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GEOMETRY OF LAGRANGEAN STRUCTURES. 1.

DEMETER KRUPKA
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Abstract. This paper is the first one of the series intended as a self-contained, relatively complete
exposition of differential geometry of Lagrangean structures. It develops the basic differentiation
and integration theory of differential odd forms on smooth manifolds and differential odd base
forms on smooth fibered manifolds. Except a few minor innovations it does not contain new results.

Key words. Differential form, differential odd form, differential odd base form, exterior product,
interior product, pull-back, exterior derivative, integral of differential odd form.
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A Lagrangean structure is a pair (Y, 1), where Y is a manifold endowed with the
structure of a fibered manifold over an n-dimensional base manifold X, and A
is an odd base form on some r-jet prolongation J*Y of Y (r = 0), horizontal with
respect to the projection of J'Y onto X (a lagrangian of order r for Y). Let J%
denote the r-jet prolongation of a section y of ¥, and let J"y*4 denote the pull-back
of A by J'y. Let Q be a compact, n-dimensional submanifold of X with boundary.
The variational function, or the action function, over Q, associated with (Y, 4), is
the real-valued function y — | J"y*A, defined on the set of sections of Y over Q.

2

The main concern of the theory of Lagrangean structures is to study the varia-
tional functions, restricted to prescribed subsets of the set of sections; in particular,
one is interested in their critical points and variational differential equations con-
nected with them, extrema, and symmetry properties.

The purpose of the series beginning by this paper is to explain systematically
the geometric foundations of the theory of Lagrangean structures, and of the
integral variational problems in fibered spaces associated with them. Since the
late 1960s, when the first papers on the geometric structure of this class of varia-
tional problems (of order 1) appeared, several branches of the subject have de-
veloped substantially. Our treatment reflects this development; on the other hand,
we also introduce new concepts and ideas, and give original contributions to the
theory.

Unless otherwise stated, all manifolds in this work will be real finite-dimensional,
C®-smooth, Hausdorff manifolds with countable base, and-all mappings of
manifolds will be C®-smooth.
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D. KRUPKA

1. ODD BASE FORMS

This introductory part of the work contains the elementary calculus of odd
forms on smooth manifolds (Sections 1.1—1.4) and the differentiation theory
of odd base forms on smooth fibered manifolds (Sections 1.5—1.6). We empha-
size those notions and theorems which will be utilized later in the theory of
Lagrangean structures. .

The theory of odd forms (covariant, antisymmetric pseudotensor fields) was
initiated by de Rham [2] (see also [6]), and has been completed by Bourbaki [1].
The concept of an odd base form was introduced by the author [3] as a field of
antisymmetric, covariant geometric objects on a fibered manifold which is ‘‘odd”
with respect to the base of this fibered manifold only. Our exposition follows the
work [4] where this concept is discussed in detail.

1.1. Odd scalars, odd forms. Let X be an n-dimensional manifold, FX the bundle
of frames over X. Let us consider the set of real numbers R as a vector space
endowed with the linear representation of the general linear group GL,(R)x R >
3 (4, 5) = (sgn det 4) . s € R, where sgn denotes the sign of a real number. The
fiber bundle with base X and type fiber R, associated with the principal GL,(R)-
bundle FX by means of this linear representation, is called the bundle of odd
scalars over X, and is denoted by RX. The fiber in RX over a point x € X is denoted
by R X. An equivalence class in R X whose representative is a pair (£, s) € FXX R,
is denoted by [(£, 8)], and is called an odd scalar at the point x. RX is a vector °
bundle, and dim RX = 1 + dim X.

Let p = 1 be any integer and let APT*X denote the bundle of p-forms over X.
The vector bundle RX ® APT*X is called the bundle odd p-form over X. The fiber
over a point x € X is the tensor product R, X ® A"T:X, where T. :X = (T, X)* is
the dual of tangent vector space T, X at x; the points of this fiber are called odd
p-forms at the point x. The bundle RX is also called the bundle of odd O-forms,
and an odd scalar at a point x is called an odd 0-form at x. A section of the bundle
RX ® APT*X defined on an open set ¥V < X, is called a (differential) odd p-form
on V; a section of RX defined on V is called a (differential) odd 0-form on V, or
a field of odd scalars on V.

