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ON AN ANTIPERIODIC TYPE BOUNDARY VALUE PROBLEM
FOR FIRST ORDER LINEAR FUNCTIONAL DIFFERENTIAL

EQUATIONS

R. HAKL, A. LOMTATIDZE AND J. ŠREMR

Abstract. Nonimprovable, in a certain sense, sufficient conditions for the

unique solvability of the boundary value problem

u′(t) = `(u)(t) + q(t), u(a) + λu(b) = c

are established, where ` : C([a, b];R)→ L([a, b];R) is a linear bounded oper-
ator, q ∈ L([a, b];R), λ ∈ R+, and c ∈ R. The question on the dimension of

the solution space of the homogeneous problem

u′(t) = `(u)(t), u(a) + λu(b) = 0

is discussed as well.

Introduction

The following notation is used throughout.
R is the set of all real numbers, R+ = [0,+∞[.
C([a, b];R) is the Banach space of continuous functions u : [a, b]→ R with the

norm ‖u‖C = max{|u(t)| : a ≤ t ≤ b}.
C([a, b];R+) = {u ∈ C([a, b];R) : u(t) ≥ 0 for t ∈ [a, b]}.
C̃([a, b];R) is the set of absolutely continuous functions u : [a, b]→ R.
L([a, b];R) is the Banach space of Lebesgue integrable functions p : [a, b]→ R

with the norm ‖p‖L =
b∫
a

|p(s)| ds.

L([a, b];R+) = {p ∈ L([a, b];R) : p(t) ≥ 0 for almost all t ∈ [a, b]}.
Mab is the set of measurable functions τ : [a, b]→ [a, b].
Lab is the set of linear bounded operators ` : C([a, b];R)→ L([a, b];R).
Pab is the set of linear operators ` ∈ Lab transforming the set C([a, b];R+) into

the set L([a, b];R+).
[x]+ = 1

2 (|x|+ x), [x]− = 1
2 (|x| − x).
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By a solution of the equation

u′(t) = `(u)(t) + q(t) ,(1)

where ` ∈ Lab, q ∈ L([a, b];R), we understand a function u ∈ C̃([a, b];R) satisfying
the equation (1) almost everywhere in [a, b].

Consider the problem on the existence and uniqueness of a solution of (1)
satisfying the boundary condition

u(a) + λu(b) = c ,(2)

where λ ∈ R+, c ∈ R.
The general boundary value problems for functional differential equations have

been studied very intensively. There are a lot of general results (see, e.g., [1–27]),
but still only a few effective criteria for the solvability of special boundary value
problems for functional differential equations are known even in the linear case. In
the present paper, we try to fill to some extent the existing gap. More precisely,
in Section 1 we give nonimprovable effective sufficient conditions for the unique
solvability of the problem (1), (2), and the condition for the homogeneous problem
(10), (20) to have at most one–dimensional space of solutions. Sections 2 and 3 are
devoted respectively to the proofs of the main results and the examples verifying
their optimality.

All results will be concretized for the differential equation with deviating argu-
ments of the form

u′(t) = p(t)u(τ (t))− g(t)u(µ(t)) + q(t) ,(3)

where p, g ∈ L([a, b];R+), q ∈ L([a, b];R), τ, µ ∈Mab.
The special case of the discussed boundary value problem is the Cauchy problem

(for λ = 0). In this case, the below Theorem 1.1 coincides with Theorem 1.3
obtained in [4]. The periodic type boundary value problem (for λ < 0) for the
linear equation is studied in [14].

Along with the problem (1), (2) we consider the corresponding homogeneous
problem

u′(t) = `(u)(t),(10)

u(a) + λu(b) = 0 .(20)

From the general theory of linear boundary value problems for functional dif-
ferential equations the following result is well–known (see, e.g., [1, 2, 3, 19, 27]).

Theorem 0.1. The problem (1), (2) is uniquely solvable if and only if the corre-
sponding homogeneous problem (10), (20) has only the trivial solution.

