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ASYMPTOTIC ESTIMATION FOR FUNCTIONAL

DIFFERENTIAL EQUATIONS WITH SEVERAL DELAYS

Jan Čermák

We discuss the asymptotic behaviour of all solutions of the functional
differential equation

y′(x) =
m

i=1

ai(x)y(τi(x)) + b(x)y(x) ,

where b(x) < 0. The asymptotic bounds are given in terms of a solution of the
functional nondifferential equation

m

i=1

|ai(x)|ω(τi(x)) + b(x)ω(x) = 0.

1. Introduction and preliminaries

The linear functional differential equation

(1.1) y′(x) =
m∑
i=1

ai(x)y(τi(x)) + b(x)y(x) , x ∈ I = [x0,∞)

has been discussed, under special hypotheses, in many papers (for references see
[4]). Equations (1.1) with bounded ri(x) = x−τi(x) are usually studied preferably,
whereas the theory for equations (1.1) with unbounded ri(x) is less developed. In
this paper we use the transformation approach described by F. Neuman in [8]
and [9] to obtain asymptotic formulas valid especially for equations (1.1) with
unbounded ri(x).

This approach consists in introducing a change of variables converting every so-
lution y(x) of (1.1) into a solution of an equation with constant or bounded delays.
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Under certain assumptions we relate asymptotic properties of solutions of (1.1) to
the behaviour of a solution ω(x) of an auxiliary linear functional nondifferential
equation

(1.2)
m∑
i=1

|ai(x)|ω(τi(x)) + b(x)ω(x) = 0, x ∈ I

and thus we extend or generalize some parts of [3], [5], [6], [1] and [2].
Throughout this paper we assume that τi : I → R are increasing continuous

functions such that τi(x) < x in I and lim
x→∞

τi(x) = ∞, i = 1, 2, . . . ,m. By the

symbol τn we mean the n-th iterate of τ (for n > 0) or the -n-th iterate of the
inverse function τ−1 (for n < 0) and put τ0 = id. Further, we denote by (xi)∞i=1
the increasing consequence of reals formed by all numbers τ−ni (x0), i = 1, 2, . . . ,m,
n = 1, 2, . . . .

Set x−1 = min {τi(x0), i = 1, 2, . . . ,m} and let I−1 = [x−1,∞). By a solution
of (1.1) we understand a function y(x) ∈ C0(I−1) ∩ C1(I) such that y(x) satisfies
(1.1) in I.

We start off with the study of equation (1.2), where ai(x), τi(x), b(x) are known,
i = 1, 2, . . .,m, b(x) < 0 and ω(x) is unknown.

Proposition 1. Assume that |ai(x)|, b(x), τi(x) ∈ Cr(I), r ≥ 0,
m∑
i=1

|ai(x)| 6= 0 in

I, b(x) < 0 in I, i = 1, 2, . . . ,m. Let ω0(x) ∈ Cr([x−1, x0]) be a positive function
such that

(ω0(x0))(s) =
( m∑
i=1

|ai(x0)|
−b(x0)

ω0(τi(x0))
)(s)

, s = 0, 1, . . . , r.

Then there exists a unique positive solution ω(x) ∈ Cr(I−1) of (1.2) such that

ω(x) = ω0(x) , x ∈ [x−1, x0] .

This solution is given inductively by

ω(x) = ω1(x) =
m∑
i=1

|ai(x)|
−b(x)

ω0(τi(x)) , x0 ≤ x ≤ x1 ,(1.3)

ω(x) = ωn(x) =
m∑
i=1

|ai(x)|
−b(x)

ωj(τi(x)) , xn−1 ≤ x ≤ xn ,

where n = 2, 3, . . . and j is an integer (0 ≤ j ≤ n − 1) depending on τi(x) such
that xj−1 ≤ τi(x) ≤ xj .
Proof. The existence and uniqueness of the solution ω(x) can be proved by the
step method (see, e.g., [7]). We show that ω(x) is positive in I. Suppose not and
denote x∗ = min {x ∈ I, ω(x) = 0}. Then

0 = ω(x∗) =
m∑
i=1

|ai(x∗)|
−b(x∗) ω(τi(x

∗)) .
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However,
m∑
i=1

|ai(x)|
−b(x)

6= 0 in I, which means that ω(τi(x∗)) = 0 for i = 1, 2, . . . ,m.

