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ON ASYMPTOTIC PROPERTIES OF SOLUTIONS
OF THIRD ORDER LINEAR DIFFERENTIAL EQUATIONS
WITH DEVIATING ARGUMENTS

IvaN KIGURADZE

ABSTRACT. The asymptotic properties of solutions of the equation
w(t) = p1(t)u(r1(t))+p2(t)u’(72(¢)), are investigated where p; : [a, +oo[— R (1 =
1,2) are locally summable functions, 7; : [a,+c0c[— R (¢ = 1,2) measurable ones
and 75(t) > t (i = 1,2). In particular, it is proved that if pi(t) < 0, p3(¢) <

a(t)lp(t)];

+ oo + oo
/ [r1(t) = t)?p1(¢)dt < 400 and / a(t)dt < 4o,

then each solution with the first derivative vanishing at infinity is of the Kneser
type and a set of all such solutions forms a one-dimensional linear space.

Let us consider the differential equation

(1) u"(t) = pr(tu(ri(0) + p2(t)d (ra(1))

where the functions p; : [a,+o00[— R (i = 1,2) are locally integrable and the
functions 7; : [a, +oo[— R (i = 1,2) are measurable and

(2) () >t for t>a (i=1,2).

The solution u of the equation (1) will be called of the Kneser type if it
satisfies the inequalities

' (Du(t) <0, u’()u(t) >0 for t > ap,
for some ag € [a, +oo[, and will be called vanishing at infinity if

lim w(t)=0.

t—+o0
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Let K be a set of all Kneser type solutions of (1), W be a set of all solutions of
(1) satisfying the condition

+oo
/ u’z(t)dt < 40,

and Z be a set of all solutions of the same equation satisfying the condition

) P
tl}g_noou (t)=0.

The results of [1,2] imply that if either of the two conditions

(1) ()=t pa(t) =0, pi(t) <0;

(i)

pi(t) <0, [Fs%|pi(s)|ds < +o0,
pZ(t) Z Oa f+oo 728(25)P2(5)d5 < +OO,

a

is fulfilled, then W D K, Z D K and K is a one-dimensional linear space.
Questions as to the dimension of K, W and Z and the interconnection of these
spaces have virtually remained univestigated in the case when the conditions (i)
and (ii) are violated. This paper is devoted exactly to the investigation of these
questions.

Theorem 1. Let 7;(t) >t (i =1,2), p1(t) <0 fort > a,

bl

+oo
3) [ -0l < +oc
and
() B0 < alO)]p(0)] for 20

where « : [a, +00[— [0, +o0[ is a summable function. Then
(5) K=2, dmZ=1

and for each solution u € Z to vanish at infinity it is necessary and sufficient that

(6) /+Oo *|py(t)|dt = +o0.

Before proceeding to the proof of the theorem we shall give two auxiliary state-
ments, using the notation

= (1)] .
()= ez supl e )
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Lemma 1. Let the conditions of Theorem 1 be fulfilled and ag € [a,+0oo[ be so
large that

+o0 +eo
(7) /a [Tl(t)—t]2|p1(t)|dt<%, /a oz(t)dt<%.

Then an arbitrary solution u of the equation (1) satisfies the condition

2 () + /tx [p1(s)|u?(s)ds <

(8)
< Au(t)u”(t) — du(x)u” (z) + 2u'2(x) +p(t,z) for x >1 > ao,
where
p(t,z) = sup u’z(s) :
t<s<7(x)
If however u € 7, then u € K,
2 e
(9) u'"(t) —I—/ |p1(5)|u2(5)d5 < Au(t)yu”(t) for t > ao,
¢

and

e 2
(10) /t [10(5 — ' (s) + (s — t)2|p1(5)|u2(5)] ds < 4u®(t) for t > ao.

