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MULTIPLICATIVE STRUCTURES 
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Dedicated to the memory of Professor Milan Sekanina 

Abstract Modules over a not necessarily commutative multiplicative sup-lattice A are described 
as the Eilenberg- Moore algebras of a fairly elementary monad (_T, rjt fi) over Set with TX = A* 
which was considered before for commutative A, in particular when A is a frame. These modules 
are shown to carry a generalized metric structure, inducing another monadic functor. 
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INTRODUCTION 

For a frame A (= complete lattice with x A V J** = V * A yd Machner [4] gave 
a rather technical description of the algebras of the following monad xA = (r, 17, p) 
on Set: 

TX = Ax, (Tf)(<p)(y) = V {<P(x) \xef-ly} (f: X-> r , ^ / , v e F ) , 

rjx : X -* Ax with rjx(x) (xf) = 8XX> (Kronecker's delta), 

^x - AAX - Ax with iix(<P) (x) = V {&(<P) A <P(X) \ q> e Ax) (<P e AA*, x e X). 

However, from Joyal's and Tierney's work [3] one now has a nice characterization 
of these algebras: interpreting A as a commutative monoid (with A as multiplica
tion) over the sup-lattice (= complete lattice in which one considers V t-*e only 
structural element) A, Eilenberg— Moore algebras with respect to xA are nothing 
but modules over the monoid A, i.e. sup-lattices M which come equipped with an 
associative and unary action A ® M -* M of sup-lattices. 

* Partial support by the University Catholique de Louvain (Belgium) and by NSERC (Canada) 
is gratefully acknowledged. 
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In this short note we present this observation in the non-commutative case. 
More precisely, we show that the above monad exists for every sup-lattice A 
which comes equipped with an associative, but not necessarily commutative 
multiplication and a one-sided unit (so in particular for every quantale in the sense 
of [1], and that the algebras are the same as in the localic case described above. 
We also observe that they, cany a generalized metric structure which we discuss 
in terms of adjoint functors. 

1. SUP-LATTICES 

The category SupLat has as its objects partially ordered sets X which admit 
arbitrary suprema (in particular, one has 0 = V 0 and 1 = yX)9 and as its morphisms 
/ : X-+ Y mappings which preserve suprema. Every such morphism has a right 
adjoint/* : Y -• X, given by the formula 

/(*) ^ y 
x <: My) ' 

(or f+{y) = V{* I fix) < y})\ /* preserves all infima, so it can be interpreted as 
a morphism f° : Y°'-*"X° in SupLat with X° the sup-lattice provided with the 
partial order opposite to that one of X. (Recall that the existence of arbitrary 
suprema implies the existence of arbitrary infima.) Obviously, 

( - ) 0 : SupLat-* SupLat 

is a conttavariant isomorphism of categories, yielding a strong self-duality of the 
category SupLat. 

A bimorphism / : Xx Y *+ Z of sup-lattices satisfies the laws 

f(Vxt,» = VKxi,y\ Ax,Vyi) = VAx,y,V 
The tensor product of two sup-lattices X, Y is given by a universal bimorphism 

Xx Y -• X ® Y9 (x, y) H> x ® y, 

so that Bihom(XxF, Z) =* Hom(X(g) Y, Z). Therefore, bimorphisms can be 
always written as SiipLat-morphisms on the tensor product. 

2. M O D U L E S OVER MULTIPLICATIVE SUP-LATTICES 

A sup-lattice A is called multiplicative when it comes equipped with a miliary 
operation e : 1 -• A (i.e. an element e e A) and a binary operation 

A ® A -* At, • a ® /? ++ aj3, 

in SupLat. A left A-midule M is a sup-lattice together with an action 

A <g> M -• M9 a ® x h> ax, 
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in SupLat such that 

(otP) x = ot(Px) and ex = x (a, jS e A, x e M) 

hold. The morphisms of the category A-Mod of left ^-modules are morphisms 
f: M -+ N in SupLat such that f{ax) = af(x). A right A-module M is a left 
A*-modu!e where A* has the multiplicative structure given by e and a * /? = jSa. 
We write Mod-A for J*-Mod. 

If A with its multiplicative structure is itself a left (right resp.) A-module, then A 
is called a left (right resp.) monoid over SupLat; it is a monoid if it is both a left 
and right A-module. 

Every frame ( = locale) is a monoid when putting a/J = a A ft and e = 1; 
in fact, frames are those monoids over SupLat with e = 1 and a2 = a. (The 
Joyal —Tierney [3] proof survives dropping commutativity.) Prime examples of 
locales are the lattices of open sets of a topological space. 

More generally, quant ales in the sense of Borceux and van den Bossche [1] are, 
by definition, right monoids over SupLat with e = 1 and a2 = a. Those were 
introduced to describe, inter alia, the lattice of closed right ideals in a C*-algebra. 

