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HOPF BIFURCATION IN SYMMETRIC SYSTEMS 

A. VANDERBAUWHEDE 
(Received November 14, 1984) 

Abstract. In this paper we show on some simple examples how Hopf bifurcation can be 
handled for symmetric systems, whose symmetries prevent some of the hypotheses of Hopf's 
theorem to be satisfied. Our examples involve rotational symmetries, which force the eigenvalues 
to be non-simple, and time-reversibility, which forces the eigenvalues to stay on the imaginary 
axis, so that the transversality condition is not satisfied. After a brief treatment of the classical 
Hopf bifurcation we show in part I how a heuristic approach gives branches of circular and 
collinear solutions. In part II we use an equivariant Liapunov—Schmidt reduction to study the 
full bifurcation problem, which is 4-dimensional and has an 0(2) x SO(2) or an 0(2) x 0(2)-equi-
variance. By bringing the bifurcation equations in a normal form we show that generically only 
circular and collinear solutions bifurcate. If the system is also time-reversible, then some other 
bifurcations may arise. 

Key words. Hopf bifurcation, symmetry, circular solutions, collinear solutions, time-reversi­
bility. 

MS Classification. 58 F 14, 34 C 25. 

I N T R O D U C T I O N 

The aim of this paper is to illustrate on a few simple examples how periodic 
solutions can bifurcate from equilibria in symmetric systems. For systems which 
do not exhibit any particular symmetry one has the classical Hopf bifurcation 
theorem; it describes how a periodic orbit bifurcates from an equilibrium when 
a pair of simple complex conjugate eigenvalues of the linearization at the equilibrium 
cross the imaginary axis under a parameter change. This result will in general no 
longer be applicable for symmetric systems: in many cases the symmetries will 
force the eigenvalues to have higher multiplicities, or to stay on the imaginary 
axis. The examples discussed in this paper will indicate how Hopf's theorem can 
be modified for such cases. The particular symmetries which we will consider are 
rotational symmetries in the plane (0(2) or SO(2)), and time-reversibility; our 
examples will be second order equations in one and two dimensions. The set-up 
has been chosen so as to keep the technicalities as low-level as possible. This 
enables us to give a more or less selfcontained treatment which emphasizes the 
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main ideas behind the approach, thus serving the more didactical purpose of this 
paper. For more general and complete treatments one can consult e.g. the papers 
[2, 7, 8]. 

The paper consists of two parts. In part I we start by showing how one proves 
the Hopf bifurcation theorem via a Liapunov—Schmidt reduction. Although this 
theory can be found at numerous places we repeat it here because the approach 
will be used as a guideline for the more difficult examples which we will encounter 
further on. Then we will introduce time-reversibility and rotational symmetries 
and obtain some partial results for systems with such symmetries. In part II we 
will then derive the bifurcation equations which determine the complete bifurca­
tion picture, and use the symmetries of these bifurcation equations to discuss their 
solution set. 

The presentation as given in this paper grew out of some lectures given at the 
Summer School on Dynamical Systems, held in Rackova Dolina (Czechoslovakia) 
in June 1984. The author wants to thank the Organizers, and in particular Professor 
P. Brunovsky and Professor J. Vosmansky, for giving him the opportunity to 
attend this stimulating meeting. He also wants to thank S. Van Gils (Amsterdam) 
for a number of discussions which have influenced part of the results presented 
in this paper. 

PART I 

1. HOPF B I F U R C A T I O N 

We start by showing on a simple scalar equation how one obtains Hopf bifur­
cation using a Liapunov—Schmidt reduction; the main point is that this approach 
leads to a two-dimensional bifurcation equation having an 5O(2)-symmetry. 

We consider the equation 

(1.1) x + g(x, x, X) x +f(x> x, X) x = 0, 

where x e J?, X e R is a parameter, while / and g are smooth functions of their 
arguments such that 
(1.2) /(Q,0,0)-=1, s(0,0,0) = 0. 

We can write (1.1) as a first order system, and linearize at the equilibrium x = 0; 
this gives us 

°'3 ) \i2)
 = (-/(0, 0, X) -g(0, 0, X))\xJ = A(X)\xJ' 

The eigenvalues of A(X) are given by the quadratic equation 

(1.4) p2+g(0,0,X)»+f(0,0,X) = 0; 
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from (1.2) it follows that for X sufficiently small this gives 

(1.5) fi = - y g(0, 0, X) ± i[f(09 0, X) - 1 g2(0, 0, A)]1/2. 