Proof. Let u be an arbitrary solution of the equation (1). Then in view of the
non-positivity of p; and the inequality (4) we have

u" (t)u(t) + |pa(t)]u’(t)
T1(t)
= pl(t)u(t)/t u'(€)dE + pa(t)u(t)u'(m2(t))

IN

)| ()| [o(t, 0] 2 )|

[7'1 —t |P1 + [Of(t)|P1(t)|P(tat)]

I /\

a0 (t)—l-;[ﬁ(t |p1 Olp(t,1) + 3l O] (0) + (e,

Z|p1(t)|u2(t) + (% [ri(6) = 1|1 ()] + &) p(t,1)

for t > ag. Integrating this inequality from ¢ to « and taking into account (7), we

find

u(x)u(e) — o (tyu(t) + %[u’z(t) —u'*(x)] + /t |p1(s)]u?(s)ds

¢ 1
< Z/ |p1(5)|u2(5)d5 + Zp(t,x) for £ >t > ag.
t
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Thus the inequality (8) is valid.
Let us assume now that v € Z. Then

lim inf|u”(x)u(x)| =0.

r—4o0

Therefore (8) implies

2 e
(11) 2u'"(t) —|—/t |p1(5)|u2(5)d5 < A" (t)u(t) + po(t)

for t > ap, where

t) = 2 .
pot) =, max u(s)

We shall show that
(12) u’ ()’ (t) <0 for t > ag.
Let us assume the opposite: we have
u” (to)u'(tg) > 0.

for some tg € [ag, +0o[. Then, since u’ vanishes at infinity, there is 1 €]to, +00]
such that
u"(t1) =0, u'*(t1) = polt1) > 0.

Therefore from (11) we find

2po(t1) < po(t1).

The obtained contradiction proves the validity of the inequality (12), while from
(11) and (12) it follows that u satisfies the inequality (9) and v € K.
Integrating twice the inequality (9) we obtain the inequality (10). O

Lemma 2. Let the conditions of Lemma 1 be fulfilled and there exist a number
b €]ap, +oo[ such that

(13) pi(t)=0 for t>b (i=1,2).

Then for any ¢ € R there exists one and only one solution of the equation (1)
satisfying the conditions

(14) u(ag) = ¢, uW'(t)=0 for t>b.

Proof. Dueto (2) and (13), for any v € R the equation (1) has the unique solution
v(+,7) satisfying the condition
v(t;y) =7
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for b <t < 400, and
v(tyy) = yo(t;1).
Since v(+; 1) € 7, by virtue of Lemma 1 we have
v(ag; 1) > 1.
From the above reasoning it is clear that
u(t) = yev(t; 1),

where
Yo = ¢/v(ag; 1),
is the unique solution of the problem (1), (14). d

Proof of Theorem 1. Let ay be so large that the inequalities (7) are fulfilled.
First of all we shall show that for any ¢ € R the equation (1) has at least one
solution satisfying the conditions

(15) u(ag) =¢, lim u'(t)=0.

t—+o0

Let k be an arbitrary natural number and

w0 R e
On account of Lemma 2 the equation

(17) u"'(t) = pre(Ou(na(1)) + pai (Du'(m2(1))

has the unique solution uy satisfying the conditions

(18) up(ag) = ¢, up(t)=0 for ¢ > a+k.

On the other hand, by Lemma 1 u; € K, i.e.,

(19) w0 (1) <0, up(t)u(t) > 0

for t > ag. If alongside with this we take into account the conditions (2) and
(16), then we can easily ascertain that the sequences (ugj)):z (i =0,1,2)
are uniformly bounded and equicontinuous on each segment contained in [a, +-o0].

Therefore, according to the Arzela-Ascoli lemma, from (uk):z we can obtain the

subsequence (ukm):;ozol converging uniformly together with (ugji)::l (i=1,2)on

each segment contained in [a, +oo[. By virtue of (16), (18) and (19) the function
wt)=  lim  ug, (?)

m + oo
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is the solution of (1) satisfying the conditions
u(ag) = ¢, w(®)w'(t) <0, w)u’(t)>0

for t > ap. But
ve K= lim «(t)=0.

t—+o0

Therefore u is the solution of the problem (1), (15). We have thereby proved that
dmZz > 1.

