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SECOND ORDER CONNECTIONS
ON SOME FUNCTIONAL BUNDLES

ANTONELLA CABRAS, IVAN KOLAR

ABSTRACT. We study the second order connections in the sense of C. Ehresmann.
On a fibered manifold Y, such a connection is a section from Y into the second non-
holonomic jet prolongation of Y. Our main aim is to extend the classical theory to
the functional bundle of all smooth maps between the fibers over the same base point
of two fibered manifolds over the same base. This requires several new geometric
results about the second order connections on Y, which are deduced in the first part
of the paper.

Having two fibered manifolds Y7 and Y3 over the same base M, we are interested
in the functional bundle F (Y7, Y3) of all C'*°-maps from a fiber of Y7 into the fiber
of Y2 over the same base point. In [2] we started the study of those connections
on F(Y1,Y2) that represent a functional modification of a first order connection
I':Y — J'Y on an arbitrary fibered manifold Y — M. This was iniciated by the
idea of the Schrodinger connection on a double fibered manifold by Jadczyk and
Modugno, [9]. Later we studied the iterated absolute differentiation on F (Y1, Y2),
[3], [4]. On the one hand, the present paper was inspired by the fact that Ehres-
mann established a theory of higher order connections on a Lie groupoid, [7],
which is equivalent to the theory of higher order principal connections on a prin-
cipal bundle, [10]. In [11], the second author extended the Ehresmann’s theory
to the case of an arbitrary fibered manifold Y. On the other hand, we realized
already in [2] that the analogous concept of second order connection on F(Yi,Y2)
is useful for numerous geometric problems. That is why we develop a systematic
theory of second order connections on F(¥1,Y>) in the present paper.

For this purpose we need some new results on the second order connections on Y.
They are deduced in Section 1-3, so that these sections are of independent interest.
In Section 1 we deduce a useful identification A = (A1, Ay, X), where A is a second
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order non-holonomic connection on Y, A; and As are first order connections on

2
Y and ¥ is a section of VY @ Q T* M, VY being the vertical tangent bundle of Y.
This is based on the idea of the product A; * Ay by Virsik, [19], and on an original
algebraic operation on the second order non-holonomic jet bundles. In Section 2
we discuss the second order principal connections on principal bundles and the
induced connections on the associated bundles, which corresponds to the original
theory by Ehresmann, [7]. Section 3 is devoted to the absolute differentiation
with respect to second order connections on an arbitrary fibered manifold Y. In
particular, in Propositions 4 and 6 we prove two important formulae characterizing
the absolute differentiation in the above identification A = (A, Ag, X).

The study of the functional case starts with Proposition 7, which describes
an element of the second non-holonomic prolongation J2F(Y,Ys) in terms of its
associated map. Section 5 deals with the basic facts on second order connections
on F(Y1,Y3). The most interesting subclass is formed by those connections that
are of finite order in the operator sense. These connections can be determined
by means of a C"*°-map on a suitable finite order jet space. In Example 1 we
show that a second order connection A on Y{ and a second order connection A
on Y3 define a second order connection (A, A) on the functional bundle F(Y{, Y>)
analogously to the first order case, [3]. In the last section we explain how the ideas
of Propositions 4 and 6 enable us to introduce the absolute differentiation with
respect to second order connections on F (Y, Y2).

If we deal with two finite dimensional manifolds and a map between them, we
always assume they are of class C°°, i.e. smooth in the classical sense. On the
other hand, the idea of smoothness in the infinite dimension is taken from the
theory of smooth structures by Frolicher, [8]. Unless otherwise specified, we use
the terminology and notations from the book [15].

1. SECOND ORDER CONNECTIONS ON A FIBERED MANIFOLD

For a fibered manifold 7 : ¥ — M, we denote by 8 : J'Y — Y its first
jet prolongation. If z?, y? are some local fibered coordinates on Y, the induced
coordinates on J'Y are denoted by 3. On the second non-holonomic prolongation
J2Y = JYJ'Y — M) we have the additional coordinates 15, y;;- Beside the
target jet projection B, : J2Y — JY, we have another projection 3 = J18 :
J2Y — JY. In the case of the product fibered manifold M x N — M, J2(M x
N — M) = jQ(M, N) is the space of non-holonomic 2-jets of M into N. The
second semiholonomic prolongation of Y is defined by

TY = {X € °Y; Bi(X) = (X)) .

The coordinate characterization of 7Y is vy = yb.. The space TH(M,N) of all
semiholonomic 2-jets of M into N is introduced as 72(M x N — M). The second

holonomic prolongation J2Y is a subset of 7~ Y, which is characterized by W% =Y
The following definition generalizes an idea by Ehresmann, [7].



SECOND ORDER CONNECTIONS ON SOME FUNCTIONAL BUNDLES 349

Definition 1. A second order non-holonomic connection on Y is a section A :
Y — J?Y.