For X = 0 the equation (1.3) becomes a harmonic oscillator; all its solutions are 
27r-periodic, corresponding to the fact that the eigenvalues of A(0)' are purely 
imaginary. When we assume that 

(1.6) | | . (0,0, 0 ) * 0 

then we see from (1.5) that the eigenvalues cross the imaginary axis at X = 0 in 
a transversal way. This also implies that the equilibrium loses its stability as X 
crosses 0 (either from negative to positive, or vice versa). Further on we will refer 
to (1.6) as the transversality condition. 

The problem which we want to consider now is that of describing, for all X 
near 0, all small periodic solutions of (1.1) with a period near In. Although the 
stability properties of such bifurcating periodic solutions play an important role 
in the analysis, we will not pursue that point here, and restrict ourselves to the 
existence problem. 

First we remark that, for each a > 0, x(t) is a 27r/cr-periodic solution of (1.1) if 
and only if x(t) = x(t/a) is a 27c-periodic solution of 
(1.7) <r2x + <rg(x9 ax, X) x +f(x, ax, X) x = 0. 

So we want to determine all small 2^-periodic solutions of (1.7), for all (X, a) 
near (0, 1). This formulation allows us to rewrite the problem in the form of a non­
linear operator equation, as follows. 

Let Z = C%n(R) be the space of all continuous, 27c-periodic functions z \ R -> if, 
and X = Cln(R) the subspace of all x e Z which are of class C2; both Z and X are 
Banach spaces when equipped respectively with the C° and the C2-supremum 
norm. Now define M : X x R2 -• Z by 

(1.8) 
M(x9 X, a) (t) = a2x(t) + ag(x(t)9 ax(t)9 X) x(t) + f(x(t)9 ax(t)9 X) x(t)9 V t e R. 

Then our problem is that of solving 
(1.9) M(x9X9a) = 0 

for (JC, X, a) e Xx R2 near (0, 0, 1). This formulation also makes precise what we 
mean by „small periodic solutions": the smallness has to be interpreted in the 
sense of the Cf^lO-norm. 

Before we attempt to solve (1.9), let us first write down some of the properties 
of the mapping M. 
(Ml) 3/(0, X9 a) = 0 for all (X9 a); also M is smooth. 
(M2) If we define L e &(Xy Z) by L := DxM(0,0,1), then L is explicitly given by 
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(Lx) (t) = 5c(t) + x(t), and U := N(L) is two-dimensional, spanned by the functi­
ons ut(t) = y/ 2 cos t and u2(t) = v ' 2 sin f. It will appear further on that it is con­
venient to use complex notations; therefore we denote by Zc = C^n(C) the comple-
xification of Z, and introduce in Zc an inner product given by: 

(1.10) <M , t ,>:=J-. {u(t)v(t)dt, Vu,vzZc. 

In 0 

If we let C(r) = ux(t) + iu2(t) = y/~2elt, then we can define P e S£(Z) by 

(1.11) Pz := 0te «C, z} £), Vz e Z. 
It is easy to verify that P is a continuous projection in Z, with R(P) = N(L) = £7 
and N(P) = JR(L). So we have the splittings 
(i.i2) z = R(P) e -V(P), x = c/ e V, 
with V:=N(P)nX 
(M3) For each <p e I? we can define a sh(/7 operator S+(q>) e J2?(Z) by 

(1.13) (5+(^)z)(/):=z(/ + (p), V/etf, VzeZ. 

Since 5+(2^) = Iz it follows that {5+(^) \ <p e R} forms a group, isomorphic to 
the rotation group 50(2); moreover, it is easily checked from the definitions that 
(1.14) M(S+(<p) x, X, o) = S+(<p) M(x, X, o), V(? e R; 

i.e. M is SO(2)-equivariant. This equivariance is a translation of the fact that (1.1) 
is autonomous. The reason for the +-index in S+(q>) will become clear in the next 
section. Finally we remark that also the projection P is -S'(9(2)-equivariant: 
(1.15) PS+(<p) = S+(<p)P, V^6«. 

Using the properties (Ml)—(M3) we can now perform an equivariant Liapu-
nov—Schmidt reduction on (1.9). We write xeX as x = Px + (I — P)x=: 
= : M + v, with ue U and DGK, and split the equation (1.9) accordingly. This 
gives: 
(1.16a) (/ — P) M(u + v, X, o) = 0 

(1.16b) PM(u + v, X, <T) = 0. 

