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CHARACTERIZATION OF DISTRIBUTIVE
SETS BY GENERALIZED ANNIHILATORS

RapoMirR HALAS

ABSTRACT. Distributive ordered sets are characterized by so called generalized an-
nihilators.

Let L be a lattice. For a, b € L the annihilator {a, ) and the dual annihilator
(a,b)q of a relative to b are given by (a,b) := {zx € L : x Aa < b} and {(a,b)q :=
{e el :xVa>b}

Several authors have studied annihilators in distributive lattices: Mandelker [1],
Davey [2]; in modular lattices Davey and Nieminen [3]. In particular Mandelker
proved that L is distributive iff {a, b} is an ideal for all a, b € L.

The aim of this paper is to characterize distributive ordered sets by the so called
generalized annihilators.

Let S be an ordered set, X C S. An upper (lower) cone of X in S is the set
UX)={zreS:z>aforeachae S}, (L(X)={xe€S:z>a foreach ac¢€
X1).

J. Rachinek in [4] introduced and studied distributive and ordered sets: an
ordered set S is

distributive if Y a,b,c € S : L(U(a,b),¢) = L(U(L(a, ), L(b, ¢))).

Definition 1. Let S be an ordered set, A C S, B C S. A double generalized
annihilator (d-annihilator) in S is the set defined by

(A,BY ={x € S:UL(A,z) DU(B)}, and, dually, a double generalized
dual annihilator (dual d-annihilator) in S is:
(A,BYg={z€S:LU(A ») D L(B)}.

If A is a one element set, then the (dual) d-annihilator is called the (dual) anni-
hilator.
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Definition 2. Let S be an ordered set. The subset I C S is called an ideal (filter)
in S if it holds:

r,yel=LU(x,y) CI (z,yel=UL(z,y) CI).

Remark. If S is a lattice, then 7 is an ideal (filter) in S iff T is a lattice ideal
(filter).

Theorem 1. An ordered set S is distributive if and only if each annihilator in S
is an ideal in S.

Proof. (i) Let S be a distributive set, and {(a, B) be an annihilator in S. Let
z,y € {a, B). Then UL(a,z) 2 (B),

UL(a,y) D U(B).

Let z € LU(z,y). Then L(z) C LU(x,y), U(z) D U(x,y) and henceforth
UL(a,z) = UL(a,U(2)) D UL(a,U(z,y)). By the distributive law the right side

of the last inclusion is equal to
ULU(L(a,x), L(a,y)) = U(L(a,z), L(a,y)) = UL(a, ) N U L(a,y) 2 U(B),

hence UL(a,z) D U(B), and z € {a, B). Thus LU(z,y) C {a, B) and {a, B) is an
ideal.

(ii)) Let every anmihilator in S be an ideal, a,b,2 € S. Then UL(a,z) D
UL(a,2)NUL(b,x) = U(L(a,z), L(b,z)), and, analogously UL(b, z) D U(L(a, z),
L(b,x)). Hence for B = L(a,x)U L(b, z) it holds a € {x, B}, b € (¢, B). But {(z, B)
is an ideal, we have

() LU(a,b) C (z, B)

Let z € L(U(a,b),z); then z € LU(a,b) N L(z) and by (*) z € {(x, B). Therefore
UL(z,2) D U(L(a, ), L(b,z)). Moreover, x € L(x) implies L(z,#) = L(z), thus
we obtain

U(z) DU(L(a,z), L(b,2)), L(z) C LU(L(a,x), L(b,x)),
- L(U(a,b),2) C LU(L(a, ), L(b,x)).

But the converse inclusion is valid for all element from S (see [4]), proving dis-
tributivity of S. |

Corollary. An ordered set S is distributive iff each dual annihilator in S is the

filter in S.
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Example 1. Ordered sets in Fig. 1 and Fig. 2 are not distributive (see [5]), the
annihilator {a,{c}) = {b, ¢} is not an ideal.

o o o Fig. 1
a b c

d

o

o o o Fig. 2
a b c
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