Convention 1.1. For effective computation with differential forms and differential
odd forms we establish the following summation convention. Let E be an m-dimen-
sional vector space, (e,) its basis, (e’) the dual basis of the dual vector space E*.
Let w € APT*E be any element, p 2 1. w is uniquely expressible in the form

(1.1.1) o =ZXw;, ;e'A..Ae",

Lonrip

(summation over all sequences (iy,...,i,) such that 1 i, < ..<i,Sm),

where ;, ; € R are components of w with respect to the basis (e A ... A e'r).
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GEOMETRY OF LAGRANGEAN STRUCTURES. 1.

1 =i < ... <i, £ m, of the vector space A’PT*E.  is also uniquely expressible
in the form

(1.1.2) w= —plTw,,._,,pehA AP

(summation over all j,, ...,j, =1,2,...,m), where the system of coefficients
Wj,...jp> | £ J1s --»Jp £ m, is antisymmetric in the subscripts; this system extends
the system of components of w defined by (1.1.1) to all sequences (jy, ..., Jj,)-
We shall use both expressions (1.1.1) and (1.1.2) without explicit mentioning the
range of summation. In general, when no sign of summation appears, the standard
summation convention is applied to the repeated subscripts and superscripts.

Chart expressions. Let x € X be a point, (U, ¢), ¢ = (x%), a chart at x. We put

wo o= (Ge) - Ge) )

@(x) is an element of R X, called the odd scalar at x, associated with the chart
(U, ). Since dim R.X = 1 and $(x) # 0, ¢(x) can be taken as a basis of the
vector space R, X. Thus any odd scalar § € R, X has a unique expression of the form

(1.1.4) § = 0,6(x),

where 6, € R is the component of § with respect to (U, ¢). The correspondence
x - (p(x) is a field of odd scalars on U; we call it the field of odd scalars assoczated
with (U, ). '

Let o€ R.X ® APTYX be any odd p-form at x,p = 1. There exists a unique
(ordinary) p-form g, € APT%X such that

(1.1.5) 0= 9(x)® g,.

Writing @, = Zg,,,...;,(dx™), A ... A (dx'), we obtain a unique expression of ¢
in the form ‘
(1.1.6) 0 = 20y, iy..i;P(%) ® (dx™), A ... A (dx'7),,

where @, i,...i, € R are the components of ¢ with respect to (U, ¢).
Let (V,¥), ¥ = (3%), be some other chart at x. We easily obtain the following
transformation formulas:

(1.1.7) ¥(x) = (sgn det Doy~ (Y(x))) $(x),
(1.1.8) oy = (sgn det DYoo~ '(p(x)) 0y,
(1.1.9) oy = (sgn det Dyo ™ '(¢(x))) 2>
a a i a ip
(LLI0)  Qujs, = (580 det DY QL. 57 5 it
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D. KRUPKA

In these formulas Df denotes the derivative of a mapping f, and the derivatives
9x'/8y’ on the right in (1.1.10) are considered at the point Y(x).

Let w be an odd n-form on X (n = dim X). We say that w is positive at a point
x € X, if there exists a chart (U, ¢), ¢ = (x'), at x such that the chart expression

{1.1.11) o=F,pQdx"A...Adx"

satisfies F,(x) > 0. If w is positive at x then for any other chart (¥, ) at x F,(x) >
> 0; this follows from the transformation formula F,(x) = det Doy ~L(Y(x)).
An odd n-form on X, positive at each point, is called a volume element on X.

Theorem 1.1. On each manifold there exists a volume element.

Proof. For any chart (U, ¢), ¢ = (x%), on X, » ® dx! A ... A dx" is a volume
element on U. A volume element on X can be constructed with the help of such
volume elements by means of a partition of unity.

An element § € R, X is called a unit odd scalar at x if there exists a chart (U, ¢)
at x such that § = @(x). We shall now give conditions ensuring that the vector
bundles A’PT*X and RX ® APT*X, p = 1, be isomorphic.

Theorem 1.2. Let X be an n-dimensional manifold. The following three conditions
are equivalent

(1) X is orientable.

(2) There exists a field of unit odd scalars defined on X.

(3) For each p = 1 the vector bundles APT*X and RX ® APT*X are isomorphic
over idy, and the vector bundle RX is isomorphic to X x R over idy.