Using the implicit function theorem we can, for (u + vr X, o) near (0, 0,1), solve 
(1.16a) for v = v*(u, X, o). The mapping v* : UxR2 -• Vis smooth near (0, 0, 1), 
and has the following properties: 

(i) v*(0, X, o) = 0, VA, o; 
(ii) Duv*(0, 0,1) = 0; 

(iii) v*(S+(<p) u, X, o) = S+(<p) v*(u, X, o), VcpeR; 

the equivariance property (iii) follows from (M3) and the uniqueness of v*(u, X, o) 
as given by the implicit function theorem. 

Bringing the solution of (1.16a) into (1.16b) gives the bifurcation equation: 
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(1.17) G(u, X, <r) : = PM(u + v*(u, X, <r), X, <r) = 0. 

The bifurcation mapping G : UxR2 -+ U has properties similar to those of v*: 

(i) G(0, X, <T) = 0, VA, <T; 

(1.18) (ii) DuG(0, 0, 1) = 0; 
(iii) G(S+(<p) u, X, a) = S+(<p) G(u, X, a), V<peR. 

In particular the 5'O(2)-equivariance (1.18.iii) of G will be important for the further 
analysis. To exploite this equivariance we will use complex coordinates in U, as 
follows. 

We identify U with the complex plane C, considered as a real vectorspace, via 
the linear isomorphism: 

(1.19) x • C -> U, z 4-> X(z) := ^e (z£). 

This brings the bifurcation equation (1.17) in the form 

(1.20) F(z, X, a) : = x~
 1G(xb), ^ °) = <>; 

that is, F: C x R2 -> C is given by 

(1.21) F(z, X, a) = <f, M(x(z) + v*(X(z), X, a), X, <r)>. 

Now S+(<p) C = ei<pC; therefore 

(1.22) (z~xS+(9)A(z) - *i(pz> VcpeR, VzeC, 

and the equivariance of the bifurcation mapping takes the form 

(1.23) F(ei<pz, X, <T) = ei(pF(z, X, a), V<peR. 

The next lemma describes a general form for mappings F satisfying (1.23). We 
remark again that we consider C as a real vectorspace, and the smoothness refered 
to in the lemma corresponds to smoothness for mappings between real vectorspaces. 

Lemma. Let A be a Banach space, and F : CxA -*> C a smooth mapping such 
that 
(1.24) F(ei<pz, X) = ei(pF(z, X) Vcp e R. 

Then there exists a unique smooth mapping h : C x A -+ C such that 

(1.25) i F(z, X) = h(z, X) z, Vz,A;* 
moreover: 

(i) h(ei<pz, X) = h(z, X), V<peR; 
(ii) if F(2, X) = F(z, X) then h(z, X) is real-valued. 

Proof. The lemma follows from a somewhat stronger result which we will prove 
in part II. Here we give a direct elementary proof. 
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Assume first that F(s, X) = F(z, X) for all z, L Then, using (1.24), we see that 
both F(z, X) 2 and its complex conjugate F(z, X) z equal F(\z\,X)\z\, which is 
real by our additional condition. So we have Im F(z, X) 2 = 0. Writing z = a + ib 
and F= Fj + /F2 this takes the form 

(1.26) bFt(a, b, X) = aF2(a, b, X). 

This implies Ft(0, b, X) = 0 for all (b, X), and Ft(a, b, X) = ah(a, b, X) for some 
smooth, real-valued function h; then (1.26) implies that F2(a, b, X) = bh(a, b, X) 
which proves (1.25) for this particular case. 

For general F we write 

• F(z, X) = 1 [F(z, X) + F(i, X)] + i ±r {F(z, X) - F(z, A)] = 

= F(z, X) + iF(z, X). 

Now we can apply the first part on both Fand F; combining the results gives (1.25). 
For z # 0 the uniqueness of h follows immediately from (1.25); by continuity we 
also have uniqueness for z = 0. Both (i) and (ii) now follow easily from (1.25). 

Applying the lemma to the bifurcation equation (1.20) we see that we can write 
F(z, X, a) = h(z, X, a) z, where h : C x R2 -> C is smooth and such that 

(1.27) h(eiq>z, X, a) = h(z, X, a), V<pe R. 

Finding nontrivial solutions of (1.20) then reduces to solving the equation 

(1.28) h(z, X, a) = 0. 

We will solve (1.28) for X and a, as a function of z, by the implicit function theorem. 
To see that this is possible we make the following calculation. 