1. Main Results

1.1. Existence and Uniqueness Theorems.

Theorem 1.1. Let λ ∈ ]0, 1], the operator ` admit the representation ` = `0 − `1,
where

`0, `1 ∈ Pab ,(4)
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and let either

‖`0(1)‖L < 1− λ2 ,(5)

‖`1(1)‖L < 1− λ+ 2
√

1− ‖`0(1)‖L ,(6)

or

1− λ2 ≤ ‖`0(1)‖L ,(7)

‖`0(1)‖L + λ‖`1(1)‖L < 1 + λ .(8)

Then the problem (1), (2) has a unique solution.

Remark 1.1. Let λ ∈ [1,+∞[ and ` = `0 − `1, where `0, `1 satisfy the condition
(4). Define operator ψ : L([a, b];R)→ L([a, b];R) by

ψ(w)(t) def= w(a+ b− t) for t ∈ [a, b] .

Let ϕ be a restriction of ψ to the space C([a, b];R). Put µ = 1
λ

, and̂̀
0(w)(t) def= ψ(`0(ϕ(w)))(t) , ̂̀

1(w)(t) def= ψ(`1(ϕ(w)))(t) for t ∈ [a, b] .

It is clear that if u is a solution of the problem (10), (20), then the function
v

def= ϕ(u) is a solution of the problem

v′(t) = ̂̀
1(v)(t) − ̂̀0(v)(t) , v(a) + µv(b) = 0 ,(9)

and vice versa, if v is a solution of the problem (9), then the function u def= ϕ(v) is
a solution of the problem (10), (20).

It is also evident that

‖̂̀0(1)‖L = ‖`0(1)‖L , ‖̂̀1(1)‖L = ‖`1(1)‖L .
Therefore, from Theorem 1.1 it immediately follows

Theorem 1.2. Let λ ∈ [1,+∞[ , the operator ` admit the representation ` =
`0 − `1, where `0and `1 satisfy the condition (4), and let either

‖`1(1)‖L < 1− 1
λ2
,

‖`0(1)‖L < 1− 1
λ

+ 2
√

1− ‖`1(1)‖L ,
or

1− 1
λ2
≤ ‖`1(1)‖L , ‖`0(1)‖L + λ‖`1(1)‖L < 1 + λ .

Then the problem (1), (2) has a unique solution.

Remark 1.2. Below we give examples (see Examples 3.1–3.4) showing that nei-
ther of the strict inequalities (6) and (8) can be replaced by the nonstrict ones.
According to Remark 1.1 and the above–said, neither of the strict inequalities in
Theorem 1.2 can be replaced by the nonstrict ones.

For the equation of the type (3), from Theorems 1.1 and 1.2 we get the following
assertions.
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Corollary 1.1. Let λ ∈ ]0, 1], p, g ∈ L([a, b];R+), and let either

b∫
a

p(s) ds < 1− λ2,

b∫
a

g(s) ds < 1− λ + 2

√√√√√1−
b∫
a

p(s) ds ,

or

1− λ2 ≤
b∫
a

p(s) ds ,

b∫
a

p(s) ds + λ

b∫
a

g(s) ds < 1 + λ .

Then the problem (3), (2) has a unique solution.

Corollary 1.2. Let λ ∈ [1,+∞[ , p, g ∈ L([a, b];R+), and let either

b∫
a

g(s) ds < 1− 1
λ2

,

b∫
a

p(s) ds < 1− 1
λ

+ 2

√√√√√1−
b∫
a

g(s) ds ,

or

1− 1
λ2
≤

b∫
a

g(s) ds ,

b∫
a

p(s) ds + λ

b∫
a

g(s)ds < 1 + λ .

Then the problem (3), (2) has a unique solution.

