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ARCHIVUM MATHEMATICUM (BRNO)Tomus 30 (1994), 25 { 27CHARACTERIZATION OF DISTRIBUTIVESETS BY GENERALIZED ANNIHILATORSRadom��r Hala�sAbstract. Distributive ordered sets are characterized by so called generalized an-nihilators.Let L be a lattice. For a, b 2 L the annihilator ha; bi and the dual annihilatorha; bid of a relative to b are given by ha; bi := fx 2 L : x ^ a � bg and ha; bid :=fx 2 L : x _ a � bg.Several authors have studied annihilators in distributive lattices: Mandelker [1],Davey [2]; in modular lattices Davey and Nieminen [3]. In particular Mandelkerproved that L is distributive i� ha; bi is an ideal for all a, b 2 L.The aim of this paper is to characterize distributive ordered sets by the so calledgeneralized annihilators.Let S be an ordered set, X � S. An upper (lower) cone of X in S is the setU (X) = fx 2 S : x � a for each a 2 Sg, (L(X) = fx 2 S : x � a for each a 2Xg).J. Rach�unek in [4] introduced and studied distributive and ordered sets: anordered set S isdistributive if 8 a; b; c 2 S : L(U (a; b); c) = L(U (L(a; c); L(b; c))).De�nition 1. Let S be an ordered set, A � S, B � S. A double generalizedannihilator (d-annihilator) in S is the set de�ned byhA;Bi = fx 2 S : UL(A; x) � U (B)g ; and, dually, a double generalizeddual annihilator (dual d-annihilator) in S is:hA;Bid = fx 2 S : LU (A; x) � L(B)g :If A is a one element set, then the (dual) d-annihilator is called the (dual) anni-hilator .1991 Mathematics Subject Classi�cation : 06A10.Key words and phrases: annihilator, generalized annihilators, ideal, �lter.Received November 3, 1992.



26 RADOM�IR HALA�SDe�nition 2. Let S be an ordered set. The subset I � S is called an ideal (�lter)in S if it holds:x; y 2 I ) LU (x; y) � I (x; y 2 I ) UL(x; y) � I) :Remark. If S is a lattice, then I is an ideal (�lter) in S i� I is a lattice ideal(�lter).Theorem 1. An ordered set S is distributive if and only if each annihilator in Sis an ideal in S.Proof. (i) Let S be a distributive set, and ha;Bi be an annihilator in S. Letx; y 2 ha;Bi. Then UL(a; x) � (B),UL(a; y) � U (B) :Let z 2 LU (x; y). Then L(z) � LU (x; y), U (z) � U (x; y) and henceforthUL(a; z) = UL(a; U (z)) � UL(a; U (x; y)). By the distributive law the right sideof the last inclusion is equal toULU (L(a; x); L(a; y)) = U (L(a; x); L(a; y)) = UL(a; x) \ UL(a; y) � U (B) ;hence UL(a; z) � U (B), and z 2 ha;Bi. Thus LU (x; y) � ha;Bi and ha;Bi is anideal.(ii) Let every annihilator in S be an ideal, a; b; x 2 S. Then UL(a; x) �UL(a; x)\ UL(b; x) = U (L(a; x); L(b; x)), and, analogously UL(b; x) � U (L(a; x),L(b; x)). Hence for B = L(a; x)[L(b; x) it holds a 2 hx;Bi, b 2 hx;Bi. But hx;Biis an ideal, we have(*) LU (a; b) � hx;BiLet z 2 L(U (a; b); x); then z 2 LU (a; b) \ L(x) and by (*) z 2 hx;Bi. ThereforeUL(z; x) � U (L(a; x); L(b; x)). Moreover, x 2 L(x) implies L(z; x) = L(z), thuswe obtain U (z) � U (L(a; x); L(b; x)); L(z) � LU (L(a; x); L(b; x)) ;i.e. L(U (a; b); x) � LU (L(a; x); L(b; x)) :But the converse inclusion is valid for all element from S (see [4]), proving dis-tributivity of S. �Corollary. An ordered set S is distributive i� each dual annihilator in S is the�lter in S.



CHARACTERIZATION OF DISTRIBUTIVE SETS : : : 27Example 1. Ordered sets in Fig. 1 and Fig. 2 are not distributive (see [5]), theannihilator ha; fcgi = fb; cg is not an ideal.� � � Fig. 1a b cd�hhhh 4444� � � Fig. 2a b cReferences[1] Mandelker, M., Relative annihilators in lattices, Duke Math. J. 40 (1970), 377-386.[2] Davey, B., Some annihilator conditions on distributive lattices, Alg. Universalis 4 (1974),316-322.[3] Davey, B., Nieminen, J., Annihilators in modular lattices, preprint.[4] Rach�unek, J., Translations des ensembles ordonn�es, Math. Slovaca 31 (1981), 337-340.[5] Rach�unek, J., Chajda, I., Forbidden con�gurations for distributive and modular ordered sets,Order 5 (1989), 407-423.Radom��r Hala�sDepartment of Algebra and GeometryPalack�y University OlomoucTomkova 38771 46 Olomouc, CZECH REPUBLIC
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