For QG R we have X(Q) = Qui, ai*d horn (1.21) and the definition of h we find: 

A(e2,X O)Q = <C* M(QUX + v*(QUt, X, a), X, a)}; 

differentiation in Q at Q === 0 gives: 

(1.29) h(0, X, a) = <C, DxM(0, X, a) . (u, + Duv*(0, X, a) . Wl)>. 

From (1.29) we obtain: 

(a) h(0,0, l) = <C,£"i> = 0; 

(b) Dch(0, 0, 1) - <C, DxDaM(0, 0, 1) . Wl> = 2<C, fi^ = —2<C, ut> = - 2 . 

(c) Dxh(0, 0, 1) = <C, DxDxM(0, 0, 1) . ut) = 

= (c, |f-(0, 0, 0) ut + -^(0, 0, 0) uA = 

- f ( 0 ' 0 ' 0 ) + I'lf(0'0'0)-
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We conclude that if the transversality condition (1.6) is satisfied, then we can 
split (1.28) into its real and its imaginary part, and solve for k = k*(z) and a = 
= a*(z); both k* and a* are smooth, with k*(0) = 0, a*(0) = 1, k*(eiq>z) = 
= k*(z) = k*(\ z |) and a*(ei<pz) = a*(z) = a*(\ z |). The solution sheet found in 
this way forms the Hopf bifurcation branch. Solutions on this sheet corresponding 
to Z-values with the same modulus can be obtained one from the other by appli­
cation of a phase shift S+(<p) (see (1.22)). Therefore the result can be depicted in 
a (k9 e)-plane by the curve k == k*(g) for o ^ 0 bifurcating from the line Q = 0. 

To conclude this section we emphasize the two conditions which allowed us 
to obtain the Hopf bifurcation: (i) the fact that A(0) has a pair of simple purely 
imaginary eigenvalues, so that the nullspace U is two-dimensional; and (ii) the 
transversality condition (1.6). 

2. TIME-REVERSIBILITY 

A simple symmetry which may destroy the bifurcation picture given by the Hopf 
theorem is time-reversibility. If we assume that the functionsfand g in our example 
equation (1.1) are such that 

f(x, —x, k) = f(x, x, k) 
(2.1) 

g(x9 —x, k) = —g(x9 X, k) 
then it follows easily that if x(t) is a solution of (1.1), then so is x(t) = x (-*). 
But (2.1) implies that g(09 0, X) = 0 for all k9 and the transversality condition (1.6) 
is not satisfied, since the eigenvalues given by (1.5) stay on the imaginary axis. 

However, we can still carry out most of the reductions of section 1, the main 
difference being that the operator M has an additional symmetry. Indeed, if we 
define 5.(0) e &(Z) by 

(2.2) (S.(0)z)(t) = z(-t)9 

then it is easy to verify that (2.1) implies that 

(2.3) M(£_(0) Z, k9 a) = 5.(0) M(z9 k9 a); 

so M is equivariant with respect to the group action generated by the shift operators 
S+(<p) and by the time inversion operator S-(0). Since S+(<p) S-(0) = 
= S_(0) S+(—<p) this group has the form {S±(q>) \ <p e R}9 with S~(<p) = 
= S_(0) S+(<p)9 and is isomorphic to 0(2). We conclude that for time-reversible 
systems the bifurcation problem has an O(2)-equivariance. 

Both v* and G will commute with S-(0); now 5-(0) £ = <!;, and consequently 

(2.4) (x~ *S_(0) x) (z) = X~ xS-(0) (^e.(ZO) = x" * #« <*0 = X~ * Re (*0 - *, 
Vz e C. 
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*' 
For the complex bifurcation function F (2.3) translates into 
(2.5) F(2, X9 <r) = F(z9 A, <x). 

We can again apply the lemma of section 1, and conclude that for nontrivial 
solutions the bifurcation equation reduces to 

(2.6) h(z9 X, a) = 0, 

where now, because of (2.5), h is real-valued. By the calculations of section 1 we 
have h(09 0, 1) = 0 and Deh(09 0, 1) = —2, so that we can solve the scalar equation 
(2.6) for <r = o*(z9 X)9 with <r* smooth, <r*(09 0) = 1, and <r*(ei<pz9 X) = <r*(z9 X) = 
= <r*(| z |, A). 

