g, ... ,i, € T \ T’ such that
Hio,.-. ,in}t =n—+1and

T Vig=T'Vii=...T' Vi,

contradicting S € AE(n).
Let T, A, By, ... , By € L(S) with

T=AVBy=...—AVB,,
ie, AUBy,... ,AUB, € GEN(T) and

(T\T') N (AUBg) #0,...,(T\T')N (AU B,) # 0.
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Then (T\T)N(AUU{B;NBj: 0Si<j<n}) #0: X (T\T)NAH#U0D, the
assertion follows, directly. If (T\T")NA = 0, then (T\T")NB; # 0 fori =0,... ,n
by the assumption. Because |T'\ T”| < n it holds (T'\ T7”") N B; N B; # 0 for some
i,j with 0 £ 4 < j7 £ n and the assertion follows.

Consequently,

AU J{BinB;: 02 i<j<n}eGEN(T)

and the statement holds. O

Example. For 1 < n € N let L,, be the semigroup ({0,... ,n},0) withaob=2a
for a,b € {0,...,n}. Moreover, let F' be the semigroup ({0,1},-) with the usual
multiplication. Then the direct product S,, := L, x F is a finite band with
Sp € AE(n+1) and S, ¢ AE(n).

(a) It holds S, € AE(n + 1): Otherwise, there exist some A € L(S,) and
10y - ,in+1 € Sn\A with |{Zo, ,in+1}| =n-+2andi € A\/j for i,] €
{’io, R 7in+1}~

It is {ig, ... yént1} © Ln x {0} or {ig,... ,int1} € L, x {1}. Otherwise, there
exist some i € L, x {1}, j € L, x {0} with ¢,j ¢ A andi € AV j, a contradiction.

Therefore, |{ig,... ,int1}| < n+ 1, contradicting the assumption.

(b) It holds S, ¢ AE(n): For this let A = L, x {1} and ig = (0,0),...,
in = (n,0) € S,\A. Then |{ig,...,in}| =n+landi € AVjfori,j € {io,... ,in}.
From this it follows the assertion. (I

From the Example and Proposition 1 it follows

Proposition 2. For each natural number n = 1 it is

SDy(n) G SDy(n +1). O

Now it is shown that the class SDy(n) is equal to the class of all finite bands
S such that S € 20,, . for some natural number e.

Proposition 3. Let S be a finite band and 1 < n € N. Then the following
statements are equivalent:
(i) S € SDy(n).
(ii) S €920, . for some e € N.
Proof. (i)=(ii): Let S € SDy(n). Clearly, S € AE(n) by Proposition 1.
Moreover, Ci(n,e)pS and Ca(n,e)pS and C3(n,e)psS for e = |S].
Otherwise, for k = 1,2 or 3 it holds: There exists a homomorphism fj from X+
into S such that for each (p,q) € Cr(n,e) it is fi(p) # fr(q).
Let fr(x;)) =s; €S, fr(y;) =t; € Sfori e Nand fr(z) =ce€S.
For k =1 let
i0=(Sn...S0)cC,
im = (Sm—1-.-50)(Sn ... S0)C

where 1 £ m < n and A = (sg,...,Sn).
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For k =2 let
io = C(to...tn),
’im = C(to . tn)(tO .. -tm—l)
where 1 Em < nand A= (tg,... ,tn).
For k =3 let

i() = (Sn e SO)C(tO .. tn) s
im = (Sm,1 . So)(Sn e SO)C(tO .. tn)(to .. .tmfl)

where 1 Sm < nand A = (sg,...,Sn, to,... ,tn).
Because of (U) = {uy...u;:ug,...,u; EU, 1< i< e} for UC Sande= [5]
it follows |{ig, ... ,in}| =n+ 1 with 4g,...,i, € S\ A and

AVig=AVii=...=AVi,,
contradicting S € AE(n). Consequently,
S e MOD(€(n,e)) =Wy,

for e = |S|.

(ii) = (i): Let S € 20, with e € N, A € L(S) and ig,... ,in € S\ A such
that
AVig=AVii=...=AVi,.

In the following it is proved that |{ig,... ,in}| < n.
There hold the following implications (I), (II) and (IIT).