Proof. 1. If X is orientable, then there exists an atlas on X, formed by charts
(U,, ), @, = (x}), i € I, such that for any 1, x € I, det Do, * > 0. Then accord-
ing to (1.1.7), ¢, = &,, and there exists a field of unit odd scalars J, defined on X,
such that the restriction of é to U, is ¢,.

2. Let 3 be a field of unit odd scalars defined on X. For any element g € A’T7 X
we set v(9) = 6(x) ® o. Then v defines an isomorphism of the vector bundles APT*X
and RX ® APT*X over idy. The same holds for ¢ € X x R.

3. Take p = n and suppose that the vector bundles A"T*X and RX ® APT*X
are isomorphic over idy. Let v: APT*X - RX ® APT*X be an isomorphism.
Let w be a volume element on X (Theorem 1.1). Then the mapping x — v Y w(x))
is an everywhere non-zero (ordinary) n-form on X, and X must be orientable.

Let Q°(X) (resp. ©7(X)) denote the module of (ordinary) p-forms (resp. the
module of odd p-forms) over the ring of functions. Suppose that X is orientable
and choose an orientation of X, i.e. a maximal atlas (U,, @,), 1 € I, such that for
any 2, x € I, det Do,p;! > 0 on U, n U,. By the proof of Lemma 2, relation

(1.1.12) 5 =0,
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GEOMETRY OF LAGRANGEAN STRUCTURES. 1.

defines a field of unit odd scalars on X, which is said to be associated with the
given orientation. The arising mapping Q?’(X)3¢—-> 6 ® QEQ"(X) is an iso-
morphism of modules, associated with the orientation.

1.2, Odd base scalars, odd base forms. Recall the definition of the pull-back of
a vector bundle. Let E be a vector bundle with base X and projection z : E - X,
f1 Y- X a mapping of manifolds. We set f*E = {(»,2) € Y XE | f(y) = n(z)}.
Let 7, (resp. m,) be the restriction of the canonical projection ¥ x E — Y (resp.
YxE - E) to the set f*E. On f*E there exists precisely one structure of a vector
bundle with base Y and projection m, such that n, : f*E — E is a homomorphism
of vector bundles over f. f*E with this vector bundle structure is called the pull-
back of the vector bundle E with respect to f. The homomorphism =, is called
canonical. '

Let (W, y), x = (x', 2"), be a vector bundle chart on E, (U, @), ¢ = (x'), the
associated chart on X, and (¥, ¥), ¢ = (»°), a chart on Y. Suppose that f(V) = U.
Writing for simplicity y° (resp. z") instead of y° o m; (resp. z' o m,) we obtain
a vector bundle chart (z;*(V), ), » = (3°, z°), on f*E, which is called associated
with the charts (¥, ¢) and (W, x).

Let f: Y — X be a fixed mapping of manifolds. The pull-back f*RX of the
bundle of odd scalars RX is called the bundle of odd base scalars over Y. An odd
base scalar at a point y € Y is an element of the fiber in f*RX over y. A section
of f*RX, defined on an open subset ¥V < 7Y, is called a field of odd base scalars
on V, or a (differential) odd base 0-form on V.

Let p = 1 be any integer. The vector bundle f*RX ® APT*Y is called the
bundle of odd base p-forms over Y. An odd base p-form at a point y € Y is an element
of the fiber in f*RX ® APT*Y over y. A section of f*RX ® APT*Y, defined on
an open subset ¥ < Y, is called a (differential) odd base p-form on V.

Remark 1.1. If Y = X and f = idy then the notion of an odd base p-form
(p 2 0) coincides with the notion of an odd p-form.

For any p, 0 < p < dim Y, odd base p-forms defined on an open set V < ¥,
form a module over the ring of functions; if the mapping f is fixed, this module
is denoted by Q7(Y).

Chart expressions. Let f : Y — X be a mapping, x € X a point, (U, ¢) a chart
at x, @ the field of odd scalars on U, associated with (U, ¢). We set for each y €

f~1U) }
(1.2.1) f*o0) = (&, pUFO)).

Sf*@(y) is an odd base scalar at y, called the odd base scalar, associated with (U, ¢).
Any odd base scalar § at y has a unique expression of the form
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where J, € R is the component of § with respect to (U, ¢). The correspondence
y=f *rp(y) is a field of odd base scalars on the open set f~}(U) < Y; we call
it the field of odd base scalars associated with (U, ¢).