We see that for time-reversible systems the parameter X plays no role: For each 
(sufficiently small) value of X the equation has a 2-parameter family of periodic 
solutions, parametrized by z eC, or, equivalently, by the „amplitude" Q = | z \ 
and the phase <p = arg z. Moreover, if z is real (i.e. z = 2), then (2.4) and the Lia-
punov—Schmidt reduction imply that the corresponding solution of (1.9) satisfies 
5_(0) x = x9 i.e. is an even function of t. We conclude that all solutions of (1.9) 
near the bifurcation point become even functions of t after an appropriate phase 
shift. 

3. HOPF BIFURCATION WITH 0(2)-SYMMETRY 

In this section we exame a situation where the first condition for Hopf bifurca­
tion, namely that the purely imaginary eigenvalues of A(0) are simple, is no longer 
satisfied because of some spatial symmetry of the system; our example will have 
an 0(2)-symmetry. 

We consider again the equation (1.1), but now we take x to be a vector in the 
plane; the scalar functions/and g then map R2 xR2 xR into R. We maintain the 
condition (1.2), and also assume that / and g are invariant under orthogonal 
transformations in the plane: 

f(Rx9Rx9X)^f(x9x9X)9 

(3.1) g(Rx9 Rx9 X) = g(xy x9 X)9 VR e 0(2); 

we have 0(2) = {R±(0) \ 0 e R}9 where R+(0) and R„(0) = K_(0) R+(0) are 
represented by the matrices 
,*> *»x « •v-.x ( c o s 6> sin @\ A n , _ . /cos 0 sin 0\ 
(3.2) R+(0) = [ ., _ 1 and R-(0) = [ . _ 

v ' \-sin<9 cos©/ v ' \sm0 -cos (9/ 
The conditions (3.1) are for example satisfied if/and g depend on x and x via the 
arguments | x |2, | x \2 and (x9 x). 

An immediate consequence of (3.1) is that each solution x(t) of (1.1) generates 
for each 0 eR the other solutions £(t) = R+(0) x(t) and %(t) = R_(0) x(t). 
Also, linearization at x = 0 gives now a 4-dimensional matrix, which still has the 

36 



HOPF BIFURCATION IN SYMMETRIC SYSTEMS 

complex conjugate eigenvalues given by (1.5); however, these eigenvalues are now 
double, and the results of section 1 do no longer apply, since dim U = 4. 

As a first step towards the solutions for this case we will use the 0(2)-symmetry 
of the equation to consider two particular classes of solutions, each having pre­
scribed symmetry properties themselves; we will label these solutions respectively 
as collinear and circular solutions. 

A. Collinear solutions are solutions such that R„(0) x(t) = x(t)9 for all t e R and 
for some fixed 0 e R. By a rotation we may assume that 0 = 0, i.e. we look for 
solutions with x2(t) = 0. This condition reduces us to a one-dimensional equation 
of the type considered in section 1. We conclude that if the transversality condition 
(1.6) is satisfied, then there is a Hopf bifurcation of collinear periodic solutions; 
each solution on the bifurcation branch generates a torus of solutions by application 
of rotations R+(0) and by phase shifts. 

B. Circular solutions are solutions such that x(t + 0) = R+(a0)\x(t)9 for all t 
and 0, and for some fixed a ^ 0. If they exist such solutions are necessarily 
periodic, with period 2n/\ a 1; they have the form x(t) = (Q COS ij/(t)9 —Q sin i//(t))9 

with Q > 0 and ij/(t) = at + c; they rotate in the clockwise direction if a > 0, 
in the anticlockwise direction if a < 0. The conditions on Q9 a and X for x(t) to be 
a solution of (1.1) are 

(3.3a) a2 = f(Q9a,X), 

(3.3b) g(Q9 a, X) = 0, 

where / and g are defined by 

(3.4) /(o, a9 X) =/(g(cos \j/, —sin \j/), —Qa(sm \j/, cos xjf), X) 

and 

(3.5) g(Q9 a9 X) = £(o(cos \j/9 —sin \j/)9 — o<r(sin xj/, cos ij/), X). 

One can easily verify that, because of (3.1), the expressions at the righthand side 
of (3.4) and (3.5) do not depend on i//; also/and g are smooth functions, even in 
both Q and <r, and independent of a for Q= 0; this implies in particular that 

DJ(0, 0,A) = Ai(0,0,A) = 0. 