If the values of A lie in J Y or J 2y, we say A is semiholonomic or holonomic,
respectively.

Using (5, and 33, we obtain two underlying first order connections A; = F10A :
Y - JWY and Ay =By0A:Y — JY.

The coordinate form of A is

(1) y; = Ff(x,y), yo; = GY(2,9), vy = Hij(2,y).

The first or the second expression is the coordinate form of 2y or A,, respectively.
For a first order connection I' : Y — J'Y', we can construct the jet prolongation

JIT : J'Y — J2Y. If T : Y — JY is another first order connection, then

(JIT)oT : Y — J2Y is a second order non-holonomic connection on Y.

Definition 2. The second order connection I'xT := (J'T')oT : Y — J2Y is called
the product of I' and T. B
If the coordinate forms of I and I' are

(2) L=y =F(z,y), T=y=G"(zvy)),

: . . OF?  OFP :
the coordinate expression of J'T'is yp;, =y}, yi; = 555 + 5,+v; and the coordinate

form of T« T is

OFF  OFF
Y — Fp P _ (P y 2 2 q
(3) vi =F . yo =Gy, Yij; = Oz Bya I

Clearly, I' T is semiholonomic, if and only if I' = T'. A well known fact is that
I+ T is holonomic, if and only if I" is curvature-free.

B :JY — Y is an affine bundle with derived vector bundle VY ® T*M, [15].
So By : J2Y — JY is also an affine bundle, whose derived vector bundle is
VJY @ T*M. We recall a well known exact sequence of vector bundles over J'Y

(4) 0=VY @nuy T°M — VY L3 vy o,

where §* indicates the pullback. Tensorizing with 7% M, we obtain another exact
sequence

2
(5) 0= VY @ny QTM—VI'YQT'M— VY @TM —0.

~ 2
Consider A € (J2Y),, B € (VY @QT*M),,y € Y. Write B(314) € VY @1y

2
QRT*M C VJIY @ T*M for the pullback of B into the fiber over 3 A € J'Y.
Then we have defined

(6) A+ B(fiA)=:A+B.
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In coordinates, if A = (2,9 0}, a0;,a};), B = (a',97,b;), then B(BA) =
(%, yP,al,0,b") and

» Qg Y Vg

(7) A+ B=(a, y,al,aol,a —|—bp)

Conversely, if we have another A € J2Y satisfying 51 A = 1A, B A = 2 A, there
2 — .
is a unique B € VY ® @ T*M such that A = A+ B.

Definition 3. We write B = A~ A and we say that B is the strong difference of
A and A.

For a second order connection A : Y — jQY, we have A, Ay : Y — J1Y, so
that we can construct A; * Ay : Y — J2Y

Proposition 1. Second order _non—ho]onomic connections on Y are in bijection
with triples (I',T',X), where I',T : Y — J'Y are first order connections on Y and
2

2:Y - VY®QQT*M is a section.
Proof. Weset I = A1, T = Ay, & = AZA1 * Ao, O

Remark 1. Such a result for principal connections was deduced by Virsik, [19].
We remark that an analogous formula for principal connections on the first prin-
cipal prolongation of a principal bundle was proved in [14].

2. PRINCIPAL AND ASSOCIATED CONNECTIONS
Consider a principal bundle P — M with structure group G. Let s be a local

section of P. The well known formula

(as(v))g = Gz (s(v)g) gea,

defines a right action of G on J'P. In the same way, the formula
(8) (J20(v)g = Ja(o(v)g),

where o is a local section of J!P, defines a right action of G on J2P

Definition 4. A principal second order connection on P is a G-invariant section

A:P— J2P

One verifies easily that the product of two first order principal connections is a
second order principal connection.

In the first order case, it is well known that every principal connection I' :
P — J'P induces a connection I'[S] on the associated bundle P[S], where S
is any left G-space. We shall need the following form of this construction. Let
q: P x S — P[S] be the canonical map

q(u,a) = {(u,a)}, uc Pacs.
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If we fix a € S, g(—,a) is a map P — P[S] and we can construct its first jet
prolongation Jq(—,a) : J'P — J*(P[S]). So we obtain a map

(9) JYq:J'P xS — JY(P[S)),
Jrq(ils(v),a) = jiq(s(v),a). Then we set
L[S](q(u, a)) = T'q(T(u),a) .

Since T' is principal, this formula does not depend of the representatives u and a
of q(u, a).
By iteration, we obtain a map

(10) J%q: PP x S — J*(P[S)).

Then for every principal connection A : P — J2P we construct A[S] : P[S] —
J2P[S] by

(11) A[S)(q(u,a)) = T?q(T(u),q).
Even this does not depend of the representatives u and a of ¢(u, a).

Definition 5. A[S] is called the induced second order connection on P[S].