1.2. On the Dimension of Solution Space of the Problem (1), (2).

Theorem 1.3. Let the operator ` admit the representation ` = 0̀ − `1, where `0
and `1 satisfy the condition (4), and let either

‖`0(1)‖L < 1 , ‖`1(1)‖L < 2 + 2
√

1− ‖`0(1)‖L ,(10)

or

‖`1(1)‖L < 1 , ‖`0(1)‖L < 2 + 2
√

1− ‖`1(1)‖L .(11)

Then the space of solutions of the problem (10), (20) is at most one–dimensional.

Corollary 1.3. Let either

b∫
a

p(s) ds < 1 ,

b∫
a

g(s) ds < 2 + 2

√√√√√1−
b∫
a

p(s) ds ,

or
b∫
a

g(s) ds < 1 ,

b∫
a

p(s) ds < 2 + 2

√√√√√1−
b∫
a

g(s) ds .

Then the space of solutions of the problem

u′(t) = p(t)u(τ (t))− g(t)u(µ(t)) , u(a) + λu(b) = 0

is at most one–dimensional.
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Theorem 1.4. Let the dimension of the solution space of the equation (10) is
n < +∞. Then the dimension of the solution space of the problem (10), (20) is
either n or n− 1.

2. Proofs of the Main Results

Proof of Theorem 1.1. According to Theorem 0.1 it is sufficient to show that
the homogeneous problem (10), (20) has no nontrivial solution.

Assume the contrary that the problem (10), (20) has a nontrivial solution u.
From (20) it follows that u has a zero. Put

M = max{u(t) : t ∈ [a, b]} , m = −min{u(t) : t ∈ [a, b]} ,(12)

and choose tM , tm ∈ [a, b] such that

u(tM ) = M , u(tm) = −m.(13)

Obviously, M ≥ 0, m ≥ 0, and at least one of these inequalities is strict. Without
loss of generality we can assume that tM < tm.

The integration of (10) from a to tM , and from tm to b, in view of (4), (12) and
(13), results in

M − u(a) =

tM∫
a

[`0(u)(s) − `1(u)(s)] ds ≤M
tM∫
a

`0(1)(s)ds +m

tM∫
a

`1(1)(s) ds ,

u(b) + m =

b∫
tm

[`0(u)(s) − `1(u)(s)] ds ≤M
b∫

tm

`0(1)(s) ds + m

b∫
tm

`1(1)(s) ds .

Summing the last two inequalities and taking into account (20), (12) and the
assumption λ ∈ ]0, 1], we obtain

M +m −m(1 + λ) ≤M + m + u(b)(1 + λ) ≤M
∫
J

`0(1)(s) ds + m

∫
J

`1(1)(s) ds

and

M+m−M
(

1 +
1
λ

)
≤M+m−u(a)

(
1 +

1
λ

)
≤M

∫
J

`0(1)(s) ds+m
∫
J

`1(1)(s) ds ,

where J = [a, tM ] ∪ [tm, b]. Thus

M − λm ≤MC +mA,(14)

and

m − 1
λ
M ≤MC + mA ,(15)

where

A =
∫
J

`1(1)(s) ds , C =
∫
J

`0(1)(s) ds .(16)
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On the other hand, the integration of (10) from tM to tm, on account of (4),
(12) and (13), implies

M + m =

tm∫
tM

[`1(u)(s) − `0(u)(s)] ds ≤M

tm∫
tM

`1(1)(s) ds +m

tm∫
tM

`0(1)(s) ds .