This is a contradiction with the definition of x∗. �
Now we consider the corresponding linear autonomous functional equation

(1.4)
m∑
i=1

|ai|ω(τi(x)) + bω(x) = 0 , x ∈ I ,

where b < 0. We are going to discuss conditions under which the required solution
ω(x) of (1.4) can be exhibited in the form ω(x) = exp(αψ(x)), where α ∈ R is a
constant and ψ(x) is a solution of Abel equation

(1.5) ψ(τ1(x)) = ψ(x) − 1 , x ∈ I .

We recall some basic facts about differentiable solutions of (1.5). Let τ1 ∈ Cr(I),
r ≥ 1 and τ ′1(x) > 0 in I. Then there exists a solution ψ(x) ∈ Cr([τ1(x0),∞)) of
(1.5) such that ψ′(x) > 0 in [τ1(x0),∞) (see, e.g., [9]). This solution is given by
the formula

(1.6) ψ(x) = ψ0(τn1 (x)) + n, τ−n+1
1 (x0) ≤ x ≤ τ−n1 (x0) ,

where ψ0(x) ∈ Cr([τ1(x0), x0]), ψ′0(x) > 0 in [τ1(x0), x0] and

(ψ0(x0))(s) = (ψ0(τ1(x0)) + 1)(s) , s = 0, 1, . . ., r .

In the sequel we denote by {τu1 (x), u ∈ R} a continuous iteration group defined
in I and generated by ψ(x). Hence,

τu1 (x) = ψ−1(ψ(x) − u) , x ∈ I, u ∈ R .

Now assume that functions τi(x) ∈ Cr(I), τ ′i(x) > 0 in I, i = 1, 2, . . . ,m can
be embedded into {τu1 (x), u ∈ R}. Then there exists a simultaneous solution
ψ(x) ∈ Cr(I−1), ψ′(x) > 0 in I−1 of a system of Abel equations

(1.7) ψ(τi(x)) = ψ(x) − ci , x ∈ I , i = 1, 2, . . . ,m,

where ci > 0 are suitable constants.
Set ω(x) = exp(αψ(x)) in (1.4) to obtain

m∑
i=1

|ai| exp(αψ(τi(x))) + b exp(αψ(x)) = 0 , x ∈ I ,

i.e.,

(1.8)
m∑
i=1

|ai|λαi + b = 0 ,

where λi = exp(−ci), i = 1, 2, . . .,m. It is clear that (1.8) has a unique real root
α∗. Consequently, the function ω(x) = exp(α∗ψ(x)) is a solution of (1.4) such that
ω(x) ∈ Cr(I−1) and ω′(x) 6= 0 in I−1.

Our previous ideas yield
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Proposition 2. Let ai 6= 0, b < 0 be scalars and let functions τi(x) ∈ Cr(I), r ≥
1, τ ′i(x) > 0 in I can be embedded into a continuous iteration group {τu1 (x), u ∈ R},
i = 1, 2, . . . ,m. Further, let ψ(x) ∈ Cr(I−1) be a solution of (1.5) given by (1.6)
and let α∗ be a real root of (1.8). Then function ω(x) = exp(α∗ψ(x)), x ∈ I−1

defines a solution of (1.4) such that ω(x) ∈ Cr(I−1) and ω′(x) 6= 0 in I−1.

Remark 1. The problem of embeddability of given functions τi(x) into a contin-
uous iteration group has been dealt with by F. Neuman [8] and M. Zdun [10]. We
note that the most important necessary condition is commutativity of any pair
τi(x), τj(x), i, j = 1, 2, . . . ,m.

Other results concerning the theory of functional nondifferential equations can
be found in [7].

2. Main results

We consider the case b(x) < 0 in I and put

ω′−(x) = max (0,−ω′(x)) , x ∈ I .

Theorem 1. Let |ai(x)|, b(x), τi(x) ∈ C2(I),
m∑
i=1

|ai(x)| 6= 0 in I and b(x) < 0

in I, i = 1, 2, . . . ,m. Assume that τ1(x) ≥ τi(x) for each x ∈ I, i = 2, . . . ,m and
τ ′1(x) > 0 in I. Further, let ω(x) ∈ C2(I−1) be a positive solution of (1.2) given
by (1.3) and let ψ(x) ∈ C2(I−1) be a solution of (1.5) given by (1.6) such that
ψ′(x) > 0 in I−1. If

(i) ω′(x) − b(x)ω(x) > 0 in I,

(ii)
ω′−(x)

ω′(x)−b(x)ω(x) is nonincreasing in I,

(iii)
∫ ∞
x0

ω′−(s)ψ′(s)
ω′(s) − b(s)ω(s)

ds <∞,

then
y(x) = O(ω(x)) as x→∞

for every solution y(x) of (1.1).