Proposition 2. For every two first order principal connections I' and T on P and
every left G-space S,

(12) (T[S]) * (T[S]) = (T« T)[S] .

Proof. This follows directly from (10). O

Remark 2. An 7r-th order non-holonomic connection on a fibered manifold Y is
asection T': Y — J'Y, [11]. If T : Y — J*Y is another k-th order connection, we
construct by iteration J*T' : J¥Y — J™+kY. Then I'«T := J*T['oT is an (r + k)-th
order connection on Y. On a principal bundle P, an r-th order connection that
is right invariant in the sense of (8) is called principal. Every principal r-th order
connection I" on P induces an r-th order connection I'[S] on P[S] analogously to
(11). If T is another k-th order principal connection on P, then one verifies in the
same way as above that (12) holds even in the case of arbitrary r and k.

For every vector bundle E — M, J'E — M is also a vector bundle. So even
J2E — M is a vector bundle.

Definition 6. A second order connection A : E — J2E is called linear, if A is a
vector bundle morphism.

If the fiber coordinates 1 on E are linear, then the coordinate form of a linear
connection is

(13) yp = Fr(@)y?, yo, = Ghix)y?, i, = Hp(x)y?.
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One verifies directly that the product of two linear first order connections is a
linear second order connection.

Consider the frame bundle PE of E, i.e. the bundle of all linear frames in
the individual fibers of E. This is a principal fiber bundle with structure group
GL(n,R), where n is the fiber dimension of E. The local coordinates on PE
corresponding to 2*, y? are 2, ab, det(ab) # 0. Then the induced coordinates
on J2(PE) are ah;, apo;s ap;;- The action of (b7) € GL(n,R) on J2(PE) has the
following form

p P p P _ ppr P 1T P r P T
(aqa Agi> Aq0is aqij) (bé’) = (arbqa am'bqa arOibqa arijbq) .

Hence the coordinate form of a second order principal connection A on PFE is

(14) ap, = Fr(v)ay, aby, = GYi(v)ay, ab,; = H,

¢ Qq0i q qij rij(‘r)ar'

q
Clearly, E coincides with the associated fiber bundle PE[R"] and one evaluates
easily that the equations of the induced connection A[R"] are (13). This implies
the following assertion, which is quite similar to the first order case.

Proposition 3. The construction of induced connections establishes a bijection
between second order principal connections on PE and second order linear con-
nections on F.

3. THE ABSOLUTE DIFFERENTIATION ON FIBERED MANIFOLDS

The Ehresmann’s idea of the absolute differentiation with respect to princi-
pal higher order connections can be extended to connections on arbitrary fibered
manifolds, [11]. We are going to discuss the second order case in detail, for we
are looking for an approach that can be generalized to the functional bundles
mentioned in the introduction.

In the first order case, consider a section C' : Y, — J;Y, x € M. This defines a
bijection uC : JL(M,Y,) — JLY as follows. Take locally a smoothly parametrized
family of maps (v, y) : Y, — Y,, v € M, such that ¢(z,y) = idy, and jl¢(v,y) =
C(y). Let X = jlo(v) € JL(M,Y,). Then (v, p(v)) is a local section of ¥ and
we define

(15) pC(X) = joo(v,¢(v)) .

In coordinates, if Y are the induced jet coordinates on J:(M,Y,) and ¢/ =
FP(x,y) is the coordinate form of C, then (15) yields the following coordinate
form of uC'

(16) v, =Y+ F{(zy).

Hence the inverse map (uC)~?! is the standard absolute differentiation of the theory
of first order connections on Y.
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In the second order case, we consider a section D : Y, — EY. ‘We can write
locally D(y) = jl¥(v,y), where ¥(v,y) € J'Y with target ¢ (v,y) € Y, and
P(x,y) = y. An element X € J2(M,Y,) is of the form jl®(v), ®(v) € J}(M,Y,)
with target ¢(v) € Y,. The first jet prolongation of the map ¢, := ¥(v, —) : Yy —
Y, is

Jl(idJW; ¢v) : Jl(Ma YI) - Jl(Ma YU) .

Hence J*(idar,¥y) (®(v)) € JYHM,Y,) with target (v, p(v)). Since J'Y is an
affine bundle with the derived vector bundle VY @ T*M = |J JL(M,Y,), we

have defined <
(17) (v, p(v)) + J' (idar, o) (B(v)) € J)Y

and we can set

(18) pD(X) = j1[¥ (v, (v)) + T (idar, ) (2(v)] € T

Lemma 1. D : J2(M,Y,) — J2Y is a diffeomorphism.

