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ON TRANSFORMATIONS OF SINGULAR 
QUADRATIC FUNCTIONALS CORRESPONDING 

TO EQUATION (py')' + qy = 0 
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Abstract. There are studied extremal properties of the singular quadratic functionals J(y) = 
b 

= J (p(t) y2 — -7(0 y2) dt. Using transformations of these functionals it is derived the so called 
a 

singularity condition and it is also shown that the main results of [2] and [3] are valid only for 
regular functionals. 
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1. INTRODUCTION 

The rise of this paper was motivated by [2] and [3] where the unified approach 
to study of extremal properties of singular quadratic functionals 

J(y) = hp(t)y'\t)-q(t)y\t)-]dt 
0 

was introduced. Here p(t)9 q(t) e C°(0, fe], p(t) > 0 and y(t) are A-admissible 
functions on [0, b~\ (see § 2 below). This approach to study of quadratic functionals 
is based on the principal result of the Boruvka's transformations theory [1] consist­
ing in the fact that each lineai differential equation of the second order on its 
whole definition interval can be globally transformed into the equation y" + y =» 0 
on a suitable interval. 

The idea to use Boruvka's theory in order to investigate quadratic functionals 
was used for the first time by Krbila [4, 5] for regular functionals, i.e. for the case 
when p(t)9 q(t) e C°[0,6] and extremal properties are studied for functions y(t) 
having the property: y(t) e C^O, 6], y(0) = 0 -= y(b). 
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The theory of singular quadratic functionals was initiated by Leighton and 
Morse [6] and developed in [7, 8]. In this case the functions /?(/), q(t) are supposed 
continuous only on the half-open interval (0, b] and also the class of admissible 
functions is larger than in the regular case. The classical sufficient conditions of the 
variational theory were found lacking for the singular problem and a condition, 
termed the "singularity condition" was discovered which together with the classical 
conditions yields necessary and sufficient condition for singular functional to be 
nonnegative. 

In the present paper we shall derive Leighton's singularity condition by other 
method than in [6] and [8], namely by transformation of investigated functionals, 
and we shall show that results of [2] and [3] hold only for regular functionals. 

2. STATEMENT OF THE PROBLEM 

Consider the functional 

JTJO I* = J WO y'2 - 4(0 y2] dl, 0 < e < b, 

e 

where /?, q e C°(0, b], p(t) > 0 on (0, b]. Following Morse and Leighton [6] we 
call the function y(t) A-admissible on [0, b] if: 

(i) JK0<-C°[O, 6], K 0 ) - 0 =y(b) 

(ii) yit) is absolutely continuous and y'2(t) is Lebesque integrable on each closed 
subinterval of (0, b]. 

We shall seek conditions under which 
b 

(1) liminf J [ p ( 0 / 2 - 4 ( 0 y 2 ] d f ^ 0 
t e+0 + e 

for each A-admissible function y(t). Note that the Euler equation of (1) is of the 
form 

(p,q) (P(t)y')' + q(t)y = 0 

and / ===0 may be the singular point of this equation. 

A Solution y0(t) of (p> q) is said to be principal at / = 0 if lim ,* = Ofor every 
t-*o v(t) 

solution v(t) of (p, q) which is linearly independent on y0(t). The principal solution 
" yb(*) at / =-= fc is defined analogously. If there exists a principal solution yo(0 of (p, q) 

at / = 0 the right conjugate points of / = 0 are defined as positive zeros of yQ(t). 
If (P> q), possesses no principal solution at / = 0, i.e. every solution of (p, q) has 
infinitely many zeros on (0, b]9 we say that / == 0 is its own conjugate point. 
Finally, we say that (p, q) is disconjugate on [0, b] if there exists no conjugate 
point of / = 0 on [0, b). 
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3. T R A N S F O R M A T I O N OF F U N C T I O N A L S 

Consider a pair of Junctionals and associated Euler equations 

J (Pit) y'2 - «(0 y2) dt, (p(t) y')' + q(t) y = 0, te(a, b) 

and 

J (p.(T) ù2 - ą(T) u2) dT, (Pl(T) йУ +qi(T)u = 0, Tє{A, B) 
A 

The transformation 

(2) y{t) = h{t)u(T), T = x(t), 

where h(t), x{t) e C\0, b), h(t) # 0, x(a) = A, x(b) = B, transforms equation (p, q) 
on (a, b) into (p., q.) on (A, B), i.e. 

Pi(T)=p(t)h\t)x'(t) 

( 3 ) «,(T) «- -4-- [*(0 (P(0 *'(0)' + «(0 *2(0]. « = X" \T). 
x(t) 

The following lemma describes the transformation (2) applied for corresponding 
functionals. 