Proof. The change of variables

t = ψ(x), z(t) =
y(x)
ω(x)

converts equation (1.1) into

ż(t) =
m∑
i=1

(
ai(h(t))ḣ(t)

ω(τi(h(t)))
ω(h(t))

z(µi(t))
)

+
(
b(h(t))ḣ(t) − ω̇(h(t))ḣ(t)

ω(h(t))

)
z(t) ,
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where t ∈ J = [t0,∞), h(t) = ψ−1(t) and µi(t) = t − ri(h(t)), ri(h(t)) ≥ 1 for
every t ∈ J , i = 1, 2, . . . ,m. This form can be rewritten as

d

dt

[
z(t)ω(h(t)) exp

{
−
∫ h(t)

x0

b(u)du
}]

=
m∑
i=1

(
ai(h(t))ḣ(t)ω(τi(h(t))) exp

{
−
∫ h(t)

x0

b(u)du
}
z(µi(t))

)
.(2.1)

Now we denote by Ik the interval [t0 + k− 1, t0 + k] and put Mk = sup {|z(t)|, t ∈
∪kj=1Ij}, k = 1, 2, . . .. We consider t ∈ Ik+1 and integrate (2.1) over [t0 + k, t] to
obtain

z(t) =
ω(h(t0 + k))
ω(h(t))

exp
{∫ h(t)

h(t0+k)
b(u)du

}
z(t0 + k)

+
∫ t

t0+k

( m∑
i=1

(
ai(h(s))ḣ(s)

ω(τi(h(s)))
ω(h(t))

exp
{∫ h(t)

h(s)
b(u)du

}
z(µi(s))

))
ds .

Then

|z(t)| ≤Mk
ω(h(t0 + k))
ω(h(t))

exp
{∫ h(t)

h(t0+k)
b(u)du

}
+Mk

∫ t

t0+k

( m∑
i=1

|ai(h(s))|ḣ(s)
ω(τi(h(s)))
ω(h(t))

exp
{∫ h(t)

h(s)
b(u)du

})
ds

≤Mk

{
ω(h(t0 + k))
ω(h(t))

exp
{∫ h(t)

h(t0+k)
b(u)du

}
+
∫ t

t0+k

(
− b(h(s))ḣ(s)

ω(h(s))
ω(h(t))

exp
{∫ h(t)

h(s)
b(u)du

})
ds

}
by use of (1.2). Further,

|z(t)| ≤Mk

{
ω(h(t0 + k))
ω(h(t))

exp
{∫ h(t)

h(t0+k)
b(u)du

}(2.2)

+

exp
{∫ h(t)

x0

b(u)du
}

ω(h(t))

∫ t

t0+k

(
ω(h(s))

d

ds

[
exp

{
−
∫ h(s)

x0

b(u))du
}])

ds

}
.

Integrating by parts we have∫ t

t0+k

(
ω(h(s))

d

ds

[
exp

{
−
∫ h(s))

x0

b(u)du
}])

ds

=
[
ω(h(s)) exp

{
−
∫ h(s)

x0

b(u)du
}]t

t0+k

+
∫ t

t0+k

(
− ω̇(h(s))ḣ(s) exp

{
−
∫ h(s)

x0

b(u)du
})
ds .
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Repeated integration by parts yields∫ t

t0+k

(
− ω̇(h(s))ḣ(s) exp

{
−
∫ h(s)

x0

b(u)du
})
ds

≤
∫ t

t0+k

(
ω̇−(h(s))ḣ(s) exp

{
−
∫ h(s)

x0

b(u)du
})
ds

=
∫ t

t0+k

( ω̇−(h(s))
ω̇(h(s)) − b(h(s))ω(h(s))

d

ds

[
ω(h(s)) exp

{
−
∫ h(s)

x0

b(u)du
}])

ds

=
[
ω(h(s)) exp

{
−
∫ h(s)

x0

b(u)du
} ω̇−(h(s))
ω̇(h(s)) − b(h(s))ω(h(s))