Proof. Let (1) be the coordinate form of D. If the coordinate form of ¥ is
YP(v,y), ¥ (v,y), then

OYP (z, y) 0y (x, y)
Let Yy;, Y be the additional coordinates on J2(M,Y,). If @P(v), ¢F(v) is the
coordinate expression form of ®(v), the coordinates of X are

9P (x) p _ 097 (x)

Y?P =P YP = . Y, = ——"—=.
901 (J?), 02 8331 ’ 1] 833]

The coordinate form of (17) is P (v, ¢(v)) and

(0, o)) + %@fq’%m) .

Passing to 1-jets, we obtain the following coordinate expression of uD

(19) OFF (z,y) oG (z,y)
p o _ ’lp 1 ) }/q J ? }/q Yp

O

Remark 3. If the values of D lie in J2Y and X € J2(M,Y,), then uD(X) € J2Y.
In this case one can construct puD(X) by the second order analogy of formula (15).
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Definition 7. The map Va := (uD)~! : J2Y — J2(M,Y,) will be called the
absolute differentiation with respect to D.

If A is a second order connection on Y, then the restricted map over z € M is
a section A(z) : Y, — J2Y. Hence we have Va(y) : JZY — JZ2(M,Y,). If sis a
section of Y, we construct its second order jet prolongation s : M — J2Y

Definition 8. The map

(Vas) (@) = Vaw (i2s) : M — | J2(M,Y,)
xeM

will be called the absolute differential of s with respect to A.

In Section 1, we deduced the formula

We are going to describe the effect of (20) at the level of the absolute differentiation.
If we consider the product ﬁbered manifold M x N — M, we have J 2(M x N —

M) = J2(M, N) and VY®® T*M = TN®® T*M. Hence every A € J2(M,Y),
and every B € T,N ® ® T; M determine

(21) A4 B e J?(M,N),.

In particular, for A € J2(M,Y,), and B € V,Y @ TM, we have A + B €
J2(M,Y,),. If we compare (3), (7) and (19), we obtain

Proposition 4. For every X € ijY
(22) Va@) (X) = Vasam)@) (X) +2(y) -

For a section s of Y, Va,.a,s can be expressed as the absolute differential of
Va,s with respect to a connection derived from Ay, [4], [11]. However, we are
going to construct the latter connection in a new way, that can be applied to the
functional case as well.

Write

Ty = | 7'M, YL).
reM

This sum defines a fibered manifold over M. The local coordinates on Ji, YV
induced by %, yP are z,u’,y?, Y}, where u’ are the coordinates of the source of
an element from J!(M,Y,) and Y} are its jet coordinates. We extend .J3, into
a functor on the category F My, of fibered manifolds over M and their base-
preserving morphisms as follows. For another fibered manifold Z — M and a
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base-preserving morphism f : Y — Z with the restrictions f, : Y, — Z,, z € M,
we set

Jfllbf: U Jl(idJWafI)v

reM
where J(idyr, f2) : JY(M, Yy) — JY (M, Z.,).
We are going to introduce a canonical map
iy Jh(JYY) — JHJIRY).
Let X € J}, (J'Y), X = jlo(v), o(v) € JLY, v € M. We have o(v) = jis(v,w),
w € M. Hence X = jl(jls(v,w)), where the subscript 1 or 2 means the partial jet
172

with respect to the first or second factor, respectively. Then we apply exchange
and define

(29 iy (X) = (G, 0).
Since o(v) € J'Y, we have s(v,w) € Y,,. Hence jls(v,w) € J}(M,Y,) and this is
1

a section of J}, Y.
Every connection I : Y — J'Y is a base-preserving morphism, so that we can
construct

(24) Tl TR Y — Jg (J'Y) .

Definition 9. The map I'* = iy o J;, T : JLY — JY(J3,Y) will be called the
connection induced by I' on J}, Y.
Proposition 5. If (2) is the coordinate expression of I', then the coordinate form
of T is
OF} (z,y)
i P _ P p_ 5\ q
Proof. The proof consists in direct evaluation. O

Hence I'! coincides with the connection (21) from [4].
We recall that the absolute differential of a section of Y with respect to a first
order connection on Y is a section of J3, Y.

Proposition 6. For every section s of Y and every two first order connections I
andT onY,

(26) VF*FS = VFI(VFS) .
Proof. Let (2) be the coordinate expressions of I' and T' and let s be given by
sP(z). By (25), the coordinate form of the main term of Vp1(Vgs) is

?Ps> OGP OGP 9st  OFF (asq q>

Oridxi  dxd Oyt Oxd  Oye \ Ozt *

Comparing with (3) and (19), we prove our claim. O
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4. REPRESENTATIONS OF SOME FUNCTIONAL JETS

We shall need the composition of non-holonomic 2-jets, [6]. Consider three

manifolds Q1, Q2, Q3. Let A = jio € J2(Q1,Q2)y and B = jjo € J}(Q2,Qs)-.
Hence ¢ is a map Q1 — J1(Q1,Q)2) satisfying v 0 0 = idg, and ¢ is a map