The equations (3.3) are satisfied for (Q9 a9 X) = (0, ± 1, 0); under the transversality 
condition (1.6) we can apply the implicit function theorem to obtain two solution 
branches a = ±a*(o)9 X = X*(Q)9 defined for Q sufficiently small; both a* and X* 
are even functions of Q9 with a*(0) = 1 and X*(0) = 0. The branch with a = 
= a*(Q) > 0 corresponds to circular periodic solutions rotating in the clockwise 
direction, while solutions corresponding to the branch a = —a*(o) rotate anti-. 
clockwise; both branches of circular solutions are mapped one into the other by 
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the reflection R-(0). Since rotations and phase shifts have similar effects when 
acting on circular solutions it follows that each such cicrular solution generates 
a circle of circular solutions by rotation (or phase shifts). 

We see that by restricting to solutions with appropriate symmetry properties 
we are able to obtain certain branches of small periodic solutions bifurcating from 
the equilibrium. The question which arises now is whether there exist any other 
periodic solutions near the bifurcation point, which we cannot detect by imposing 
a priori symmetry properties; and if such solutions exist, what are their symmetry 
properties? As we will see in part II the answer is that under some generic con­
ditions there are no bifurcating periodic solutions other than the collinear and 
circular solutions which we have found already. In order to prove this we will use 
the Liapunov—Schmidt approach of section 1 to obtain the bifurcation equations 
which determine all bifurcating periodic solutions. After analyzing the proof of the 
Hopf bifurcation given in section 1, it should be no surprise to find that the new 
bifurcation equations have an O(2) xSO(2)-symmetry; the O(2)-part acting by 
rotations in the plane, the 5O(2)-part by phase shifts. These symmetries will then 
be exploited to bring the bifurcation equations in a normal form which yields 
easily the result mentioned above. 

4. TIME-REVERSIBLE SYSTEMS WITH O(2)-SYMMETRY 

As a second example we take the same problem with O(2)-symmetry as in 
section 3, but assume also time-reversibility; that is, we suppose that next to (3.1) 
also (2.1) holds. As explained in section 2 this implies that the transversality con­
dition (1.6) fails; A(X) does not only have a pair of double eigenvalues on the 
imaginary axis for A = 0, but these eigenvalues also stay on the imaginary axis 
when the parameter A is changed. 

In a similar way as in section 3 we consider collinear and circular solutions. For 
collinear solutions the equation reduces to a one-dimensional one which is time-
reversible, and therefore of the type discussed in section 2. From the results of that 
section we conclude that for all A near zero there is a one-parameter family of tori 
of collinear solutions: the parameter along the family is the amplitude o, and each 
torus is generated by application of rotations R+(@) and phase shifts on a parti­
cular collinear solution. 

For the circular solutions the analysis of section 3, which leads to the equations 
(3.3), still holds. In particular the function g is even in a; but (2.1) is easily seen 
to imply that g is also odd in a\ therefore we have g(Q, a, A) = 0 for all (g, a, A). 
An application of the implicit function theorem to (3.3a) then gives two symmetric 
solution branches a = ±a*(Q, A), with cr*(0, 0) = 1 and a*(—Q, A) = a*(Q, A). 
For each sufficiently small A there are two one-parameter families of circles of 
circular solutions: the parameter is the amplitude Q and each circle is generated 
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by application of rotations or phase shifts (both have similar effects) on a parti­
cular circular solution. One of the families corresponds to clockwise rotations, 
the other to anti-clockwise rotations; the two families are related one to the other 
by reflections in the plane. 

As in the example of section 2 also here the parameter X plays no role, at least 
when we restrict attention to circular and collinear solutions. In part II we will 
show that the corresponding bifurcation equations have an O(2) x O(2)-symmetry, 
and that for generic time-reversible systems with O(2)-symmetry (not depending 
on a parameter) there are no other small periodic solutions than the families of 
circular and collinear solutions which we have found here. However, in one-para­
meter families of such equations (such as our example), a parameter change may 
force the system to pass through a nongeneric situation, and as we will see further 
bifurcations may then occur. 

5. HOPF BIFURCATION WITH S0(2)-SYMMETRY 

Let us now consider a somewhat more general second-order system, of the form 

(5.1) x + h(x,x,X) = 0, 

with xeR2, h : R2 xR2 xR -> R2 smooth, and with h(0, 0, X) = 0 for all X. 
Assume also that (5.1) has an .SO(2)-symmetry, namely: 

(5.2) h(Rx, Rx, X) = Rh(x, x, X), VKeSO(2), 

where 5O(2) = {R+(9) \ 0 e /?}. Linearization of (5.1) at the equilibrium solution 
x = 0 gives 

(5.3) x + C(X) x + B(X) x = 0, 

where B(X) := Dxh(0, 0, X) and C(X) := Dkh(0, 0, X) are 2 x 2-matrices. Because 
of (5.2) they must have the form 

<-> -«-(-£Sftg)- <»-(-$;$)• 
for some smooth functions pt(X) and yt(X) (i = 1, 2). The eigenvalues of the linear 
system (5.3) are given by the equation 

(5.5) (/i2 + Wl(A) + P,(X))2 + (»y2(X) + p2(X))2 = 0. 