Let y ef~!(U) be any point, ¢ an odd base p-form at y, p = 1. There exists
a unique (ordinary) p-form g, € A’T,'Y such that

(1.2.3) e =r*0(») ® o,

Let (V,x), x =), be a chart at y such that f(V) < U. Writing ¢, =
= 2‘,@,,,'”_,t,y(dy‘”)y A ... A (dy°?), we obtain a unique expression of ¢ in the form
(1.24) = Z0g,pr1. o *B0) ® ("), A oo A (YD),

where 04, ,4,..0, € R are the components of ¢ with respect to (U, ¢) and (¥, y).
Let xe X be a point, (U, ¢) and (U, ¥) two charts at x, y ef~*(U) a point,

and (V, %), x =07, (V, {), { = (¥°), two charts at y. Using the expressions

(1.2.1)—(1.2.4) we easily obtain the following transformation formulas:

(1.2.5) () = (sgn det Doy~ (Y(x))) f*6(»),

(1.2.6) 8y = (sgn det Dy~ '(p(x))) 5,

(1.2.7) oy = (sgn det DYoo~ (p(x))) e¢,

(1.28) O, tomsmy = 5B det Do~ o). 2L D7
6 Y1 oy'r

In (1.2.8), the derivatives 0y°/0y" are considered at the point {(y).

1.3. Differentiation of odd forms and odd base forms. Let y,, x, be two n-dimen-
sional manifolds, ¢ : X; — X, a local difftomorphism. If { = ({,, ..., {,) is a frame
at a point x € X, then by definition of a local difftomorphism, Ta{ = (T«{,, ...,

., Tal,) is a frame at a(x) € X,. a induces a homomorphism of vector bundles
Ra : RX, = RX, over o by the formula

(1.3.1) Ra([(¢, 9] = [(TaL, 5)].

Ru is obviously a linear isomorphism on each fiber in RX,; its restriction to the
fiber R X, is denoted by R.a. We have

(1.3.2) ' Ridy = idgy, R(Boa) = RBo Ra

for any n-dimensional manifold X, and for any two local diffeomorphisms of
n-dimensional manifolds «, § such that g o a is defined.
Let 6 be a field of odd scalars on X,. We put for each x e X

(1.3.3) a*s(x) = (R0)~! 8(a(x)).

a*§.is a field of odd scalars on X,, called the pull-back of & with respect to a.
Analogously, let p = 1, and let ¢ be an odd p-form on X,. We put for each xe X
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GEOMETRY OF LAGRANGEAN STRUCTURES. 1.

and ¢, ..., ¢, e T, X,
(1.3.4) @*e) (%) (€1, -5 &p) = (Re) ™! 0((x)) (Tedy, ..., TaL,).

a*p is an odd p-form on X, called the pull-back of ¢ with respect to a.

We shall now generalize the concept of the pull-back to odd base forms. Let Y,
(resp. Y,) be a fibered manifold with base X, (resp. X,) and projection x, (resp. «,).
By a homomorphism of fibered manifolds Y,, Y, we shall mean a mapping
o:V-—>Y,, where V= Y, is an open set, such that there exists a mapping
®o : (V) = X, satisfying
(1.3.5) M, 00 = 0y O Ty.

Obviously, in this case n;(¥) < X] is open, and a, is unique; we call it the projection
of a. Unless otherwise mentioned, we take for simplicity ¥ = Y,. Suppose, more-
over, that o, is a local diffeomorphism. Then « induces a homomorphism of vector
bundles, again denoted by Ra : n{RX,; — n3RX,, by the formula

(1.3.6) Ra(y, 8) = (a(y), Rao(5)).

Ra is a linear isomorphism on each fiber, and its projection is «; its restriction
to the fiber over a point y € Y, is denoted by R,x. We have

(1.3.7) Ridy = id 43x, R(Boax)= RBo Ra

for any fibered manifold Y with base X and projection =, and for any two homo-
morphisms a, f of fibered manifolds whose projections are local diffecomorphisms,
such that f o « is defined.