]t
t0+k

+
∫ t

t0+k

(
ω(h(s)) exp

{
−
∫ h(s)

x0

b(u)du
} d
ds

[ −ω̇−(h(s))
ω̇(h(s)) − b(h(s))ω(h(s))

])
ds

≤
[
ω(h(s)) exp

{
−
∫ h(s)

x0

b(u)du
} ω̇−(h(s))
ω̇(h(s)) − b(h(s))ω(h(s))

]t
t0+k

+ ω(h(t)) exp
{
−
∫ h(t)

x0

b(u)du
}[ −ω̇−(h(s))
ω̇(h(s)) − b(h(s))ω(h(s))

]t
t0+k

=
[
ω(h(s)) exp

{
−
∫ h(s)

x0

b(u)du
}]t

t0+k

ω̇−(h(t0 + k))
ω̇(h(t0 + k)) − b(h(t0 + k))ω(h(t0 + k))

.

Substituting this into (2.2) we obtain

|z(t)| ≤Mk

{
1 +

ω̇−(h(t0 + k))
ω̇(h(t0 + k))− b(h(t0 + k))ω(h(t0 + k))

}
for every t ∈ Ik+1, i.e.,

Mk+1 ≤Mk

{
1 +

ω̇−(h(t0 + k))
ω̇(h(t0 + k))− b(h(t0 + k))ω(h(t0 + k))

}
≤M1

k∏
j=1

{
1 +

ω̇−(h(t0 + j))
ω̇(h(t0 + j)) − b(h(t0 + j))ω(h(t0 + j))

}
for every k = 1, 2, . . . .

Applying Cauchy’s integral criterion we can see that the infinite product con-
verges as k→∞, hence z(t) is bounded as t→∞. �
Remark 2. If we replace x0 ∈ I in conditions (i), (ii) and (iii) by x∗ ∈ I large
enough, then the conclusion of Theorem 1 remains valid.

Remark 3. The assumption τ1(x) ∈ C2(I), τ1(x) ≥ τi(x) for each x ∈ I, i =
2, . . . ,m, τ ′1(x) > 0 in I can be replaced by the assumption that there exists
τ (x) ∈ C2(I), τ (x) ≥ τi(x) for each x ∈ I, i = 1, 2, . . . ,m and τ ′(x) > 0 in I. Of
course, ψ(x) is then a solution of Abel equation (1.5) with τ (x) instead of τ1(x).
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Remark 4. If
m∑
i=1

|ai(x0)|
−b(x0)

≥ 1 and functions
|ai(x)|
−b(x)

are nondecreasing in I for

i = 1, 2, . . . ,m, then there exists a positive nondecreasing solution ω(x) of (1.2).
Hence, we can simplify the assumptions of Theorem 1.

Now we consider autonomous equation (1.1), i.e., the equation

(2.3) y′(x) =
m∑
i=1

aiy(τi(x)) + by(x) , x ∈ I .

Using Proposition 2 we get

Theorem 2. Let ai 6= 0, b < 0 be scalars, i = 1, 2, . . .,m. Assume that functions
τi(x) ∈ C2(I) fulfil 0 < τ ′i(x) ≤ (τi(x)

x )γ in I for a suitable real constant γ >
1
2 , τ ′1(x) is nonincreasing in I and let τi(x) can be embedded into a continuous
iteration group {τu1 (x), u ∈ R}, i = 1, 2, . . . ,m. Further, let ψ(x) ∈ C 2(I−1),
ψ′(x) > 0 in I−1 be a solution of (1.5) given by (1.6) and let α∗ be a real root of
(1.8). Then every solution y(x) of (2.3) satisfies

y(x) = O(exp(α∗ψ(x)) as x→∞.

Proof. The function ψ′(x) is a solution of the functional equation

ψ′(x) = ψ′(τ1(x))τ ′1(x) .

If ψ′(x) is nonincreasing for τ1(x0) ≤ x ≤ x0, then ψ′(x) is nonincreasing in I−1.
Moreover, if ψ′(x) ≤ M

xγ for a suitable M > 0 and every τ1(x0) ≤ x ≤ x0, then

ψ′(x) ≤ M

(τ1(x))γ
τ ′1(x) ≤ M

xγ

for every x0 ≤ x ≤ τ−1
1 (x0). By induction on n we can similarly show that ψ′(x) ≤

M
xγ for every τ−n+1

1 (x0) ≤ x ≤ τ−n1 (x0), n = 1, 2, . . . , i.e.,
∫ ∞
x0

(ψ′(s))2ds <∞.