Hence

M + m ≤MB + mD ,(17)

where

B =

tm∫
tM

`1(1)(s) ds , D =

tm∫
tM

`0(1)(s) ds .(18)

First suppose that ‖ 0̀(1)‖L ≥ 1 holds. It is clear that it may happen only in the
case where the conditions (7) and (8) are fulfilled. According to (8), ‖ 1̀(1)‖L < 1,
hence A < 1 and B < 1. Therefore, from (15) and (17) it follows that

0 ≤ m(1 −A) ≤M

(
C +

1
λ

)
, 0 ≤M (1−B) ≤ m(D − 1) .(19)

Consequently, (19) implies M > 0, m > 0, D > 1, and

0 < (1−A)(1 −B) ≤
(
C +

1
λ

)
(D − 1) .(20)

Obviously,

(1 −A)(1 −B) ≥ 1− (A+ B) = 1− ‖ 1̀(1)‖L .(21)

According to (8) and the assumption λ ∈ ]0, 1], ‖`0(1)‖L < 1 + 1
λ holds. Hence,

D − 1 < 1
λ

, and so(
C +

1
λ

)
(D − 1) =

1
λ
D − 1

λ
+ C(D − 1) ≤ 1

λ
(C +D) − 1

λ
=

1
λ
‖`0(1)‖L −

1
λ
.

By the last inequality and (21), it follows from (20) that

1− ‖`1(1)‖L ≤
1
λ
‖`0(1)‖L −

1
λ
,

which contradicts the inequality (8).
Now suppose that ‖`0(1)‖L < 1. Obviously, C < 1, D < 1, and by (14) and

(17) we get

0 ≤M (1− C) ≤ m(A + λ) , 0 ≤ m(1 −D) ≤M (B − 1) .(22)

Consequently, (22) implies M > 0, m > 0, B > 1, and

0 < (1− C)(1−D) ≤ (A+ λ)(B − 1) .(23)

It is clear that

(1− C)(1−D) ≥ 1− (C +D) = 1− ‖ 0̀(1)‖L .(24)
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If (7) and (8) hold, then we obtain ‖`1(1)‖L < 1 + λ. Hence, B − 1 < λ, and

(A + λ)(B − 1) = λB − λ+ A(B − 1) ≤ λ(A+ B) − λ = λ‖ 1̀(1)‖L − λ .
By the last inequality and (24), it follows from (23) that

1− ‖`0(1)‖L ≤ λ‖`1(1)‖L − λ ,
which contradicts the inequality (8).

If (5) and (6) are satisfied, then according to

4(A + λ)(B − 1) ≤
(
A+ B − (1− λ)

)2 =
(
‖`1(1)‖L − (1− λ)

)2

and (24), the inequality (23) implies

0 < 4(1− ‖`0(1)‖L) ≤
(
‖`1(1)‖L − (1− λ)

)2

,

which contradicts the inequality (6).

To prove Theorem 1.3, we need the following

Lemma 2.1. Let the condition (10) or (11) be fulfilled. Then there is no non-
trivial solution u of the equation (10) satisfying

u(a) = 0 , u(b) = 0 .(25)

Proof. Suppose that (10) is fulfilled. The case where (11) holds can be proved
analogously.

Assume the contrary that u is a nontrivial solution of (10) satisfying (25). First
suppose that u does not change its sign. Without loss of generality we can assume
that

u(t) ≥ 0 for t ∈ [a, b] .(26)

Put

M = max{u(t) : t ∈ [a, b]} ,(27)

and choose t0 ∈ ]a, b[ such that

u(t0) = M .(28)

Obviously, M > 0. The integration of (10) from a to t0, in view of (4), (25)–(28),
results in

M =

t0∫
a

`0(u)(s) ds −
t0∫
a

`1(u)(s) ds ≤M

t0∫
a

`0(1)(s) ds ≤M‖`0(1)‖L ,

which contradicts the first inequality in (10).
Now suppose that u changes its sign. Define the numbers M and m by (12),

and choose tM , tm ∈ ]a, b[ such that (13) is fulfilled. Obviously, M > 0, m > 0.
Without loss of generality we can assume that tM < tm. The integration of (10)
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from a to tM , from tM to tm, and from tm to b, on account of (4), (12), (13), and
(25), yields

M =

tM∫
a

`0(u)(s) ds −
tM∫
a

`1(u)(s)ds ≤M

tM∫
a

`0(1)(s) ds +m

tM∫
a

`1(1)(s) ds,(29)