Let 6 be a field of odd base scalars on Y,. We set for each y e Y,

(1.3.8) a*3(y) = (Ry)™" (x(»)).

a*d is a field of odd base scalars on Y, called the pull-back of the field of odd
base scalars & with respect to the homomorphism «. Analogously, let p = 1,
and let ¢ be an odd base p-form on Y,. We set foreachy e Y, and ¢4, ..., {, e T, Y,

(13'9) “*Q(}’) (cl’ et ép) = (Rya)—l Q(a(y)) (Taél’ sees Tafp)‘

a*e is an odd base p-form on Y, called the pull-back of the odd base p-form ¢
with respect to a.

Remark 1.2. If Y, = X, n; = idy,, Y, = X, m, = idy,, then the pull-back
of the corresponding odd base p-forms coincides with the pull-back of odd p-forms.
Let Y be a fibered manifold with base X and projection =, let y : X — Y be its
section, i.e., w0y = idy. y can be viewed as a homomorphism of the fibered
manifold X with base X and projection idy into Y, whose projection is idy; that
is, the pull-back of an odd base p-form on Y with respect to y has sense, and is

an odd form on X. # can also be viewed as a homomorphism of fibered manifolds
e
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whose projection is idy; in this case the pull-back of an odd p-form on X with
respect to =« is an odd base p-form on Y.

Remark 1.3. For o = n and é = §, definition (1.3.8) reduces to (1.2.1) (see
Remark 1).

Chart expressions. Let ye Y; be a point, x = m,(y), and let (U,, @) (resp.
(U,, ¢,)) be a chart at x (resp. %o(x)) such that ay(U;) = U,. Let § be a field of
odd base scalars on Y,. Suppose that

(1.3.10) 8 = 6om30,

with réspect to (U,, ¢,). a*8(y) is a unique odd base scalar at y such that
R,o:oc*é(y) = §(a(y)). Since for any odd base scalar o € n}'RX paty

(1.3.11) Ry“” = (sgn det D 0007 '(91(x))) 00720 2(x(»)),

where

(1.3.12) o = 6om1$1(9),

we have

(1.3.13) a*8(y) = (sgn det D@5 @5 (@2x0(x))) Som1@; (x(3)).
Let p 2 1, and let ¢ be an odd base p-form on Y,. Let

(1.3.14) 0 =10, Q ¢,

with respect to (U, ¢,). Then

(1.3.15) a*g = a*13pz ® a*e,,

where a*g,, is the pull-back of (ordinary) p-form.
The mapping Q°(Y,;) 3 ¢ = a*g € Q?(Y,) has the following elementary proper-
ties. For any 94, 02 € Q?(Y,) and any function F: Y, » R,

(1.3.16) a*(ey + 0;) = a*ey + a*e,, a*(Fo,) = (Fo a)a*g,.

Moreover, if 1 Y — Y;is a homomorphism of fibered manifolds whose projection
is a local diffeomorphism, then for any g € Q?(Y,)

(1.3.17) a*B*e = (B o a) *o.

Let Y be a fibered manifold with base X and projection #, p = 1, ¢ a vector
field on Y. We put for each ye Y and &, ..., ¢, € T, Y

(1.3.18) () ) €15 oes Epm1) = 00) G5 15 oves Epi)-
iz0 is an odd base (p — 1)-form on Y, called the inner product of ¢ and ¢.

Chart expressions. If g is expressed by
(1.3.19) e =1*¢® o,
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GEOMETRY OF LAGRANGEAN STRUCTURES. 1.

with respect to a chart (U, ¢) on X, then i, is expressed by
(1.3.20) i = 1*¢ ® iz,
where iz0, is the inner product of the (ordinary) p-form g, and ¢&.

For any g e Q?(Y), any two vector fields ¢,, &2 and two functions f,,f, on Y,
(1.3.21) i+ a00 = J1 i + fo . ige,
ihiCzQ = _ihiéxg'

If Y, (resp. Y,) is a fibered manifold with base X, (resp. X,) and projection 7,
(resp. m,) and a: Y, - Y, is a homomorphism of fibered manifolds whose
projection is a local diffeomorphism, then for any ¢ e Qr(y ,) and any =-related
vector fields &, {

(1.3.22) a*igo = ia*g.