Q2 — JY(Q2, Q3) satisfying aop = idg,. Then o(u) € J(Q1,Q2) and o(Bo(u)) €
JH(Q2,Q3) are two composable 1-jets and one defines

BoA=ji(o(fo(u) o o(u)) € J3(Q1,Qs)-

with the composition of 1-jets on the right-hand side, [6]. In coordinates, if A =

(mi,yp,af,agi,afj), B = (y?, 2% b5, b5,,b5,), then
(27) Bo A= (2" 2, bpal, bg,a0;, bzqafagj + bZafj) )

Let p1 : Y1 — M and ps : Yo — M be two fibered manifolds over the same base.
Consider the set of all fiber maps

F(V1,Y2) = | C®(Viz, Yau)
xeM

and denote by p : F(Y1,Y2) — M the canonical projection. The set F(Y1,Y>) is
a smooth space in the sense of Frolicher, [8]. We shall use some local coordinates
z' on M and some additional local coordinates y? or 2% on Y7 or Ys, respectively.
Each section s : M — F(Y1,Y>) is interpreted as a base-preserving morphism
5:Y1 — Ya, s(y) = s(py)(y). Two sections s1,$2 : M — F(Y1,Y2) determine the
same element jys1 = jps of J'F(Y1,Y2) at x € M, if j;51 = ji53 for all y € Y1,
[2]. Let X = jls € JLF(Y1,Y2) and ¢ = s(z) € F(Y1,Ya) be its target. The map
XL — Yz, X(jro) =5i(500)
is called the associated map of X. If 2* = p%(x, y) is the coordinate expression of
s, then X is of the form

o 0" (2,9) p o 9" y)

oyp ¢ oxt
This is an affine bundle morphism J1Y; — J1Y; over ¢ : Y1, — Ya, whose derived
linear map V, Y1 @ T"M — V,Yo @ T*M is T ® id. Conversely, in [2] we deduced
that for every map ® : J1Y; — J1Y, with these properties there exists a unique
X € JLF(Y1,Y,) such that ® = X. Hence the coordinate form of an element of
JLF(Y1,Ys) is 2% = ¢%(y) and

99" (y)
28 @ — T I Py 8 .
(28) = Wt ()
In the second order we must proceed systematically in the jet way. We shall
need a general concept. Let M, My, Ny, Ny be four manifolds and f : Ny — My,
g : No — Ms be two maps.
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Definition 10. Two r-jets Z € J7 (N1, N2)z, and X € J, (M1, Mz),(z,) are
called (f, g)-related, if

(29) Xojl,f=7,902.

This concept can be applied to non-holonomic jets as well. Let Z € j’;l (N1, N2)»,
and X € J}T(Zl)(Ml, M3)4(z,) (the reader may assume r = 1,2). They are said to

be (f,g)-related, if (29) holds with the composition of non-holonomic r-jets on
both sides.
Consider the case py : Y1 — M, py : Yo — M.

Definition 11. JI,(Y7,Y5) is the subset of all Z € J" (Y7, Y2) that satisfy p; (aZ) =
p2(BZ) =: x and are (p1, p2)-related with j7 iday.

Analogously to [2] we define

FIr(W,Ya) = |J T (Yi, Yau) -
xeM

A canonical map
(30) D: Jj (1, Ys) = FJ' (Y1, Y2)

is induced by the injection of individual fibers. Namely, if Z € J; Mm(Y1,Y2), aZ =y,
py = x and i, : Y1, — Y7 is the injection, then Z o (j;’zr) is identified with an
element D(Z) of jr(le, Ys,) with target 8Z.

It is well known that jg’; Y; can be defined as the subset of all elements A €
J7(M,Y;) satisfying

(jpapi) o A= jyidwm, i=1,2.
Hence every Z € j};](Yl,YQ), aZ =1, BZ =y, ¥ = p1y; defines a map
nZ: JpYi— Jp,Ys

by the jet composition uZ(A) = Zo A. Indeed, (j,p2)oZoA = (j; idar)ojy p1oA
by projectability and j p1 o A = jridy by A € JiYy C Ji(M,Y1), so that
ZoAe ) Ys.

In the first order, the local coordinates of an element X € Ji,(Y1,Ys) are ¢,
yP, 2%, zp, 2§ and D(X) is determined by z;. Hence the result preceeding (28)
can be reformulated by saying that the elements of JLF (Y7, Y2) with target ¢ are
in bijection with sections S : Yi, — Ji,(Y1,Y2) satisfying Do S = jlp : Vi, —
Jl (mz; YQz)



358 A. CABRAS, I. KOLAR

The second non-holonomic prolongation J2F (Y1, Ys) is defined by the iteration
J 1(J LFE(vy, Y2)), [2]. In formula (12) of [2] we deduced that the associated map
X J2Y1 — J2Y2 of an element X € .J2 2F(Y1,Y2) is of the form