Due to Lemma 1 Z = K. Let us show that dimZ = 1. For this it is sufficient
to establish that for an arbitrary ¢ € R the problem (1), (15) has at most one
solution. Let u; and us be arbitrary solutions of this problem and

Uo(t) = Uz(t) — Ul(t) .

Since ug € 7 and ug(ag) = 0, by Lemma 1 we have

+oo
/ (s — ao)ugz(s)ds <0,

ie. uf(t) =0 for t > ag. Hence it follows that ug(t) = 0, i.e., ui(t) = ua(t).

Let us proceed to the proof of the second part of the theorem. Let u € Z. Then
by virtue of Lemma 1 v € K and the inequality (10) is fulfilled. Hence it is clear
that if the condition (6) is fulfilled, then w is a vanishing solution at infinity.

To complete the proof of the theorem it remains for us to establish that if

+oo
(20) / s |p1(s)|ds < +oo,

then each nontrivial solution u € Z tends to a limit differing from zero as ¢ — 4oo.
Let us assume the opposite: there exists a nontrivial solution © € Z vanishing at
infinity. Then by Lemma 1

(21)

ltiin_l_igof|u”(t)| =0
and
(22) o) < 2fu(t)

for t > ap, where
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By the conditions (2), (4), (7) and (20)-(22) we have

|M@ﬂ:‘/ﬂn@d$wﬁ@D+Pﬂ®w@ﬂ®ﬂ@
< [ s+ [ [ @@lne) s o
< [ ot ([ ) ([ otas) o
< [T lolas ([ nols) o)

for t > ag, and

+oo
|u(t)| = /t (5—t)|u”(5)|d5

<3 =l Ids+/+w<s—t>(/+w|p1<£>|d£)1/ o/ (5)]ds
([ e mols) ([T e otmoheoan)

[ [T [ )] ([ oon) "
< (/t+oo(5—t>2|m(5>|d8)1/2 (1) §2</t (s — 1) |p1(5)|ds)1/2|u(t)|

for t > ag. From the latter inequality it 1s clear that for some sufficiently large a;

IN

uw(t)=0

for t > a;. Hence, in view of (2), we have u(t) = 0 for ¢ > a. But this contradicts
our assumption about the nontriviality of u. The obtained contradiction proves
the theorem. d

Theorem 2. Let 7;(t) >t (i =1,2), p1(t) <0 fort > a, and the function T be
locally absolutely continuous and nondecreasing. Let, besides,

(23) /+Oo t[ri(t) — t]|pa(t)|dt < +oo
and
(24) B0 <6 -9 2 py0)] for 1>
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where ¢ is a arbitrary small positive number. Then
dimW =1

and for each solution u € W to vanish at infinity it is necessary and sufficient that

(25) /+Oo |pu(t)]dt = +o00.

To prove the theorem we shall need

Lemma 3. Let the conditions of Theorem 1 be fulfilled and ag € [a,+0o[ be so
large that

+oo
(26) / (s —ag)[m(s) — 5]|p1(5)|ds < 467,

£

55- Then an arbitrary solution u € W satisfies the conditions

where 6 =

+eo 2
(28) 26/¢ [(5 — ' (s) + (s — t)2|p1(5)|u2(5)] ds < uz(t)

fort > ag.

Proof. Let u be an arbitrary solution of the equation (1). Then in view of the
nonpositiveness of py

(s = )u"(s)u(s) + (s = 1) [p1(s)|u*(s)

71(s)
= (o= Opeus) [ WEME + s~ Dot (ra(s).