Letge ﬁ”(Y) be an odd base form. There exists a unique odd base form dg e
€ QP*1(Y) such that for each chart (U, ¢) on X

(1.3.23) do = 7*¢ ® do,,

where g, is defined by the chart expression (1.3.19), and dg,, is the exterior derivative
of the (ordinary) p-form g,. dg is called the exterior derivative of the odd base
p-form g.

The mapping ¢ — dg is R-linear and by definition, for each g (1.3.23), d(dg) = 0.
If «: Y, » Y, is a homomorphism of fibered manifolds whose projection is
a local diffeomorphism, then for any g e £°(Y,),

(1.3.24) a* do = da*g.

Let Y be a fibered manifold. An odd base form g € £°(Y) is called closed, if
do = 0. ¢ is called exact if there exists an odd base form n e 9r-1(Y) such that
o = dn. Each exact odd base form is closed; as in the case of ordinary forms, the
converse is also valid locally (the Poincaré lemma).

Theorem 1.3, Let p = 1 be an integer, ¢ € $°(Y) a closed odd base form. Then
each point y € Y has a neighbourhood V such that there exists an odd base form

n € QP~X(V) for Yhich ¢ = dy. .
Proof. This follows from the Poincaré lemma for (ordinary) forms.

Let Y be a fibered manifold with base X and projection n. A vector field £ on ¥
is called n-projectable, if there exists a vector field £ on X such that

(1.3.25) TnE =¢om.

If & exists, it is unique, and is called the n-projection of E. Z is called m-vertical,
if it is m-projectable and its n-projection is the zero vector field.
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Let Z be a n-projectable vector field on Y, ¢ its n-projection, af (resp. «f) the
local one-parameter group of = (resp. &). Then for any ¢t € R, ’

(1.3.26) nooar =atom,

on the domain of definition of af; «f is therefore a homomorphism of fibered
manifolds.

Let g€ ﬁ”(Y), let y € Y be a point. There exists a neighbourhood ¥V of y and
& > 0 such that for each 7 € (—s¢, ¢), o is defined on V. Thus of *¢ is defined, and
is an odd base p-form on V. The curve ¢ — (af*o(»)) lies in the fiber over y in
n*RX ® APT*X; hence the derivative of this curve at a point belongs to the same
fiber. We set

(1.3.27) dz0(y) = {% af*e(y)}o,

-(the derivative considered at ¢ = 0). The mapping y — dz0(y) is an odd base
p-form on Y, called the Lie derivative of the odd base p-form ¢ with respect to the
n-projectable vector field =.

Remark 1.4. The Lie derivative of an odd base p-form with respect to a vector
field which is not n-projectable, is not defined.

Chart expressions. Let (U, ¢) be a chart on X such that of is defined on U for
.all sufficiently small z. Then sgn det Dpa,¢~! = 1 and by (1.1.3) and (1.3.15),
af*o = n*$ ® o; *o,. This shows that
.(1.3.28) 0:0 = n*p ® 0z0,,
where 030, is the Lie derivative of (ordinary) p-form g, with respect to Z.

Let g € Q°(Y), a, b € R, and let = and @ be two n-projectable vector fields on Y.
‘Then the following formulas easily follow from the analogous ones for (ordinary)
forms:

(1.3.29) 0z0 = iz dg + dige,
/(1.3.30) 0g dg = d dz0,
(1.3.31) 615+b89 = aaEQ + b 69Q.

‘Obviously, the mapping ¢ = 0gp is R-linear.
Let w e Q7(Y), g e $4(Y). For each ye Y and ¢, ..., $prq€ T, Y we put

(1.3.32) wne(y) (&, ..., 5‘,.,1) =
1
= Z;!—q—!—sgn 0. O() Eac1)s ++» Eaip) €0) Eup1)> o5 Eatpra))s
(1.3.33) QNGO s eoes &) =
=2

p! q! sgn g. Q)(y) (6‘(P+1)’ Tt EG(P"‘G)) Q(y) (cd(l)’ sevy ig(q))
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(summation over all permutations ¢ of the set {1,2,...,p + q}). @ A @ (resp.
2 A w)is an odd base (p + gq)-form on Y, called the exterior product of the p-form w
and odd base g-form g (resp. odd base g-form ¢ and p-form w).