(31)
9 P
= ¢+ 65; Yo + -

_ O¢* p _ Op” P
{ Z =g Y T 20; = gy in + €6 »
oyP y'L + 6yp6yq y'L yO] + 8yq y'L]

where ¢“(y) is the target of X and ¢ (y), ;(v), f;(y) are arbitrary functions
on Yq,. _ _

The local coordinates of an element X € J%,(Y1,Ys) are z¢, y?, 29, Zgs 25 20y
28, zpq, 25, zm, z and D(X) is determined by zj, 2§,, 25,- The induced map
nX JY Y|, — JY Y5, which is defined by the composition of non-holonomic 2-jets,
is of the form

(32)

Hence every section S : Y, — JJ%](Yl,YQ) over ¢ : Yy, — Yo, satisfying D o
S = j2p: Y1z — J?*(Y1a, Yo.) is determined by arbitrary functions ¢*(y), ¢%(y),
©8:(Y)s win V), #pi(y), ¥§;(y) on Ya,. To obtain (31), the following compatibility
conditions

0p? 08,
(33) 8?,); = i % = ;i
are to be satisfied. We have found a global geometrical interpretation of these
conditions in terms of the representation of non-holonomic 2-jets by means of the
induced maps between second iterated tangent bundles by Pradines, [17]. This is
a straightforward procedure, but it is too long to be discussed here. Thus, we can
summarized by

Proposition 7. Let S : Y1, — jﬁ(m,YQ) be a section over ¢ : Y1, — Yo,
satisfying D o S = j2¢ and the compatibility conditions (33). Then there is a
unique element X € J2F(Y1,Ys) such that X (y) = uS(y) for ally € Yi,.

We have two jet projections
Bi, B PF (Y1, Ya) — JEF(Y1,Ya)

defined analogously to Section 1. On the other hand, we clarified in [2] that the
vertical tangent bundle VF (Y1, Y2) of F(Y7,Y2) coincides with F(¥1, VY3). Since
T*M — M is a finite dimensional vector bundle, the tensor product VF (Y1, Y2) ®
&> T+ M is defined fiberwise by means of the linear maps from the vector bundle
dual to ®2 T*M. Every X ¢ VF(V1,Y2) ® ®2 T*M over ¢ is characterized by
the associated map

2 2
X :VrioQTiM — V,Ys @ Q) TiM.
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If Yf; or Z;; are the induced coordinates on the first or the second bundle, respec-
tively, then the coordinate form of X is

a 8 “ a
(34) Zij = ?yiy) Yf; + gij (y) -

Let U,V € J2F(Y1,Ys) over the same ¢ satisfy B,U = 3V, foU = V. For
an element B € VY1 ® ® T*M we take A, A e J2Y1 satisfying 1A = 1A

oA = A and B = A-A. By (31), U(A) and V(A) satisfy the same COIldlthIlS
with respect to 3; and [, so that we have defined

(35) U(A)“V(A) € Vo) Ya© R Ti M.

If bj; are the coordinates of B and 1;(y) or v;(y) are the second order coordinate
functlons of U or V, respectively, then the coordinate form of (35) is

(36) P+ uiy0) ).

In this way U and V define an element U~V € VF(Y1,Y2) @ @* T*M

5. 2-CONNECTIONS ON F(V1,Y3)

In [2] we introduced a connection I' on F(Y1,Y2) as a section I' : F(Y1,Y2) —
JYF(Y1,Ys) that is smooth in the Frélicher sense. Such connection is said to be
of order r > 1 if the condition jy¢ = jj1, ¢, € C*®(Y1z,Y2:), y € Y1, implies

L(p)|JyY1 =T (¥)| ;Y1

To distinguish the order in this operator sense from the order of the jet prolon-
gation of F(Y7,Y3) in question, we shall say that ' is a 1-connection of order 7.
Using Section 4, we can reformulate the concept of the associated map G of T', [2].
This is a C°°-map of

FJ'(Y1,Y2) = | J7(Vie, Yau)
xeM

into Ji,(Y1,Y2) over the identity of ¥; xjs Y2 such that the following diagram
commutes

FJ'(%,Ya) g L (Y1, Ya)
(37) 81 D
FJ'(Y1,Ys)
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where 3 is the jet projection. Conversely, every map G such that (37) commutes
determines a 1-connection I' on F(Y1,Y2) by

L) = |J 9Ue), veC™(Vig, Yar).
rE€EY1,

Definition 12. A non-holonomic 2-connection on F(Y7,Y3) is a smooth section
A : F(Yl,YQ) — JQf(Yl,YQ)

Clearly, A determines two 1-connections A; and A, by means of the two jet
projections i, (2 : J2F(Y1,Ys) — JLF(Y1,Ys) analogously to Section 1.
Every A(p), ¢ € C*°(Y1,, Ya,) defines the associated map

(38) A(p) : T2y — J2Ys .