(I) I

1o = Spiphy with by, € AV i, and s, € A,

I = Sy—1%m—1Pm—1 with hp,,_1 € AViy,_1 and s,_1€ A
where 1 £ m < n, then (s, ...50)ip = ip and from
(8K ---80)(Sn ---50)i0 = (81-..50)(Sn - - S0)io
for some integer numbers k,! with —1 < k <1 < n —1 it follows that {ig41,4141}

is a right zero semigroup : By successively substitutions of the ig,... ,, in the
right hand sides of the above equations one gets

90 = (sn . So)io(ho .- -hn) )
im = (Smfl - 80)(Sn . So)io(ho o hn)(hO cee hmfl)

where 1 < m < n.
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Clearly, (sy, ... 80)io = io and

i1 = (Sk-.-80)(Sn---50)i0(ho-.-hn)(ho ... hy),
ihe1 = (85 ...50)(Sn . 50)i0(ho .. hn)*(ho ... he),
i1 = (81--.50)(5n---50)i0(ho - hpn)(ho ... hy)
= (8 ..-50)(8n ---50)io(ho ... hn)(ho...hy).
Therefore, igt14141 = 4141 and 418511 = Skt1, 1€, {igt1,441} 1S a right zero
semigroup.
(I1) If

10 = gnint, with g, € AVi, and t, € A,

with ¢gn_1 € AVip_1 and t, 1€ A

im = gmflimfltmfl
where 1 £ m < n, then ig(to...t,) = ip and from

tl)

io(to - tn)(to .. .te) = do(to ... tn)(to . ..

for some integer numbers k,l with —1 < k <! < n — 1 it follows that {ig+1,941}
is a left zero semigroup: By successively substitutions of the i, ... , %, in the right
hand sides of the above equations one gets

io = (gn---go)io(to ... tn),
inL = (gnL—l cee gO)(gn . gO)iO(tO oo tn)(t() cee tm—l)
where 1 < m < n.
Clearly, io(tg ... t,) = ip and
ikt1 = (9 - 90)(gn - .- go)io(to .. . tn)(to .. tr),
i1 = (gk ---90)(gn - - - 90)%i0(to - - - tn)(to .- . 1),
41 = (91---90)(gn - 90)io(to ... tn)(to ... 1)
= (91---90)(gn - --go)io(to .- -tn)(to .- k)
Therefore, 4j41i5+1 = G141 and ig41941 = tgt1, 1€y {ikt1,%4+1} is a left zero
semigroup.
(I1I) If
10 = SninQnint, with ¢, € AVi, and s,,t, € A,

im = SnL—lim—lqm—linL—ltnL—1 with qm-1 € AV inL—l and Sm—1, tm—l S

where 1 < m < n, then (s, ...80)ig(to...tn) = ip and from

.. So)(Sn . So)io(to . tn)(to . tl)

(Sk . So)(Sn . So)io(to . tn)(to .
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for some integer numbers k,! with —1 < k <1 < n —1 it follows that {ig41,4141}
is a left zero semigroup as well as a right zero semigroup, i.e., ix11 = i141:

By successively substitutions of the 4g,...,i, in the right hand sides of the
above equations one gets

Z‘O - (Sn ce So)io(ho . hn) N
b = (S"L_l c SO)(S” s SO)iO(hO N hn)(hO ce hnL—l)
where h; = g;ijt;, 0= 7 <n,1<m=nand

io = (gn---go)io(to ... tn),

im = (gm,1 e gO)(gn e go)io(to e tn)(to e tmfl)
where g; = s5i;¢;, 0= j <n, 1 <m < n.
Obviously,

’io = (Sn PN So)io, ’io = ’io(to .. .tn) and ’L'() = (Sn e So)io(to PN tn).
Therefore,

ikt1 = (Sk.--80)(Sn ... 80)i0(ho...hn)(ho ... h),

i1 = (Sk---50)(8n-..50)i0(ho - hn)(ho-.. hi),

41 = (81...50)(Sn - --80)i0(ho - hn)(ho ... )
=(s1...50)(8n---50)i0(to - -tn)(to---t1)(to---tn)(ho .- hn)(ho-.. hy)
= (sg---50)(8n---50)i0(to - - tn)(to---tx)(to - - tn)(ho ... hn)(ho ... h)
= (8g..-50)(8n-..50)i0(ho ... hn)(ho...Ri).

Consequently, ix11%9141 = ;41 and 4j419k+1 = k41, 1-€., {ig+1,%+1} is a right zero
semigroup.
Analogously, it follows

ikt1 = (gr - 90)(gn - go)io(to ... tn)(to .. . tr),
i1 = (gk - 90)(Gn - - - 90)%i0(to - - - tn)(to - - . i),
41 = (91---90)(gn - 90)io(to .. . tn)(to . . . tr) -

Hence, i1419k+1 = 441 and ig11941 = g41, 1€y {ikt1,%41} is a left zero semi-
group. Finally, ix11 = 9141.
Furtherly, it hold the following statements:
(a) If thereexist 4,j € {io,... ,in} such that i = jpj, j = s(igi) with p € AVj,
g€ AViand s € A, then i = s(iqi)pj = s(jpiqipj)-
(b) If there exist i,j € {io, ... ,in} such that i = jpj, j = (igi)t with p € AV,
g€ AVviandt e A, then i = jp(iqi)t = (jpjqipj)t.
(c) If there exist i,j € {ig,...,in} such that i = s(jpj), § = (igi)t with
peEAV], g€ AViand s,t € A, then
i = sjp(iqi)t = sjp(sipj)a(sjpi)t = s(ipjasipi)t,
J = s(jpj)qit = s(iqit)p(iqit)qit = s(iqitpiqi)t.
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Therefore, the following four cases are possible, exactly.
Case 1. There hold the following equations:

10 = inQ7Lin with an € AV ina

7:m, = 7:777,71(]m711‘7n71 with dm-1 € AV 7:777,71
where 1 < m < n.
Obviously, it is {ig,... ,in} a right zero semigroup and a left zero semigroup,
too. Therefore igi; = i1 and igiy = g, i.e., i9g = 41 and |{ig,... ,in}| < n.

Case 2. There hold the following equations:

10 = SpinQnin With ¢, € AVi, and s, € A,
im = Sm—linL—lqm—linL—l with dm—1 € AV inL—l and Sm—1 € A
where 1 < m < n.
By (I) it is (sp, . .. S0)ig = ig. Because S € MOD({A;(n)UB;i(n,e)}) andig ¢ A
it follows
(Sk e SO)(Sn e So)io = (Sl N SO)(Sn e So)io

for some integer numbers k,l with —1 < k <! < n — 1. Then {igy1,941} is a

right zero semigroup by (I). Clearly, it is {4, ... , i, } a left zero semigroup. Conse-
quently, ix11%41 = 441 and ig41%41 = tkt1 , 1€, i1 = G941 and [{io, ... ,in}] =
n.

Case 3. There hold the following equations:

iO = inQnintn with qn € AV in and tn € A7

7:m, = Z‘m,f1(]m717:7n71tmfl with dm—1 € AV 7:777,71 and tm—1 € A

where 1 < m < n.
Because S € MOD({A2(n)UBz(n,e)}) and ig ¢ A it follows |{ig,... ,in}| < n
by (II), analogously to Case 2.

Case 4. There hold the following equations:

ZO = S’fbi’quni’fbt’fb With q’fL E A \/ i’fL a‘nd S7L7 t’fL E A7

Z.m = Smflim71melimfltmfl with qm-1 € AV 7:777,71 and Smflatmfl S\

where 1 £ m < n. By (II) it is (S, ... S0)io(to - - - tn) = 0.
Because S € MOD({As(n) U Bs(n,e)}) and ig ¢ A it follows

(Sk . So)(Sn . So)io(to .. tn)(to .. tk) = (Sl .. .80)(Sn . So)io(to .. tn)(to .. .tl)

for some integer numbers &, with —1 < k <1 < n — 1. Consequently, ix+1 = 4141
by (III). Therefore, |{ig,... ,in}| < n.
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From the Cases 1, 2, 3 and 4 it follows that S € AF(n) and S € SDy(n) by
Proposition 1.
[

Finally, it is shown that a finite band S belongs to 20, ¢ if and only if |[D| < n
for each Green’s class D with respect to the relation D on S.
For this let J be the ideal closure operator on S, i.e., for each U C S it is

JU):=UUS-UUU-SUS-U-8S.

Let a,b € S. Then it follows easily that aDb if and only if J({a}) = J({b}).

Proposition 4. Let S be a finite band and 1 < n € N. Then the following
statements are equivalent:
(i) S €Wyo.
(ii) S x F € SDy(n) for each finite semilattice F.
(iii) |D| < n for each D € S/D.

Proof. It is easy to check that (i) if and only if (ii) by Proposition 3.

(ii) = (iii): Let {0, 1} be that semilattice with respect to multiplication. Then
S x {0,1} € SDy(n) by (ii) and S x {0,1} € AE(n) by Proposition 1. Now let
D € S/D and ig,... ,in, € D. Then J({io}) = ... = J({in}). Therefore

S x {1}V (ip,0) = S x {1} V (i1,0) = ... =S x {1} V (in,0)
and
(10,0),...,(in,0) € S x {0,1}\ S x {1}.

Because of S x {0,1} € AE(n) it follows |D| < n.
(i) = (ii): Clearly, if |D| < n for each D € S/D, then |D’| < n for each D' €

(S x F)/D and each finite semilattice F, too. Hence, if J({ij}) = ... = J{i,})
for ig,... i, € S x F, then [{ij,... ,i,}| <n.
Consequently, S x F' € AE(n) and S x F € SDy/(n) by Proposition 1. O

From Proposition 4 it follows that each finite band S € 20,, ¢ is characterized
by Petrich’s structural theorem restricted to a finite semilattice Y of rectangular
bands S, under the condition |S,| < nforyeY.
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