Lemma 1. Let the transformation (2) be given. Then 

(4) / ( p ( 0 / 2 - 9(0y2)df = /( P l (T) «2 - cj-(T)«2)dT + 
a .4 

+ rf»ţ$Л0 
b 

where px(T)9 qx(T) are given by (3). 
t b 

Proof. Routine computation gives l(p(t)y'2(t) ~ q(t)y2(t)) dt = J {p(t) 
« -v O 

[h'\t)u\x(t)) + 2h'(t)h(t)uix{t))u'(x{t)) JC'(0 + h\t)» U(0)*' 2 (0] " «(0* 2(0 
t/2(x(0)} d/. Integrating the relation [p(t) h(t) h'(t) «*(at(0)]' = p(0 ft'2(0 «2(x(0) + 

+ (pit) h'(t))' h{t) u\x(t)) + 2p(t) h(t) h'(t) u(x(t)) u'(x{fj) *'{t), we have ] |>(0 *»'2(0 

u\x(t)) + 2p(t)h(t)h'(t)u(x(t))uXx(t))x'(t)]dt = p(t)HWh'W - I hit) 
a 

(p(t)h'(t)y u2(x(t)) d*v thus /iXO/V) - 9(0^(0] d/ **• *o4££-A0 ii + J1X0 
a "V*I a 

/«2(0 w'2 W0) — (h(t) (p(t) h'(t))' + q{t) h\t)) uHxity] X'{t) dr. Substituting 
x'{t) 

T — x(i) in the last integral we have the conclusion. 
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Corollary 1. Let <x(t) be a first phase function 0/(p, q) (see [1]). Then 

b <x(b) a"(i\ b 

(5) J [p(0 /\t) - q(t) y\t)-] d. = J \ii\T) - «2(T)] dT - f^- y\t) . 
a a(a) 2<X (t) a 

Proof. The statement follows immediately from Lemma 1 choosing x(t) = cc(t), 

/Ko==(ia'(oir1/2. 
Now, using Lemma 1 we shall derive principal result of [6] and [8]. 

Theorem 1. In order that (1) holds it is necessary and sufficient: 

i) (p, q) is disconjugate on [0, b). 
ii) singularity condition is satisfied, i.e. for each A-admissible function y(t) such 

that lim inf J(y) \b

e < oo it holds 
e-^O* 

liminf ( — j 
t-o+ V 

where yb(t) is a principal solution of (p, q) at t = b. 
Proof. Let (p, q) be disconjugate on [0, b) and yb(f) be a principal solution at 

/ = b. Then yb(t) ± 0 on (0, b\ yb(b) = 0, yb(b) ± 0 and the transformation (2) 
with h(t) = yb(t)9 x(t) = t gives Pl(t) = p(t) y2

b(t)9 qt(t) = yb(t) [(p(t) yf

b(t))' + 
+ 0(0 y*(0] : = : 0- According to Lemma 1 it holds 

ь ь 
' 2 / (6) J [p(0 y'\t) - q(t) y\ty] át = J Pl(t) u'\t) dť + 

e 

0 < e < b. УІІO ..2, 

Using the l'Hospital rule we get lim y2(t)/yb(t) = lim 2y(t) yf(t)/yb(t) = 0 for each 
t-+b_ *-*&_ 

^-admissible function y(t) and thus lim p(t) yb(t) y2(t)/yb(t) = 0. Then it follows 

ft b 

from (6) liminfJ[p(0/ 2(0 - q(t) y2(0] d' ^ lim inf \Pl(t) uf2(t) dt + 
e - * 0 + e e - * 0 + e 

+ lim inf \_—p(t)yb(t)y2(t)lyb(t)\ fr°m which the sufficiency of the singularity 
e->0 + 

condition follows. 

The proof of the necessity of the singularity condition is similar to that of 
Leighton [6]. Suppose that there exists a ^-admissible function y(t) for which 
lim inf J(y)\b

e < oo and lim inf [ -p(t) yb\t) y2(t)/yb(ty] = -fc2 < 0. Let ee (0,6) 
e-»0 + * - * 0 + 

and define 

v f A - ^ ^ forfe(0,e), 
M ' S»(0 fottefcb), ' 
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where yb(t) is the principal solution of (p, q) at t = b for which yb(e) = y(e). 