For a multiplicative A, a left A-module M, and every oce M, the SupLat-
morphism a( —) : M -• M has a right adjoint, denoted by ( —)a, so 

ax < y 

x < v* 

One has a SupLat-morphism 

M° ® A -» M°, V ® « H yx, 

which provides M° with a right A-module structure: 

x < yE x < y*p 

8X < y (ocß)x <y 

x < y a(ßx) < y 
ßx < y* 

x < (yx)p 

This way one obtains a strong duality 

( - ) 0 :^-Mod-> Mod-A. 

For A commutative this gives a strong self-duality of A-Moi (which is the self-
duality of SupLat mentioned before when taking A to be the 2-element chain). 
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3. M O N A D I C I T Y O F L E F T ^ - M O D U L E S 

Theorem 1. For a left monoid A over SupLat, >4-Mod is monadic over Set. 
P roof : For every set X, Ax = Set (X, A) carries the structure of a left ,4-module, 

with (<x<p) (x) = ct(p(x) (a e Af, <p e Ax, x e X), which is simply a direct product 
of X copies of the left A-module A. It is indeed the free left A-module over X, 
since every Set-map f: X -> M into a left A-module M factors through 

nx : X -» A*, with ^Y(^) (*) = fi anc* >7x(*) (*') = 0 for x # x', 

by a unique morphism in SupLat, namely 

g:Ax-> M with g(p) = V {<?(*) Ax) \xeX} 

for all q> e A*. 
It is elementary to show that the forgetful A-Mod -> Set creates coequalizers 

of absolute pairs, so it is monadic (cf. [5]). But it is not difficult either to see directly 
how TA-algebras (M, m) correspond to left Al-modules M (here xA is the monad 
induced by A(-Mod -+ Set which may be described as in the Introduction, replac
ing A by the multiplication of A): for a left ^-module M, the Eilenberg —Moore 
structure m i s a morphism AM -> M in A-Mod with mnM = 1M , so 

m(<p) = V{<P(x) x | x e M}; 

on the other hand, given an Eilenberg - Moore structure m on a set M, A acts 
on M by 

ax = m(anM(x)). a 

Analogously one can show that Mod-A is monadic over Set when A is a right 
monoid. So one has: 

Corollary L For a commutative monoid A over SupLat, both .A-Mod and (A-Mod)op 

are monadic over Set. a 

4. T H E I N D U C E D H E Y T I N G S T R U C T U R E 

For a left monoid A and a left >4-module M and every x e M, the SupLat-
Morphism ( - ) x: y4 -> M has a right adjoint, denoted by x -> ( - ) , so 

ax -£ y 
a < *->)> 

One has a SupLat-morphism 

M ® M° -• -4°, x®yt->(x->y), 

satisfying the following laws for all x, y e M: 
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Pгoposition 1. 

(1) x < y o e < x -• y, 

(2) V (z -• y) (x -• z) = X 
zвX 

P r o o f : (1) is trivial, and it implies 

x -* y = e(x -> y) < (y -• y) (x -• y) < l.h.s. of (2). 

For the other inequality needed in (2), first observe that trivially 

(x -• z) X < z (*) 

for all x, z e M\ therefore, 

((z -• y) (x -• z)) * = (z -> >0 ((x -• z) x) < (z -> y) z < y, 

hence (z -+ y) (x -* z) < x -+ y for all x,y,ze M. a 
Passing to the induced Heyting structure causes no problems when forming 

direct products: 

Proposition 2. For families (x,);, (y;)* in the direct product ["[ Mt in A-Mod 
one has l 

(*i)i -» (ydi = A (*i -+ yd-
i 

P r o o f : Since the partial order in Y\ Mt is componentwise, we have 

a < (Xj) - (yt) 

ct(Xj) < (yt) 

V i : axf < y{ 

V i: OL < xt-+ yt 

a < A (Xi -+ yt) 
i 

However, morphisms require more detailed considerations: 

Proposition 3. For left A-modules M, N and a Set-map f: M -• 1V" one has' 
(1) x -• y < f(x) -> f(y) (x, y e M) holds if and only if f is monotone (i.e. 

x < y => /(x) < f(y)) and satisfies ctf(x) < f(ctx) (cte A, xe M). 

(2) For f monotone and onto, f(x) -• f(y) < x -+ y (x, y e M) implies /(ax) < 
^ otf(x) (<xeA,xe M). 

