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Abstract. Two operators are described which enable to construct a quasiordering from a transitive 
ternary structure and vice versa. 
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0. I N T R O D U C T I O N 

Some authors have studied cyclically ordered sets, e.g. E. tech [4] who has 
used a cyclic order to define an orientation of a closed curve, G. Miiller [6], 
N. Megiddo [5], P. Alles [1] and others. A cyclic order is a nontrivial example 
of a relation with arity greater than 2; thus a natural question arises, which problems 
of the theory of ordered sets can be posed for cyclically ordered sets (e.g. dimension 
theory [8], completion [10], representation theory [9] a.s.o.). A great disadvantage 
of these investigations is the fact that there is no simple realisation of a ternary 
relation. This paper is an attempt to construct ternary relations from binary 
relations and vice versa with preservation of transitivity. The relationship between 
binary and ternary relations were studied in literature. So G. Birkhoff [3] posed 
the problem of a connection of a partial order and corresponding relation 
betweeness; this problem was solved by M. Altwegg [2]. M. Sekanina studied 
the relation betweeness in graphs [11]. 

1. BASIC N O T I O N S 

Let G ^ 0 be a set, n ^ 1 an integer and R an n-ary relation on G. The pair 
G -= (G, R) will be called an «-ary structure. If G = (G, R) is an w-ary structure, 
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then the set G is called a carrier of the structure G and denoted G = c(G), and 
the set R is called a relation of the structure G and denoted R = r(<7). 

Let G be an r/-ary structure, x G c(G'). We call the element x isolated, if for any 
(x t , ..., xn) G r(G) we have x ^ xf for all / = I, ..., n; otherwise it is nonisolated. 

Let G, / / b e H-ary. structures, / : c(G) -» c(H) be a mapping./ is called a homo-
morphism of G into H iff 

x,, ..., xM e c(G), (xx, ...,xn) e r(G) => ( /Ui) , ...,/(*„)> e r(ff). 

A homomorphism / of G into / / is called strong, iff it is surjective and it holds 

yi » ••• ^ yn e c(H), (yi, ..., yn) e r(H) -• there exist 

Xi ef-l(yx), ...,xnef-l(yn) with (x , , ..., xn) e r(G). 

A bijective strong homomorphism is an isomorphism. Two 77-ary structures 
G, H are called isomorphic iff there exists an isomorphism of G onto H. 

In the sequel we shall deal only with binary and ternary structures. Recall 
that a binary relation which is reflexive and transitive is a quasiordering; a binary 
structure G in which r(G) is a quasiordering is a quasiordered set. A quasiordering 
which is antisymmetric is an ordering; a binary structure G in which r(G) is an 
ordering is an ordered set. 

Let R be a ternary relation on a set G. We shall call this relation 

transitive, iff (x, y\ z) e R, (z, y, a) e R => (x, y, u) e R, 
antisymmetric, iff (x, y, z) e R, (z, y, x) e R => x --= z. 

A ternary structure G is called transitive, resp. antisymmetric, iff r(G) is transitive, 
resp. antisymmetric ternary relation. 

Let G be a ternary structure. Put 

DiG) == {(x, y, x)e (c(G))3; there exists z e c(G) With either (x,y,z)er(G) or 
(z,y,x)er(G)}, 

A(G) = r(G) u D{G). 

In the whole paper, the symbols D(G), A(G) will have just this meaning. 
Trivially, it holds 

1.1; Lemma. Let G be a ternary structure, x, y e c(G). If (x, y, x) e r(G), then 
(x,y,x)eD(G). 

Further, we prove 

1.2. Lemma. Let G be a ternary structure. If the relation r(G) is transitive, then 
A(G) is transitive. 

Proof. Let (x, y, z) e A(G), (z, y, u) e A(G). If z ^ x, z ^ u, then (x, y, z) e 
e r\G), (z, y, u) e r(G) and (x, y, u) e r(G) <=, A(G) for r(G) is transitive. If z -= x, 
then (x, y, u) e A(G); similarly for z =- u. Thus A(G) is transitive. 
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2. O P E R A T O R 3 

Let G be a ternary structure. Put 

B(G) = {((*, y, x), (z, y, z)) e D(G) x D(G); (x, y, z) e A(G)}, 
1(G) - (D(G), B(G)). 
Thus, 3(G) is a binary structure with carrier D(G). 

2.1. Lemma. Let G be a ternary structure. Then the binary structure 3(G) is 
reflexive. 

Proof. Let (x, y, x) e D(G). Then (x, y, x) e A(G), thus ((x,y, x), (x ,v, x))G 

e B(G) and B(G) = r(l(G)) is reflexive. 