The integration of this identity from ¢ to = gives

u' (u(t) + (2 — Hu" (2)u(z) — (x —t) 4 5 u'(2)u(z)

(29 [ B0+ - ol )

z 7,(s)
= [ L= 0mnts) [ @ + (= Opa(s)uon (o)) as.
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But according to the Schwartz inequality and the conditions (24) and (26)

| ls=0neue [ " ey as
< 6/tx(5—t)|p1(5)|u s)ds + % ' s—t)|p1(5)|[/sTl(s)u’(g)d{frds
<o [Tt 0t ons + 5 x(s—t>[n<s>—s] ol [ e as

z 7(x)
< 6/¢ (s — t)|p1(5)|u2(5)d5 + 6/¢ u’z(s)ds

for & >t > ap, and

[ 6= ot (s
< 6= [ [ = 0mtlne)] " s el
< (1_25)/x s —1)|p1(s)]u®( )ds—l—ﬁ/j ()" (ra(s))ds
< (1_25)/x s — 1)1 (s)|u2(s)ds + (2—25) /;(x) W' (s)ds

for & >t > ap, where

() = eos oup| (o)

Therefore (29) implies

for & >t > ap.
From the condition v € W it immediately follows that

lim l‘/ (s — a)u'z(s)ds =0

r—4oo ¥
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We shall show that for any ¢ € [a, +o0[

(32) lim inf |(x — t)“lz(x)

r—4o0 2

+ ' (2)u(z) — (z — )u" (z)u(z)| = 0.

Let us assume the opposite. Then there are numbers ¢ € {—1,1}, {y € [a, +o0],
t1 €]tg, +oof and 1 > 0 such that

B ole- @) - - )] >
for x >t
(34) /j(s - a)u'z(s)ds < %(x —to), ui(x)< Z(gg — ).

for # > t;. Integrating the inequality (33) from ¢; to x, we find

o [% / (s = to)u""(s)ds + u*(x) = (2 — to)u' ()u(w) | = n(x —11) = e1

for # > t{, where
Cc1 = Uz(tl) — (tl — to)u/(tl)u(tl) .

Hence due to (34) we obtain

(e — to)u (@)u(x) >

N |3

(l‘ — tl) — g(tl — to) — C1

for > 1, and
—ou'(z)u(z) >

|

for > o, where t5 1s some suffieciently large number. Therefore

o [ui(ty) — u?(x)| >

S

(l‘ — tz)

for # > tp, which contradicts the condition (31). The obtained contradiction
proves the validity of the equality (32).

By virtue of (32) the inequality (30) implies the inequality (27), while by inte-
grating (27) from ¢ to 400, we obtain the inequality (28). O

The proof of the next lemma repeats that of Lemma 2.
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Lemma 4. Let the conditions of Lemma 3 and the identities (13), where
b €lag, +oo[, be fullfilled. Then for any ¢ € R the problem (1), (14) has one

and only one solution.

Proof of Theorem 2. Let ag be so large that the inequality (26) is fulfilled, and
¢ € R be an arbitrarily fixed number.

According to Lemma 4 for any natural & the differential equation (17), where
pir (¢ = 1,2) are the functions given by the equality (16), has the unique solution
uy, satisfying the conditions (18).

By virtue of Lemma 3

5[ [0+ 6= Dl )] ds < et

for t > ag, and

25/;00 [(5 ' (s) + (s _t)2|p1(5)|u§(5)] ds < u2(t)

for t > ay.

Hence, on account of the Arzela-Ascoli lemma, we readily conclude that the se-
(o]

contains the subsequence (ukm):;oo converging uniformly together

:1
(i = 1,2) on each finite segment from [a, +o0[ and

quence (Uk) 2—:1

with (ugji ) :;O:ol

w(t)= lim wuy,, (2)

m—4o0

is the solution of the equation (1) satisfying the conditions
+oo 9
u(ag) = ¢, / u'"(s)ds < 00
Qo

We have thereby proved that dim W > 1. Thus to prove the equality dimW =1
it 1s sufficient to establish that given the conditions

+oo
(35) u(ag) =0, / u’z(s)ds < +o0

the equation (1) has only the trivial solution. Indeed, let u be an arbitrary solution
of the problem (1), (35). Then by virtues of Lemma 3

Therefore
uw(t) =10 for ¢> ap.
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In view of (2) it follows from the last equality that u(¢) = 0 for ¢ > a.