Definition 13. A 2-connection A on F(Y7,Y5) is said to be of order r > 2, if the
condition jy ¢ = jjb, 0,9 € C*°(Y1a, Yas), y € Y14, implies

(39) A(p)|72: = A(4)|J2Y:

By Section 4, (39) is identified with an element of jfw(Yl, Y3). Hence A defines
a map N
D:FJ (Y1,Ys) — Ji; (Y1, Ya)

which is called the associated map of A. Analogously to [2] we deduce that D is
a C'°°-map. By Section 4, the following diagram commutes

FJI'(1Ys) D T2 (Y1, Y2)
(40) Jﬂ? JD
FJ2(Y1,Ys) « FJ2(W1,Ys)

where (3 is the jet projection. Moreover, for every ¢ € C>(Y1,, Ya,) the com-

patibility conditions (33) hold. Thus, in the coordinate expression of D we can

prescribe 2" = ®f, 25, = @, zj; = ®f; arbitrarily and we have

(41) Zi'lp = D,®7, Zgi = D%y, ,
where D, is the formal derivative from [2], whose coordinate form is

D=2
Poyp 020

2t 5 Zap

(6%
Since D, increases by one the order of the jet prolongation, (41) implies that ®¢
and P, are projectable to FJ"~*(Y1,Y>). By Proposition 7, we obtain immedi-
ately
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Proposition 8. Forr > 2 let D: FJ"(Y1,Ys) — jfw(Yl, Y3) be a C*®°-map over
the identity of Y1 X 5y Yo such that (40) commutes and the compatibility conditions
(41) are satisfied. Then there is a unique 2-connection of order r on F(Yi,Y2) such
that D is its associated map.

Clearly, A is defined by

Alp)= | DUje). ¢ eC®(Yip, Yaa).
YEY1z

We shall use the following explicit coordinate expression of D
(42) { zl = Z,‘;yf’ + ‘I)f ) z0; = Z,‘iy& + CD&‘ )

zy = Z,‘,’yf} + Zqufij + qu’?ygj + qujloljyf7 + Cij
where locally ®¢ and ®f; are arbitrary functions on F.J"~*(Y1,Ys) and ®; are
arbitrary functions on FJ" (Y7, Y2).

Example 1. In [3] we pointed out that two connections I'y : Y1 — J'Y; and ' :
Ys — J1Y; determine, in a simple way, a 1-connection (T'1,I'2) on F(Y7,Ys) with
interesting properties. We are going to demonstrate that a similar construction
can be performed in the second order as well. Consider a second order connection
A :Y; — J2Y; with the coordinate expression (1) and a second order connection
A : Yy — J2Y, of the coordinate form

(43) le'l:A?('r7z)7 Z(l)li:Bll'l('r7z)7 ZGJZOZ(J?,Z)

By Section 3, we have A~1(z) : J2Y; — J2(M,Y1,) and A(z) : J2(M, Ya,) — J2Ys
for every x € M. Every map ¢ : Y1, — Y5, induces
P* 1 (M, Y1z) — J2(M, Ya)
by the composition of non-holonomic jets
P(X) =)o X, X eT(MYu),.
Then we construct the composition

(44) A(x) 0?0 A™Nz) : J2V, — J2Ys5.

We are going to deduce that there is a unique 2-connection (A, A) on F(¥,Y>)
of second order such that (44) is the associated map (A, A)(¢). The simpliest
proof consists in evaluating (44) and comparing with (42). Let Z{, Zg,, Z{; be the
jet coordinates on J2(M,Ya,). By (27), the coordinate form of 2 is
70 = 2% yp. Z8 _ 9"y

1 3@/” [ 7 3@/” 01
0p® \p 07" yPy 4

4 = gy Vit gy 1 N0

(45)
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Evaluating (44), we obtain a map of F.J?(Y1,Ys) into

reM
with the following coordinate expression
z =2y + (A7 — 5 FY) . 26 = 2y, + (B — 2,GY)
215 = 2pYis T Zq¥i Yog T+ Dp(AT — 20 F)yo; + Dp(Bf — 25 Gy +

Y. (O oaz , ., 0BI
Ci <8qu 7>_8zb szg’ 8; 2B + 2, Fqu

This is of the form (42).

A smooth section B : F(Y1,Ys) — VF(Y1,Ys) ® @*T*M is called a tensor
field of type VF(Y1,Ys) ® @ T*M. Such a tensor field will be said to be of order
s > 1, if the condition ji¢ = j3, 0,1 € C*(Yiy, Yaz), y € Yiu, implies

B(p )|VY®®T M = B(y) |VY®®T M.
By [2], its associated map B is of the form

a ayp P
(46) Zi =2 Y + By

where BY; are locally arbitrary functions on F.J*(Y1, Ya).