2.2. Lemma. Let G be a ternary structure. Then it holds: 
(1) If G is transitive, then 1(G) is a transitive binary structure, 
(2) If r(G) = A(G) and 1(G) is transitive, then G is transitive. 
Proof. (1) Let G be transitive and (x, y, x), (z, >\ z), (?/, y, u) e D(G) = c(l(G)), 

((x, y, x). (z, y, z)) G B(G) = r(l(G)), ((z, y, z), (u, y, u)) G B(G). Then, by, definition, 
(x\ y, z) G A(G), (z, y, u) e A(G) and by 1.2. (x, y, u) e A(G). From this ((x, y, x), 
(u, y, u); G B(G) and B(G) is transitive. 

(2) Let rKG) = A(G) and 3(G) be transitive. Let x, ^ z , « e c(G), (x, y, z) e r(G), 
(z, y, u) G r(G). Then (x, y, x), (z, y, z), (u, y, u) G D(G) = c (1(G)) and ((x, y, x), 
(z, y, z)) G B(G) = r(l(G)), ((z, y, z), (u, y, u)) G B(G\ The transitivity of B(G) 
yields ((x, y, x), (u, y, u)) e B(G) which mea.is (x, y, u) G A(G) = r(G). Thus r(G) 
is transitive. 

From 2.1. and 2.2. it follows 

2.3. Theorem. L>t G be a ternary structure. Then it holds: 
(i) If G is transitive, then Q(G) is quasiordered set, 
(2) If r(G) = A(G), then G is transitive iff £(G) is a quasiordered set. 

2.4. Lemma. Let G be a ternary structure. Then it holds: 
(1) If the binary structure 1(G) is antisymmetric, then G is antisymmetric. 
(2) If r(G) = A(G) and G is antisymmetric, then 1(G) is antisymmetric. 
Proof. (1) Let 1(G) be antisymmetric and x, y, ze c(G), (x, y, z) e r(G), (z, y, x) G 

G r(G). Then (x, y, x), (z, y, z) G D(G) = c(l(G)) and ((x, y, x), (z, y, z)) G B(G) = 
= r(l(G)),((z,y, z),(x,y, x)) e B(G). The antisymmetry of B(G) gives (x, y, x) = 
= (z, y, z), thus x = z and r(G) is antisymmetric. 

(2) Let r(G) = A(G) and G be antisymmetric. Let (x, y, x), (z, y, z) G D(G) = 
= c(l(G)), ((x,y, x), (z, y, z)) G B(G) = r(l(G)), ((z, y, z), (x, y, x)) e B(G). Then 
(x, y, z) G A(G) = r(G), (z, y, x) G r(G) and antisymmetry of r(G) yields x = z. 
Thus (x, y, x) = (z, y, z) and B(G) = r(3(G)) is antisymmetric. 

From 2.3. and 2.4. we get immediately 
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2.5. Theorem. Let G be a ternary structure with the property r(G) — A(G). Then G 
is transitive and antisymmetric if and only if £(G) is an ordered set. 

3 . O P E R A T O R ST 

Let G be a binary structure. Let 0 be the least equivalence on c(G), containing 
r (G) and p be the natural projection of c(G) onto c(G)/0. Put 

E(G)) = c(G)vc(G)/0, 
F(G)) = {(JC, y, z); x,ze c<G), y e c(G)/e, (x, z) e r(G), p(x) = p(z) = y}, 
^(G) = (F(G),F(G)). 

Thus, ST(G) is a ternary structure with carrier E(G) = c(G) u c(G)/Q. 

3.1. Lemma. Let G be a binary structure. Then it holds: 
(1) IfG is reflexive, then the ternary structure F(G) satisfies r(2T(G)) = A(3~(G)), 
(2) If G contains no isolated elements and if r(3~(G)) = A(3~(G)), then G is 

reflexive. 
Proof. (1) Assume that G is reflexive and that A(3T(G)) - r(F(G)) ?- 0. Let 

m e A(ST(G)) - r(3T(G)) be any element. Then m e D(2T(G)), thus m = (x, y, x), 
where JC, y e c(2T(G)) and there exists z e c(3T(G)) with either (x, 7, z) G r(F(G)) 
or (z, j , JC) e r(^(G)); say (JC, y, z) e r($~(G)). This means x e c(G), y = p(x) and 
as r(G) is reflexive, we have (x, x) e r(G). From this it follows by definition m = 
= (JC, y, JC) e F(G) = r(F(G)), a contradiction. 