Let us prove the second part of the theorem. Let u € W be an arbitrary
solution. By virtue of Lemma 3 the function |u()| does not decrease on [ag, +o0[
and

+oo
/ (s — a0)2|p1(5)|u2(5)d5 < +oo.

Hence it is clear that if the condition (25) is fulfilled, then « vanishes at infinity.

To complete the proof of the theorem 1t remains for us to establish that if
the condition (20) is fulfilled, then each nontrivial solution « € W tends to a
limit differing from zero as ¢ — +oo. Let us assume the opposite: there exists a
nontrivial solution v € W vanishing at infinity. Then by Lemma 3

(36) u(ty(t) < 0, v(t) < nlu(t)]

for ¢ > ag, where n = (26)_1/2 and

1/2

0= ([ [0+ 607 s
On the other hand, due to (24) and (20) we have
] = 3| [ 6= 07t + o (o)

[/t+oo(s - t)2|P1(5)|d5] /2 [/;00(5 B t)2|p1(5)|u2(7-1(5))d5] 1/2

+2 /foo(s —t)Z[M]U2|U'(Tz(S))|dS

s§—a

<[/ s 0%l ()]s " |/ . 0%l (9] ()| "
w2 s 0%l ()]s . '/ st )i v

s§—a

IN

for t > ag. Hence, taking into account (2) and (36), we find

0] < [/tJrOO(S a t>2|p1(5)|d5] N [/;00(5 - t)2|P1(5)|u2(5)d5] N
+2 [/t+oo(5 - t)2|P1(5)|d5] v [/t+oo(8 B t)ulz(s)dg] 1/2
<s| T 0%l (9] "

1/2

<onf [ 2lntollas] - Juo)
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for t > ap, and therefore
uw(t)=0

for t > aj, where a; is some sufficiently large number. In view of (2) the last
identity implies that u(¢) = 0 for ¢ > a. But this contradicts our assumption
about the nontriviality of u. a

Corollary. Let the conditions of Theorem 2 be fulfilled and
p2(t) >0
fort > a. Then

(37) K=W, dimK=1.

Proof. Let u € W be an arbitrary solution. Then by virtue of Lemma 3
u' (Hu(t) <0

for t > ag. If, alongside with this we take into account the nonpositivity of p; and
the nonnegativity of p2 from (1), we find

u” (Ou(t) <0, o' (Hu(t) >0

for t > ag. Therefore u € K. We have thereby proved that W C K. But,
according to Theorem 2 and the definition of K and W, we have dimW =1 and
K C W. Therefore it is clear that the equalities (37) are fulfilled. O

As an example, on the interval [a, +oo[ let us consider the equation
r
(3) W(E) = — () + (1),

where a and r are positive numbers. This equation has a solution

up(t) = tr
where )
- <A <1
5 =
3 3
for £ <r < 3, and ,
0< A < =
< < 9
for r > % Therefore
7+ K
for r > %, and

W # K
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for r > % On the other hand, for the equation (38) all conditions of Theorem 1

except the summability of « (since a(t) = %t_l) are fulfilled in the case r > %,
and all conditions of Theorem 2 except (24) which is replaced by the inequality

B0 < 6+ 2y 1)

for ¢ > a are fulfilled in the case r = %(1 + 6)1/2. This example shows that in
Theorem 1 (in the corollary of Theorem 2) the condition of the summability of «
(the condition (24)) is optimal in the definite sense and cannot be weakened.

In conclusion we note that results similar to Theorem 3 for second order differ-
ential equations are contained in [3].
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