Suppose now that a pair of complex conjugate eigenvalues crosses the imaginary 
axis for X = X0. If the corresponding purely imaginary eigenvalues have multi­
plicity two, then we have necessarily (i) 7i(A0) = 0, and (ii) either P2(X0) = 0 or 
yii^o) = 0. For generic one-parameter problems these conditions (i) and (ii) 
cannot both be satisfied for one and the same parameter value X0. Therefore we 
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conclude that if a pair of complex conjugate eigenvalues of the linearization (5.3) 
crosses the imaginary axis, then generically these eigenvalues will be simple, and 
the classical Hopf bifurcation theorem can be applied. 

Of course we can still consider circular solutions, that is solutions of the form 
x(t) = (Q COS \j/(t), —Q sin iKO)> f°r s o m e constant Q and with \]/(t) = at + c 
for some a # 0. Using (5.2) the conditions on (Q, a, X) now take the form 

—Qv2 + K(Q, 0; 0, — Qa; X) = 0, 

h2(Q,0;0,—Qa;X) = 0. 

For nonzero solutions we can divide by Q; this gives 

(5.7) • — a2 + ht(Q, X, a) = 0, h2(Q, X, a) = 0, 

with both ht(Q, X, a) and h2(Q, X, a) even in Q, and of the form 

hi(Q, K °) = Px(X) - Witt) + 0(Q2), 

h2(Q, K <r) = -P2(X) - a7l(X), + 0(Q2). 

We leave it to the reader to prove that, given a0 # 0, the following two statements 
are equivalent: 

(1) ±K70 are eigenvalues of (5.3) for X = 0; 
(ii) either (Q, X, a) = (0, 0, a0) or (Q, X, a) = (0,0, —a0) is a solution of (5-7). 

It follows that we can choose the sign of a0 such that (0, 0, a0) is a solution 
of (5.7). Moreover, the Jacobian of (5.7) at this solution and in the variables (X, a) 
will be different from zero if and only if the corresponding eigenvalues of (5.3) 
cross the imaginary axis transversally. Under such conditions we can solve (5.7) 
for (a, X) = (a*(Q), X*(Q)), with a*(0) = a0, A*(0) = 0, a*(-Q) = a*(Q) and 
X*(—Q) = X*(Q). This gives us a branch of circular solutions bifurcating from the 
origin; these circular solutions are clockwise if a0 > 0, anti-clockwise if a0 < 0. 
Because of the uniqueness part of the Hopf bifurcation theorem this branch of 
circular solutions must necessarily coincide with the branch of periodic solutions 
given by Hopf's theorem. So in systems with SO(2)-symmetry one generically 
has classical Hopf bifurcations, although the bifurcating periodic solutions have 
an additional symmetry :,they are circular solutions. The same conclusion can also 
be obtained from a Liapunov—Schmidt reduction. 

We conclude with the remark that if (5.1) has an O(2)-symmetry, i.e. if (5.2) holds 
for all R e 0(2), then p2(X) = 0 and y2(X) = 0 in (5.4). Then all eigenvalues of (5.3) 
have multiplicity two. This shows that the example of section 3 forms in some sense 
a „generic example" of a system with O(2)-symmetry. For such systems one needs 
to make an analysis of the full four-dimensional bifurcation equations in order to 
get the complete bifurcation picture; we will make such analysis in part II of this 
paper. 
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PART II 

1. HYPOTHESES AND NOTATIONS 

In this second part of the paper we will make a full bifurcation analysis for the 
problem of the bifurcation of periodic solutions from the trivial solution for the 
equation 

(1.1) x + g(x, x, X) x + f(x, x,X)x = 0, 

where x e R2, X e R is a small parameter, and the scalar functions f: R2 xR2 xR -* 
-> R and g:R2xR2xR~* R are smooth and such that f(0, 0, 0) > 0 and 
g(0, 0, 0) = 0; by a time rescale we may suppose that f(0, 0, 0) = 1. Our main 
hypothesis will be that f and g are rotationally invariant, i.e. they satisfy 

(1.2) f(Rx, Rx, X) = f(x, x, X), g(Rx, Rx, X) = g(x, x,X), VR e 0(2). 