(2) Let G have no isolated elements, let r(3T(G)) = A(F(G)) and assume that G 
is not reflexive. Then there exists an element JC e c(G) with (x, x) e r(G). Denote 
p(x) = y, thus (JC, J>, JC) e F(G) = r($~(G)). As G has no isolated elements, there 
is an element z e c(G) satisfying either (JC, Z) G r(G) or (z, x) e r(G); let us say that 
(JC, Z) G r(G). Then (JC, }>, z) e F(G) = r(^(G)) and by definition it is (JC, y, JC) G 
e D(P(G)) £ ^(^(G)). Thus (JC, >>, JC) G A{P{G)) -* r(#~(G))9 a contradiction. 

3.2. Lemma. i>f G be a binary structure. Then G is transitive iff ZT(G) is 
a transitive ternary structure. 

P r o o f. 1. Let G be transitive and JC, y, z, u e c(F(G)) = E(G), (JC, y, z) e r(^(G)) = 
= F(G), (z, y, u) e F(G). Then, by definition, x, z, u e c(G\, y e c(G)/0, and it 
holds (JC, Z) G r(G), p(jc) = p(z) = y, (z, u) e r(G), p(z) = p(w) = y. As r(G) is 
transitive, we have (x, u) e r(G) and p(x) = p(u) = y. Thus (x, >>, w) e F(G) and 
F(G) = r(F(G)) is transitive. 

2. Let F(G) be transitive ternary relation on E(G) and let x j , z e c(G), (x, y) e 
e r(G), (y, z) G r(G). Then (JC, y) e 0, (y, z) e 0, so that, if we denote p(x) = u, 
we have p(y) = p(z) = 1/. By definition of the relation F(G) it is (JC, u, y) e F(G), 
0>, u, z) G F(G) and transitivity of F(G) yields (x, w, z) e F(G). This means (x, z) G 
G r(G) and r(G) is transitive. 

From 3.1. and 3.2. we get 
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3.3. Theorem. Let G be a binary structure. Then it holds: 
(1) If G is a quasiordered set, then &~(G) is a transitive ternary structure with 

the property r(3T(G)) = A(3T(G)). 
(2) If G contains no isolated elements, then G is quasiordered set iff &~(G) is 

a transitive ternary structure with the property r(3~(G)) = A(^(G)). 

3.4. Lemma. Let G be a binary structure. Then G is antisymmetric iff the ternary 
structure &~(G) is antisymmetric. 

Proof. 1. Let G be antisymmetric and let x, y, z e c(^(G)) = E(G), (x, y, z) e 
e r(f(G)) = F(G), (z, y, x) e F(G). Then x, z e c(G), p(x) = p(z) = y, (x, z) e r(G), 
(z, x) e r(G). The antisymmetry of r(G) yields x = z and thus F(G) = r(^~(G)) is 
antisymmetric. 

2. Let F(G) be antisymmetric and let x, y e c(G), (x, y) e r(G), (y, x) e r(G). 
Then (x, y)e G and if we denote p(x) = p(y) = u, we have (x, u, y) e F(G), (y, u, x) e 
e F(G). As F(G) is antisymmetric, it is x = y and thus r(G) is antisymmetric. 

From 3.3. and 3.4. we now get 

3.5. Theorem. Let G be a binary structure. Then it holds: 
(1) If G is an ordered set, then 2T(G) is a transitive and antisymmetric ternary 

structure with the property r(F(G)) = A(ST(G)),. 
(2) IfG contains no isolated elements, then G is an ordered set iff 3~(G) is a transitive 

and antisymmetric ternary structure with the property r(3T(G)) = A(3~(G)). 

4. O P E R A T O R S 2, o & A N D F o <2 

4.1. Theorem. Let G be a quasiordered set. Then the structures G and £(&~(G)) 
are isomorphic. 

Proof. By definition, it is 3T(G) = (E(G), F(G)) where E(G) =c(G) u c(G)/9, 
and 2(3T(G)) = (D(^(G)), B(F(G))). Put for any x e c(G)f(x) = (x, p(x), x). As 
(x,x)er(G), it is f(x) e F(G) = r(3T(G)) and by 1.1. f(x) e D(3T(G)). Thus, 

/ is a mapping of c(G) into D(3T(G)) = c(£(3r(G))). Let w e D(2T(G)) be any 
element. Then w = (x, y, x) e (c(&~(G)))3 = (E(G))3 and there exists an element 
z e E(G) such that either (x, y, z) e r($~(G)) = F(G) or (z, y, x) e F(G). This means 
x,zec(G), yec(G)/e, p(x) = p(z) = y and either (x,z)er(G) or (z, x) e r(G). 
But then f(x) = (x, y,x) = w and the mapping / is surjective. 