Then lim inf /(pf.2 ~ 9vl) d< = l i m i n f I (w' 2 " ^ d ' + I ^ 2 - tfy2*) df = 
*->0 + X 

дc->0+ * 
6 

= lim inf J O / 2 - ^ 2 ) <-' + yb(t)y'b(t)p(t) J* - J [(M) ' + «7.v»] W df = 
*-»o + * e 

= lim inf f (py'2 - ©0 df - pte) j#e) y2(e)lyb(e). As lim inf /(>>) |* is finite and 
*~o+ x 2 * ~ 0 + 

lim inf ( -p(x) y'b(x) -77-r) = _*2> t n e r e e x i s t s e e (°> bl sufficiently close to 
X-+0+ \ '/ 

t = 0 such that J(y) lo < -y- and ~$~ /*«) Ae) < ~ y *2« h e n c e •/0'.) lo < 

< - } ^ < 0 . 

4. REMARK TO RESULTS OF [2] AND [3] 

The main theorem of [2] is: 

Theorem A. Let y(t) be any A-admissible function on [0, b] and q(t) e C°(0, 6]. 
Then 

(7) lim inf J (y'\t) - q(t) y2(t)) dt^O 
e->0+ e 

if and only if the associated Euler equation y" + q(t) y = 0 is disconjugate on [0, 6). 
We shall show that this statement is valid, in general, only if q(t) e C°[0, 6]. 
Counter-example. Consider the functional 

The associated Euler equation 

(8) J= í [y'2--^тУ2)àt, 0 < C < y . 

(9) y" + -ky = ° 
At2 

possesses the linearly independent solutions y/t and yft In t, so (9) is disconjugate 
on (0^ oo)^ Nevertheless an easy computation shows that along the curve y = 
= >j2t(sj2t ~ 1) which is surely .^-admissible on [0,1/2] 

lim J(y) 
e-0 + 

1/2 j 

. = ~T 
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Note that the singularity condition is not satisfied. The principal solution of (9) 
at / = 1/2 is yb(t) = y/1 In 2t and by routine computation we get 

Hm [ - t f O t f O M t ) ] = -}^2tQ2i- tffe + - ^ ) = - 1 . 

The proof of Theorem A is based on the transformation of functional described 
in Corollary 1, where a = 0 and a(t) is a phase function y" + q(t) y = 0 for which 
lim a(/) = 0. If the Eulei equation y" + q(t) y = 0 is disconjugate on [0, b) then 
*-o+ 
«(*) 
J [w2(-0 - w2(T)] dT ^ 0 for every ^-admissible function on [0, a(fe)] but the 

o 
second term on the right-side hand of (5) equals 0 (as it is stated in [2]) only if q(t) 
is continuous also for / = 0. Indeed, when t = 0 is the singular point it can happen 

that this term is negative, particularly in our counter-example a(0 = arctg - j — -

and l i m ^ W y 2 (0= - 1 . 
t-o* 2a'(r) 

Now, we shall state the correct version of Theorem A in terminology of phase 
functions. 

Theorem 2. In order that (7) holds it is necessary and sufficient: 
i) the equation 

00) y" + q(t)y = o 

is disconjugate on [0, b) 
ii) it holds 

(11) lim s u p f - ^ + a'(0cotga(o)y2(0 g 0 
t-o* V 2a'(0 / 

for some phase function a(t) of (10) for which a(fc) = kn and for each A-admissible 
functions y(t) on [0, fc] such that 

b 

lim inf J (y'2 - q(t) y2) dt < ao. 
e-»0+ e 

Proof. Let a(/) be an arbitrary phase function of (10) such that a(b) = kn. 
Then 

y*(0 = (|«'(0ir1/2sina(0 
is the principal solution of (10) at t = b and 

• limsuij(^y2(o) = limsup(-f^-+ a'(0cotga(o)/(0-
i-»o+ \ M 0 / .-o+ \ 2a'(0 / 

The conclusion now follows from Theorem 1. 
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Remark. Let A; be a fixed integer. There exist infinitely many phase functions ot(t) 
of (10) for which a(b) = kn (see [1]) whereby all these functions are given by the 
relation 

(12) tga(0 = - ^ , 

where yb(t) is a principal solution of (10) at / = b and v(t) is any solution of (10) 
linearly independent on yb(t). We shall show that (11) does not depend on the 
choise of a(t). Differentiating (12) we get a'(0 = w0>*(0 + ^(O)"1, a" = 
= -2w(yb(t) y'b(t) + v(t) v'(t)) (y2

b(t) + v2(i)Y\ where w == y'b(t) v(t) - yb(t) v'(t) 
is the wronskian of solutions yb(t)9 v(t). Hence 

«"(0 
2a'(0 

= yb(t)y'b(t) + v(t)vf(t) + v(t)(yb(t)v(t)-yb-(t)v(t)) = y&)_ 
yl(t) + v2(t) yb(i) (y

2
b(t) + v\t)) yb(t) ' 

which was to be proved. 
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