Chart expressions. If (U, @) is a chart on X and g is expressed by (1.3.19), then

{1.3.34) wAg = ﬂ*g’&@(w/\gw), eA® = n*¢®(0¢Aw)
with respect to (U, ¢).

The mapping (@, @) = @ A g is bilinear over the ring of functions. Moreover,

(1.3.35) wAg= (=19 Ao,

(1.3.36) MAWYAe=nA(wAQ),

where n € Q(Y) is any element. If £ is a n-projectable vector field on Y, we have
(1.3.37) is(wAg) =izwAg+ (=1)?wAig,

{1.3.38) Oz(w A g) = 0:0 Ao + @ A ds0.

Finally,

(1.3.39) a*(w A @) = a*w A a*g

for any homomorphism of fibered manifolds « : Y’ — ¥ whose projection is
a local diffeomorphism.

1.4. Integration of odd forms. In this section we develop the integration theory
of continuous odd n-forms on compact n-dimensional manifolds with boundary;
within this theory, the integration domains need not be orientable.

Let X be a compact n-dimensional manifold with boundary dX, ¢ a continuous
odd n-form on X. Suppose that there exists a chart (U, ¢), ¢ = (x%), on X such
that the support of g satisfies supp ¢ = U. Let g be expressed by

(1.4.1) o= .0 ®@dx' A...AdX"
with respect to (U, ¢). We define the integral of ¢ on X by
(1.4.2) J];e ={fo !,

where the integral on the right is the standard Lebesgue integral on R". Using the
change of variables rule and the transformation formula for the components of
an odd n-form one can easily verify that the number (1.4.2) is independent of the
<hoice of (U, ¢). Let now @ be an arbitrary continuous odd n-form on X, (U;, ¢)),
i=1,2,..., N, a finite system of charts such that X = u U, and (x;) a partition
of unity, subordinate to the covering (U,) of X. We define the integral of ¢ on X by

(1.4.3) fe=Y [xe
X i X

where each of the summands on the right is given by (1.4.2).
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Theorem 1.4. Let o : X > Y be a diffeomorphism of compact n-dimensional
manifolds with boundary, @ a continuous odd n-form on Y. Then

(1.4.9) fo=Ja*e.
Yy x

Proof. 1. Suppose first that supp ¢ = V, where (V, ), ¥ = (3%), is a chart
on Y. Then (U, ¢), ¢ = (x’), where ¢ = ya and U = y~(¥), is a chart on X.
If ¢ has an expression g =f.y ® dy' A ... Ady”", then a*e = (foa).$ ®
® dx' A ... dx", and (1.4.2) gives (1.4.4).

2. Let (V;, ¥,) be a finite system of charts on Y such that UV, = Y, and let (x,)
be a partition of unity, subordinate to the covering (¥;) of Y. Then (U,, ¢)),
where U; = a™}(V)), ¢, = y,a, is a system of charts on X such that (U;) is a cover-
ing of X, and (x,«) is a partition of unity subordinate to this covering. Since
(1) . a*0 = a*(x;0), we get from the definition
(1.4.5) Aj:a*e =2 [a*(ue)

i X

and apply the first part of the proof to each summand on the right.

Let 7 R be an open interval. A one-parameter system (g,), tel, of odd
n-forms, defined on an n-dimensional manifold with boundary X, is called
differentiable, if there exists a volume element w on X (see Sec. 1.1) such that the
function (¢, x) = f(t, x), defined by the formula

(1.4.6) 2(x) = f(t, x) . w(x),
is differentiable. If (¢,) is differentiable, we set

d of
(1.4.7) WQ‘-—-—é-t—.w.

(de,/d?) is a one-parameter system of odd n-forms on X, , called the derivative of (¢.)
(with respect to the parameter).