M + m =

tm∫
tM

`1(u)(s) ds −
tm∫
tM

`0(u)(s) ds ≤M

tm∫
tM

`1(1)(s)ds +m

tm∫
tM

`0(1)(s) ds ,(30)

m =

b∫
tm

`0(u)(s) ds −
b∫

tm

`1(u)(s) ds ≤M

b∫
tm

`0(1)(s) ds +m

b∫
tm

`1(1)(s) ds .(31)

Summing (29) and (31) we obtain

M + m ≤M

∫
J

`0(1)(s) ds +m

∫
J

`1(1)(s) ds ,

where J = [a, tM ] ∪ [tm, b]. From the last inequality and (30) it follows that

M (1− C) ≤ m(A − 1) , m(1 −D) ≤M (B − 1) ,(32)

where A, C and B, D are defined by (16) and (18). According to the first inequality
in (10), C < 1, D < 1. Therefore A > 1, B > 1, and (32) implies

0 < (1− C)(1−D) ≤ (A − 1)(B − 1) .(33)

Obviously,

(1− C)(1−D) ≥ 1− (C + D) = 1− ‖ 0̀(1)‖L > 0 ,

4(A− 1)(B − 1) ≤ (A +B − 2)2 =
(
‖`1(1)‖L − 2

)2

.

By the last inequalities, from (33) we find

0 < 4(1− ‖`0(1)‖L) ≤
(
‖`1(1)‖L − 2

)2

,

which contradicts the second inequality in (10).

Proof of Theorem 1.3. Assume the contrary that the dimension of the space of
solutions of the problem (10), (20) is greater than one. Then there exist at least
two linearly independent solutions v and w of (10), (20). According to Lemma 2.1,
v(a) 6= 0, w(a) 6= 0. Put

u(t) = v(a)w(t) − w(a)v(t) for t ∈ [a, b] .

Since v and w are linearly independent, then

u 6≡ 0 .(34)

On the other hand, it is clear that u is a solution of (10) satisfying (25). By
Lemma 2.1, u ≡ 0, which contradicts (34).
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Proof of Theorem 1.4. Denote by k the dimension of the solution space of the
problem (10), (20). Obviously, n ≥ 1 and k ≤ n. If n = 1, then the theorem is
valid. Therefore, suppose that n ≥ 2.

Let k < n − 1. Then it is clear that there exist linearly independent solutions
u1, . . . , un of equation (10) such that u1, · · · , uk are solutions of the problem (10),
(20). Put

v0(t) = (un−1(a) + λun−1(b))un(t) − (un(a) + λun(b))un−1(t) .

Since un−1(a) + λun−1(b) 6= 0, un(a) + λun(b) 6= 0, and un−1, un are linearly
independent, then v0 6≡ 0. On the other hand, v0 is a solution of (10), (20)
and u1, . . .uk, v0 are linearly independent. Consequently, the number of linearly
independent solutions of (10), (20) is k+ 1, which contradicts our assumption.

3. On Remark 1.2

Let λ ∈ ]0, 1] (for the case λ = 0, see [4]). Denote by H the set of pairs (x, y) ∈
R+ × R+ satisfying either

x ≤ 1− λ2 , y < 1− λ + 2
√

1− x ,
or

1− λ2 < x < 1 + λ , y < 1 +
1
λ
− x

λ
.

According to Theorem 1.1, if (‖`0(1)‖L, ‖`1(1)‖L) ∈ H, then the problem (1), (2)
has a unique solution.