From now on we assume that all 1-connections, 2-connections and tensor fields
on F(Y1,Y3) are of finite order, which is the most interesting case. Let I be an
r-th order 1-connection with the associated map

(47) 2 = zpy) + @F,

where ®¢ are locally some functions on F.J"(Y7,Y3), and T be an k-th order
connection with the associated map

(48) z =2y + 97,

where ¥¢ are locally some functions on F.J*(Y1,Y3). In a standard way, see [2],
one defines the first jet prolongation

JIT: JLF(Y1,Ys) — J2F (Y1, Ys)

and deduces that I's«T := J'T'oT is a 2-connection of order r+ k&, whose associated
map is given by @, &5, = ¥¢ and

a (b a
(49) 0%; +8¢Mpb 81D\1ﬂ’ +2;D\1ﬂ%

oxJ 8b 8b 77
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where « is a multiindex satisfying |a| = r.

If A is an r-th order 2-connection, then the underlying 1-connections 4A;, Ao
are of order r — 1 and A; * Ay is another 2-connection of order 2r — 2. Since
the underlying 1-connections of A; x Ay are A; and A,, the strong difference
A-A; x Ay =: ¥ defines a tensor field of type VF(Y;,Ys) of order 2r — 2. The
coordinate form of the essential component of the associated map S of ¥ is the
difference ®f; — (49), where ®f; is the second order component of the associated
map of A. Conversely, let I' and T’ be finite order 1-connections and ¥ a finite
order tensor field of type V.F(¥1,Y2) ® ®2 T*M. Then T'«T + X is a finite order
2-connection, for the compatibility conditions (41) are fulfilled by construction.
Thus, we have proved

Proposition 9. The formula
(50) A=TxT+X

establishes a bijection between the finite order 2-connections on F(¥Y,Y3) and the
triples of two finite order 1-connections on F(Yi,Ys) and a finite order tensor field
of type VF(Y1,Y2) @ @ T*M.

6. THE ABSOLUTE DIFFERENTIATION ON F(Y,Y5)

We are going to study the second order absolute differentiation of a section s
of F(Y1,Y>) with respect to a finite order 2-connection A on F(Yi,Y3). We start
with the case of a k-th order 1-connection I' with the associated map (48) and we
summarize the results of [2] from our present viewpoint.

We define

(51) T F(Y1,Y2) = | JH(M,C®(Yiz, Yaz)) -
x€eM
This is a smooth space in the sense of Frélicher. By [3], an element X € J'(M,
C°(Y1z, Y2,)) is characterized by the associated map
X Yip — JY(M, Yas) .
Hence we have
(52) JinF(Y1,Ya) = F(Y1, Jg,Ya) .

Consider a section s : M — F(Y3,Y2), whose associated base-preserving mor-
phism 5 : Y7 — Y5 has the coordinate form

(53) 2% = s%(x,y).

Write S&(x,y) = UI(j*s), where j*s : Y — FJ"(Y1,Ys) is the k-th jet pro-
longation of s constructed fiberwise. By [2], the coordinate form of Vgs is (53)
and

05 (x,y)

4 Za. = -
(5 ) 02 85131

= Sgi(,y) .-
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The connection I'' on J3, Y of Section 3 was constructed by means of the ex-
change map. By [12], this idea works in the infinite dimension as well. Let I" be an
r-th order 1-connection on F(Y,Y2) with the associated map (47). Let I'! be the
connection induced on Ji, F(Y1,Y2) by the procedure of Section 3. This construc-
tion is analogous to the case of the vertical prolongation VI' : VF(Y1,Y2) —
JYWVF(Y1,Ys) from [3]. This implies that T'! is an r-th order connection on
Jan F(Y1,Ya). Let wh, ..., ul, Z8;,, -5 Z8i0, || = 7, be the induced coordinates

i - .

on FJ" (Y1, J5 Y2). By [3}, the assoc1ated map of I' is given by (47), u} = 0 and
ov? o0d¢ 0d¢

(55) B ZO] Oz b ZOJP s dzb ZOJO"

In particular, the coordinate form of the iterated absolute differential Vr:(Vgs)
of a section of F(Y1,Y3) is (53), (54),

9s%(z,y) .
78 = ——=2 —¢(5"
(56) i E i(J"s),
0?57 as¢  0d¢ b
Za = = — —1/ - —1/ i s
(57) Y 9xtdxd Ol 0zb (7" 5)55
od¢ | . 0d¢
= G 08— G (7))
where Jp, ..., 0o denote the partial derivatives with respect to ifs.

In the case of an arbitrary 2-connection A on F(Y7,Y2), we use the decompo-
sition A = Aj * Ay + 2. Taking into account Propositions 4 and 6, we define

(58) Vas=Vai(Va,s) + E(s)

for every section s of F(Y1,Ys). This operation has several properties analogous
to Section 3.
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