(3) /(ax) < ctf(x) (<x e A, x e M) implies f(x) -> /(y) < x -* >> (x, y e M) if 
and only iff reflects the order (i.e. f(x) < f(y) => x < y\ 

Proof: (1) "=>"/is monotone by Prop. 1 (1). From a < x -> ax < f(x) -»/(ax) 
one obtains a/(x) ^ /(ax). "<=" In a < f(x) -»/(ax) we may substitute a = x -» y 
to obtain with (*) 

x - y <f(x) - / ( ( x - y) x) <f(x) ^f(y) 
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since f is monotone. 
(2) We may write, for a e A and x e M given, af(x) = f(y) and have a < f(x) -> 

-*/(y) < x -+ y, hence ax < y, sof(ax) < fO) = af(x). 
(3) "=>" Reflection of the order follows from Prop. 1 (1) again. "<=" With 

a = / (x ) -+f(y) one obtains from (*) 

/ « / ( * ) - / ( y » *) * (/(*) - /(>0)/(*) £ /(yX 

hence (f(x) ->f(y)) x < y, so f(x) -+f(y) < x -• >\ a 

5. T H E M E T R I C P O I N T O F VIEW 

If, for a left monoid A over SupLat with e = 1 and for a left A-module M, 
we write 

^(x> y) = x -» y, a + /? = /?a, a -< /? o /? < a, 0 = a; 

then Prop. 1 gives 

(1) d(x, y) = 6> = d(y, x) <=> x = ^ 

(2) dfx,j)<d(x,z) + d(z,y) 

for all x, >>, z e M. 

For a partially ordered (Set-based) semigroup (S, -h, •<) (so (S9 + ) is a not 
necessarily commutative semigroup and (S, -<) is a poset with the binary + mono
tone in each variable) such that there is a bottom element 0 with 0 4- 0 = <9, we 
consider the category 

S-Met 

whose objects are pairs (M, d) with a set M and a function d: M x M -» S that 
satisfies (1) and (2), and whose morphismsf: (M, d) -* ( M \ d') are non-expanding 
maps, i.e. 

rf'(/W,/(y))-<^V,y). 

Putting (x < y o d(x, y) =. (9) defines a functor 5-Met -> PoSet (the category of 
partially ordered sets and monotone maps). 

If we denote by A* the partially ordered semigroup as described above (so A + 

is, as a semigroup, A* and, as a poset, A0) then Propositions 2 and 3 give 
immediately: 

Corollary 2. There is a faithful functor A-Mo& -* ^+-Met that preserves products 
and reflects isomorphisms. 

Next we shall point out that the functor is actually monadic. 
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6. S U M M A R Y I N T E R M S O F A D J O I N T S 

For a left monoid A over SupLat with e == 1 # 0 one has: 

Theorem 2. In the diagram 

A-Mod 

of forgetful functors, each one has a left adjoint; Ul9 U3, U4, U6, U8 are monadic 
whereas U2 -, U5 and U7 induce trivial monads. 

Proof : Denoting the left adjoint of Uv by Fi9 one has FtX the power set PX 
of the set X, F2X = X with the discrete order, and F3X the system of down-sets 
in the poset X (cf. [2]). F4 is tensoring with A9 so F4Ft gives an alternative way 
of constructing the left adjoint F6 as in Theorem 1, i.e. 

A® PX ^ Ax. 

For a poset X, the metric structure of F5X = Xis given by 

(e if x£y 
d (X> y) = JO otherwise 

(recall that 0 is the bottom element in A, i.e. the top element in A+). Since U7 = 
= U2U5 trivially has a left adjoint, we just need to show existence of F8: this can 
be derived from Corollary 2 above and Theorem 3 of [6], applied to the triangle 

IL 
А-Mod А -Met 

S e t 

(we do not have an explicit construction of F8). 
Monadicity of Ul9 U3, U4, U6, U8 is easily checked with the Beck-Pare 

criterion (cf. [5]); U2, U5 and U7 obviously induce identical monads (to have 
U5F5 = Id, one needs 1 ?- 0 in A). a 

113 



MULTIPLICATIVE STRUCTURES OVER SUP-LATTICES 

REFERENCES 

[1] F. Borceux and G. v a n d e n B o s s c h e , Quantales and their sheaves. Order 3 (1986) 61-87 . 
[2] P. Johnstone, Stone Spaces (Cambridge University Press, Cambridge, 1982). 
[3] A. Joyal and M. Tierney, An extension of the Galois theory of Grothendieck, Mem. Amer. 

Math. Soc. 51 (no. 309) (1984). 
[4] J. Machner, T-algebras of the monad L-Fuzz, Czechoslovak Math. J. 35 (110) (1985) 

515-528. 
[5] S. MacLane, Categories for the Working Mathematician (Springer-Verlag, New York-

Heidelberg-Berlin 1971). 
[6] W. Tholen, Adjungierte Dreiecke, Colimites und Kan-Erweiterungen, Math. Ann. 217 (1975) 

121-129. 

M. C. Pedicchio W. Tholen 
Dipartimento di Scienze Matematiche Department of Mathematics 
Universitd degli Studi di Trieste York University 
34100 Trieste North York, Ontario, M3J 1P3 
ITALY CANADA 

114 


		webmaster@dml.cz
	2012-05-09T20:23:32+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