By Proposition 2 ω(x) = exp(α∗ψ(x)) is a solution of (1.4). Due to the above
given properties of ψ′(x) it is easy to verify that all the assumptions of Theorem
1 are fulfilled with the respect to Remark 3. �

Corollary. In addition to assumptions of Theorem 2 suppose that
m∑
i=1

|ai| < −b.

Then every solution y(x) of (2.3) tends to zero as x→∞.

3. Applications

Example 1. We consider the equation

(3.1) y′(x) =
m∑
i=1

bi(x)[y(x)− y(τi(x))] , x ∈ I ,
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where bi(x) ∈ C0(I), bi(x) < 0 in I, i = 1, 2, . . . ,m. Auxiliary functional equation
(1.2) then becomes

m∑
i=1

bi(x)[ω(x)− ω(τi(x))] = 0, x ∈ I

and admits the solution ω(x) = const. We apply conclusions of Theorem 1 with
the respect to Remark 4.

Assume that bi(x) < 0 in I, i = 1, 2, . . .,m. Let τ1(x) ∈ C1(I), τ ′1(x) > 0 in I
and τ1(x) ≥ τi(x) for each x ∈ I, i = 2, . . . ,m. Then every solution y(x) of (3.1)
is bounded.

We note that equation (3.1) with bi(x) > 0 and constant delays τi(x) has been
studied by J. Diblík [3]. Our previous result extend some parts of [3].

Example 2. Now we investigate the asymptotic behaviour of all solutions of the
equation

(3.2) y′(x) = a1xy(λ1x) + a2xy(λ2x) + by(x) , x ∈ [1,∞) ,

where a1, a2 6= 0, 0 < λ1, λ2 < 1 and b < 0. The corresponding functional
equation (1.2) is

(3.3) |a1|xω(λ1x) + |a2|xω(λ2x) + bω(x) = 0 , x ∈ [1,∞) .

This equation has a positive increasing solution given by (1.3). Hence, by Theorem
1 and Remark 4, every solution y(x) of (3.2) fulfil y(x) = O{ω(x)}, where ω(x) is
a positive and increasing solution of (3.3) given by (1.3).

To obtain a more applicable form of the estimate we can simplify equation (3.3)
in the following way. We consider the equation

axϕ(λx) + bϕ(x) = 0 , x ∈ [1,∞) ,

where a = max (|a1|, |a2|), λ = max (λ1, λ2). It can be easily verified that this
equation has a solution

ϕ∗(x) = exp
{ log2 x

2 logλ−1
+

logx
2

+
log a
−b

logλ−1
logx

}
, x ∈ [1,∞) .

Since obviously every positive and increasing solution ω(x) of (3.3) is of order not
exceeding ϕ∗(x) we get that

y(x) = O
(

exp
{ log2 x

2 logλ−1 +
logx

2
+

log a
−b

logλ−1 logx
})

as x→∞

for every solution y(x) of (3.2).
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Example 3. We consider the equation

(3.4) y′(x) = a1y(xγ1) + a2y(xγ2 ) + by(x), x ∈ [1,∞),

where a1, a2 6= 0, 0 < γ1, γ2 < 1, b < 0. Functions xγ1 , xγ2 can be embedded into
a continuous iteration group {xu, u ∈ R}. Abel equation (1.5) then becomes

ψ(xγ1) = ψ(x) − 1, x ∈ [1,∞)

and has the function ψ∗(x) = log log x
− log γ1

as the required solution. We note that delays
considered in (3.4) intersect the identity function at the initial point x0 = 1.
Nevertheless, all assertions of this paper remain valid for equations with such
delays as well.

Further, let α∗ be a real root of equation (1.8) with b < 0, i.e., equation

|a1| exp(−α) + |a2| exp
{
− log γ2

log γ1
α
}

+ b = 0

and put
ω∗(x) = exp(α∗ψ∗(x)) .

Then, by Theorem 2,

y(x) = O(ω∗(x)) as x→∞

for any solution y(x) of (3.4).
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