Let x,yec(G), f(x) =f(y). Then (x,p(x), x) = (y,p(y),y), thus x = y. The 
mapping / i s injective, hence a bijection of c(G) onto c(2(^(G))). Let x, ye c(G), 
(x,y) e r(G). Then (x ,y) e 0, thusp(x) = p(y) = ue c(G)/e and (x, u,y) eF(G) = 
= r(3~(G)). By 3.1. we have r(F(G)) = A(F(G)). Further, it is f(x) = (x, u, x) e 
e D(3T(G)),f(y) = (y, u, y) e D(3T(G)) and by definition we have ((x, u, x), 0 , u, y)) = 
= (/(*)> f(y)) E B(^(G)) = r(2(^(G))). T h u s / i s a bijective homomorphism of G 
onto £(f(G)). 
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Let x,ye c(G) and (f(x), f(y)) e r(<Z(^(G))) = B(<T(G)). It is, of course,f(x) = 
= (x, u, x), f(y) = (y- v, y) where u = p(x), v = p(y). By definition of the relation 
B(F(G)) it is u = t;, i.e. p(x) = p(y), and (x, w, y) e A(^(G)). By 3.1. it is ̂ (^(G)) = 
== r((^"G)) = F(G) and this implies, by definition of the relation F(G), (x, y) e r(G). 
Thus fis an isomorphism of G onto St(^(G)). 

4.2. Theorem. Le/ G be a transitive ternary structure containing no isolated 
elements and such that r(G) = A(G). Then there exists a strong homomorphism of 
3T(2(G)) onto G. 

Proof. By definition, it is -2(G) = (D(G), 5(G)), and $~(2(G)) = (F02(G)), 
F(j2(G))), where E(£(G)) = c(J(G)) u c(l(G))/e; here 6) is the least equivalence 
on c(^(G)) = D(G) containing r(<2(G)) = 5(G). 

Let u e E(£(G)). If u e c( <2(G)) = D(G), then u = (x, y, x), where x, y e c(G) and 
there exists z e c(G) with either (x, y, z) € r(G) or (z, y, x) G r(G). In this case we 
put f(u) = x. Suppose that ueD(G)/e. Then there exists meD(G) such that 
p(/w) = u where p is a natural projection of D(G) onto D(G)/0. Thus w = (x, y, x) 
where x, y "e c(G). We show that for any n = (x', y', x') e D(G) with the property 
p(n) = «we have y' = y. Indeed, p(w) = p(n) means (w, n) e 0 and thus either 
w = « or there exist a positive integer k > 1 and elements mt, ..., mke D(G) 
such that wx == w, wfc = rc and (wi9 w/ + 1) e 5(G) u (5(G))-1 for all / = 1, ..., 
. . . ,k - 1. Let (mi\mi + i)eB(G). Then wf = (*,, yf, x^, W / + 1 = (xi + t , yi + 1 , 
xi + 1)andby definition of the relation B(G) itisyf = y i + 1 . If (w/9 w/ + 1) e(B(G))_1, 
then (wi + 1 , wf) e 5(G) and we have again yt = y/ + 1 . Thus y{ = y2 = ... = yk 

and for w = wt = (xX, yX, xt) = (x, y, x), n,= wfc = (xk, yfc, xfe) = (x', y', x') 
we have y = y'. Thus, any element u e D(G)/0 determines just one element y e c(G) 
such that for some x e c(G) there is p(x, y, x) = u. We put f(u) = y. Thus, we 
have defined a mapping f: c(^"(^(G))) -> c(G)., 

Let x e c(G) be any element. As G contains no isolated elements, there are 
elements y, z e c(G) such that either (x, y, z) e r(G) or (y, x, z) e r(G) or (z, y, x) e 
e r(G). In the first and third case it is u = (x, y, x) e D(G) e E(£(G)) and by 
definition of the mapping f we have f(w) = x. In the second case it is (y, x, y) e 
e D(G), t? = p(y, x, y) e D(G)I e £ £(J(G)) and by definition we have f(v) = x. 
Thus f is a surjective mapping of c($~(MG))) onto c(G). 