Below we give the examples which show that for any pair (x0, y0) 6∈ H, x0 ≥ 0,
y0 ≥ 0 there exist functions h ∈ L([a, b];R) and τ ∈Mab such that

b∫
a

[h(s)]+ds = x0 ,

b∫
a

[h(s)]−ds = y0 ,(35)

and the problem

u′(t) = h(t)u(τ (t)) , u(a) + λu(b) = 0(36)

has a nontrivial solution. Then by Theorem 0.1 there exist q ∈ L([a, b];R) and
c ∈ R such that the problem (1), (2), where ` = 0̀ − `1,

`0(w)(t) def= [h(t)]+w(τ (t)) , `1(w)(t) def= [h(t)]−w(τ (t)) ,(37)

either has no solution or has infinitely many solutions.
It is clear that if x0, y0 ∈ R+ and (x0, y0) 6∈ H, then (x0, y0) belongs to at least

one of the following sets

H1 = {(x, y) ∈ R ×R : 0 ≤ y < 1, −λy + 1 + λ ≤ x} ,
H2 = {(x, y) ∈ R ×R : 1 ≤ x, 1 ≤ y} ,

H3 =
{

(x, y) ∈ R×R : 1− λ2 ≤ x < 1, −x
λ

+ 1 +
1
λ
≤ y

}
,

H4 =
{

(x, y) ∈ R× R : 0 ≤ x ≤ 1− λ2, 1− λ+ 2
√

1− x ≤ y
}
.
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Example 3.1. Let (x0, y0) ∈ H1. Put a = 0, b = 2, α = λ−λy0+1
1−y0

, β = y0
1−y0

,
t0 = λ

α
+ 1

x0
,

h(t) =

{
x0 for t ∈ [0, 1[
−y0 for t ∈ [1, 2]

, τ (t) =

{
t0 for t ∈ [0, 1[
1 for t ∈ [1, 2]

.

Then (35) holds, and the problem (36) has the nontrivial solution

u(t) =

{
−αt+ λ for t ∈ [0, 1[
β(t − 2)− 1 for t ∈ [1, 2]

.

Example 3.2. Let (x0, y0) ∈ H2. Put a = 0, b = 4,

h(t) =


x0 − 1 for t ∈ [0, 1[
1− y0 for t ∈ [1, 2[
1 for t ∈ [2, 3[
−1 for t ∈ [3, 4]

, τ (t) =

{
0 for t ∈ [0, 2[
3 for t ∈ [2, 4]

.

Then (35) holds, and the problem (36) has the nontrivial solution

u(t) =


0 for t ∈ [0, 2[
t− 2 for t ∈ [2, 3[
4− t for t ∈ [3, 4]

.

Example 3.3. Let (x0, y0) ∈ H3. Put a = 0, b = 2, α = λx0
1−x0

, β = 1−x0+λ
1−x0

,
t0 = 2− 1

y0
− 1

β ,

h(t) =

{
x0 for t ∈ [0, 1[
−y0 for t ∈ [1, 2]

, τ (t) =

{
1 for t ∈ [0, 1[
t0 for t ∈ [1, 2]

.

Then (35) holds, and the problem (36) has the nontrivial solution

u(t) =

{
αt+ λ for t ∈ [0, 1[
β(2 − t) − 1 for t ∈ [1, 2]

.

Example 3.4. Let (x0, y0) ∈ H4. Put a = 0, b = 5, α =
√

1− x0, β = 1 − y0 +
2α− λ, t0 = 3− α,

h(t) =



λ− α for t ∈ [0, 1[
−α for t ∈ [1, 2[
−1 for t ∈ [2, 3[
β for t ∈ [3, 4[
x0 for t ∈ [4, 5]

, τ (t) =


5 for t ∈ [0, 1[
1 for t ∈ [1, 3[
t0 for t ∈ [3, 4[
5 for t ∈ [4, 5]

.
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Then (35) holds, and the problem (36) has the nontrivial solution

u(t) =



(α− λ)t+ λ for t ∈ [0, 1[
α2(1 − t) + α for t ∈ [1, 2[
α(3− t) − α2 for t ∈ [2, 3[
−α2 for t ∈ [3, 4[
x0(5 − t)− 1 for t ∈ [4, 5]

.
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