Theorem 1.5. Let (¢,) be a differentiable system of odd n-forms on a compact
n-dimensional manifold X. Then the function t — | o, is differentiable, and
x

d d
1.4.8 S D I
(1.48) : aJoe=]ge
Proof. Let us apply the definition (1.4.3) to any element g, of the system (€;)
We get :
(1.4.9)

)!Qt='zi[x&t-

:’Vrltqu, =/ Fi.$,® dx! A ... A dx} with respect to (U, 9)), @; = (xf), where
= 7" Pi®dxf A ... A dx? is some volume element. Then
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(1.4.10) IXiQt = [ noi Yoo Fo

Since the mapping (¢, x) — x,0; '(x) . fi07 (x') . Fip; 1(x') is differentiable, the
function ¢t — fx;e. is also differentiable, and by the classical Leibniz rule

-1 g - d
(1.4.11) '&T;J&Qr= § 10 —d—,—ﬁfp.- "Foit= ’I(xiﬁe,-

By (1.4.9), t = | ¢, is differentiable, and we get (1.4.8).
X

Let ¢ be an odd (n — 1)-form on X, x,€ X a point, and (U, ¢), ¢ = (x"),
a chart at xo. That is, the set ¢(U) is open in R{_, = {y € R"| y*(y) < 0}, where
y', ..., y" are the canonical coordinates on R", and the set p(6X N U) is given by
the equation x'(x) = 0. Denote for each i

(1.4.12) o, = (=1 dxt Ao Adx T AdXITE A L A dX
Then
(1.4.13) 0=0®0 0, =2ZIffn,

with respect to (U, ¢). Denote by (Upx, @ox) the chart on dX induced by (U, ¢).
We define

(1.4.14) [ |ax = a |ax ® Q'P 'ax =_f1 |6x . (Bax ® dxz A... A dx",

where g, |,x means the restriction of the (ordinary) (n — 1)-form g, to X n
N U. g |sx is an odd (n — 1)-form on 0X n U. It is easily seen that there exists
a unique odd (n — 1)-form g [5x on 0X whose restriction to X n U is given by
(1.4. 14), for any (U, ¢). Let (¥, ¥), ¥ = (3%), be another chart at x,, and write
¢ =¥ ® Zg,, where n, = (=1)*"1.dy" A... Ady*" P Adyr*! A ... A dy"Then
f'=|det Dyo~1|.(0x'/0y’) . g’. Since by deﬁnition, x! =0 =x10,5 ...,
on X n Un V¥ and the function y' - x'(y', y3, ..., y5), where (5, ..., o) =
= Y(x,), is increasing, we have | dy'/ox" | . (dx'/dy') = sgn(dy'/dx') = 1, and

(1.4.5) S lox = | det DYpxp5x | . 8" lox

on X n U n V. This formula assures us the existence of g |;x. We call ¢ [5x the
restriction of g to the boundary dX of X, and denote it simply by g.

Remark 1.5. Analogous construction of the restriction can be given for any
orientable (n — 1)-dimensional submanifold of X and (ordinary) forms. This cons-
truction fails, however, for non-orientable submanifolds.

The following is the Stokes’ theorem on integration of exact odd forms on
compact manifolds with boundary.

Theorem 1.6. Let X be a compact n-dimensional manifold with boundary, and ¢
a differentiable odd (n — 1)-form on X. Then
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(1.4.16) | fdo=fe
X 0x

Proof. Let (U}, ¢,), ¢; = (x*), be a finite system of charts on X such that X ==
= VU,, (x) a partition of unity subordinate to the covering (U) of X. It is
sufficient to show that for each i,

(1.4.17) fd(xe) = § xe.
X oxX

We distinguish two cases.
(@) U;n X = 0. Then [ y,0 = 0. Writing x;¢ in the form
ax

(1.4.18) 20 = $:® Iffw, ,,
we get d(x;,0) = @, ® Z(9f7/0xF).dx]} A ... A dx]. Hence by the Fubini theorem,
af’
(1.4.19) Jde) =2 -
X

since each of the functions f? has a compact support.
() U;n X # 0. We get as above

(1.4.20) [ =2§ L~ o

-1’

since each of the functions f7, p # 1, has a compact support, and we integrate
over (— o0, 0). We get for the remaining integral in (1.4.20)

(1.4.21) jff‘_-f iYL

S -w=w X}

a
=J.. j' S0, x7, ..., xDdx? ...dx} = [ xe
-0 ) (2.4

as required.

Remark 1.6. Let X be a compact orientable n-dimensional manifold with bound-
ary, J a field of unit odd scalars on X. Let @ be a continuous (ordinary) n-form
on X. We define the integral of w on X by

(1.4.22) fo=[® o
X x .

This integral obviously depends on the orientation of X. By means of (1.4.22),
Theorems 1.4—1.6 are easily reformulated for this case.
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