Let uyv9we c(F(&(G))) =- £(J(G)) and (u, v, u>) € r(3T(£(G))) = F(J(G)). Then, 
by definition of the relation F(£(G)), there is u, w e c(J(G)) = D(G), t; e c(£(G))/0 = 
= £(<*)/* and it holds (u, w)er(£(G)) = 5(G), p(u) = p(w) = v. Asw,we D(G) 
and (u,w) e 5(G), there is u = (x, y, x), w = (z, y, z) for suitable x, y, z e c(G), 
and (x, y, z) e >4(G) -= r(G). By definition of the mapping/then f(u) = x, f(v) = y, 
f(w) =-= 2 so that (f(w), f(t>), f(n>)) e r(G). We have proved that f: c(F(2(G))) -> 
—• c(G) is a surjective homomorphism of the structure ^(M(G)) onto structure G. 

Let, at the end, x,y,ze c(G)9 (x, y, z) e r(G). If we denote (x, y, x) = u, 
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(z, j;, z) = w, then u,we D(G) = c(J(G)) and (w, H>) 6 B(G) = r(£(G)). Thus (u, H>) e 
€ 6) so that p(u) = p(w). Denote P(u) = p(w) = v\ then u,v,we E(£(G)) and 
(u, v, H>) e F(J(G)) = r(^(J(G))). At the same time, by definition of the mapping/ 
it is f(u) = x, f(v) = y, f(w) = z, i.e. u e / " *(*), i> 6 / - '(y), wef x(z). Thus the 
homomorphism/of 3~(£(G)) onto G is strong. 

In the last theorem, the structures G and ,^~(J(G)) need not be isomorphic, as 
the following example shows. 

4.3. Example. Let G = (c(G), r(G)) be a ternary structure with c(G) = {0, 1, 2} 
and r(G) = {(0, V 2), (1, 2, 0), (2, 0, 1), (0, 1, 0), (2, I, 2), (1, 2, 1), (0, 2, 0). (2, 0, 2), 
(V 0, 1)}. Evidently, G is transitive and r(G)= .4(G). Further, D(G) = {(0, 1, 0), 
(2, V 2), (1, 2, 1), (0, 2, 0), (2,0, 2), (1, 0, 1)}, B(G) = {((0, 1, 0), (2, 1, 2)), ((1, 2, 1), 
(0, 27 0)), ((2, 0, 2), (1, 0, 1)), ((0, 1,0)), (0, 1, 0)), ((2, 1, 2), (2, 1, 2)), ((1, 2, 1), 
(1, 2, 1)), ((0, 2, 0), (0, 2,0)), ((2, 0, 2), (2, 0, 2)), ((1, 0, 1), (1, 0, 1))}, and J(G) = 
= (D(G), B(G)). The least equivalence on D(G) containing B(G) has blocks B0 = 
= {(L 0, 1), (2, 0, 2)}, Bt = {(0, 1, 0), (2, V 2)}, B2 = {(0, 2, 0), (1, 2, 1)} so that 
E(£>(G)) = D(G) u {Bo, I?i, B2}, and F(J2(G)) = {((0, 1, 0), BL, (2, 1, 2)), ((1, 2, 1), 
B2, (0, 2, 0)),((2,0, 2), B0, (1, 0, 1)), ((0, 1, 0), Bx, (0, 1, 0)), ((2, 1, 2), BL, (2, 1, 2)), 
((1, 2, 1), B2, (1, 2, 1)), ((0, 2, 0,) B2, (0, 2, 0)), ((2, 0, 2), B0, (2, 0, 2)), ((1, 0,1), 
Bo, (1,0, 1))}. Thus 3T(XG)) = (F(J2(G)), F(-2(G))) and as c(G) has 3 elements, 
c(vrj(G))) = F(J(G)) has 9 elements the structures G and ^"(5(G)) cannot be 
isomorphic. If we put /((0, 1, 0)) =/((0, 2, 0)) = 0, /((I, 0, 1)) = / ( ( l , 2, 1)) = 1, 
/((2, 0, 2)) = /((2, 1, 2)) = 2, /(B0) = 0, /(B t) = 1, /(B2) = 2, then/is a strong 
homomorphism of 3T(£(G)) onto G. 

4.4. Remark. Denote Quas the category of quasiordered sets with isotonic 
mappings as morphisms and Tern the category of transitive ternary structures 
without isolated elements and such that r(G) = A(G) with obviously defined 
morphisms. For morphisms h : G -> G' (G, G') e TVrw and k : Q ->Q ' (Q, Q' e 
e Quas) define J(h)': J(G) -> .2(C) and ^(k) : 2T(Q) -* /T(g') in an expected 
way. Then & : Tern -> Quas and ̂ ~ : Quas -> Tern are covariant functors. 
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