We consider two different cases, corresponding to the hypotheses (HI) and (H2), 
respectively: 
(HI) fand g satisfy (1.2) together with the transversality condition (see part I): 

(1.3) | | - ( 0 , 0,0)4=0. 

(H2) fand g satisfy (1.2) together with the following condition for time reversibility 
(see part I): 

(1.4) f(x, —x, X) = f(x, x, X), g(x, —x, X) = —g(x, x, X). 

Remark that for O(2)-symmetric systems a transversality condition such as (1.3) 
will be generically satisfied; however, if we also impose the symmetry condition 
(1.4) then (1.3) fails, since (1.4) implies that #(0, 0, X) = 0 for all A. We will refer 
to the case (H2) as the time-reversible case. 

We will obtain the bifurcation equations for our problem via an equivariant 
Liapunov—Schmidt reduction (see [6]). We will then exploite the symmetry proper­
ties of these bifurcation equations to discuss their solution set. This will give us the 
solution branches found in a heuristic way in part I, together with conditions which 
imply that there are no further bifurcating periodic solutions. As already remarked 
in part I the main ideas of our approach lead to similar results for general systems 
with O(2)-symmetry; for details on such extensions and generalizations we refer 
to the papers [2, 3, 5, 7, 8]. The distinctive points of our approach are: (i) the use 
of appropriate complex coordinates; (ii) the way in which we obtain the normal 
form of the bifurcation equations; (iii) the introduction of time-reversibility in the 
problem. 

We are interested in small periodic solutions of (1.1), with period near 2n. By 
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a time rescale (see part I) we can reformulate this problem as that of finding all 
small 27r-periodic solutions of the equation 

(1.5) a2x + ag(x, ax, X) x + f(x, ax, X) x = 0, 

for values of (A, a) near (0,1). We write C° as a nonlinear operator equation in the 
following way. Let Z = Cln(R2) and X = C^n(R2) be the Banach spaces of all 
continuous, respectively C2-differentiable 27t-periodic mappings z : R -> R2, 
equipped with the C0-, respectively C2-supremum norm. Then we have to solve 
the equation 

(1.6)* M(x, X, a) = 0 

for (JC, X,a) e XxR2 near (0, 0, 1), where M : XxR2 -> Z is defined by 

(1.7) 
M(x, X, a) (t) := a2x(t) + ag(x(t), ax(t), X) x(t) + f(x(t), ax(t), X)x(t), W e R. 

For each <p s R we define a phase shift operator S+(<p) G JSf(Z) by (S+(q>) z) (t) = 
= z(t + (p); we also use the time inversion operator S_(0)ej£?(Z) defined by 
(5.(0) z) (t) = z(—t), and we put S-((p) = S_(0) S+((p). The group {S+(q>) \ q>eR] 
is isomorphic to 0(2). As already remarked in part I we have SO(2) = 
= {R+(0) | 0 e R} and 0(2) = {R±(G) / 0 eR}, where R+(0) and K_(<9) = 
= R~(0) R+(0) are linear operators on R2 represented by the matrices given 
in (1.3.2). We will also consider R+(0) and R_(0) as linear operators on Z, acting 
in the obvious way: (R±(0) z) (t) = ^±(0) z(t). 

It follows directly from these definitions and hypotheses that 
(1.8) M(yx, X, a) = yM(x, X, a), VyeT, 

where T c S£(Z) is the group generated by R±(0) and S+(<p) in case (HI), and 
the group generated by R±(0) and S±((p) in case (H2). In the first case F is iso­
morphic to 0(2) x 50(2), in the time-reversible case it is isomorphic to 0(2) x 0(2). 

Finally we will denote by Zc = C2„(C2) the complexification of Z, and use in Zc 

the inner product given by 

(1.9) <ti, v> : - -±- )\u(t), v(t)) At = ^ - j"(f ut(t) vt(t)) dt, Vu,ve Zc. 
Lit Q Z7T 0 j = 1 

2. THE L I A P U N O V - S C H M I D T R E D U C T I O N 

We now perform on (1.6) a Liapunov—Schmidt reduction (see [6]) similar to 
the one worked out in section 1.1. We start by observing that L := DxM(0, 0, 1) e 
e Se(Y, Z) is explicitly given by (Lx) (t) = x(t) + x(t) and has a 4-dimensional 
nulspace U, with basis {ul9Hl9 u2,u2} given by 

ux(t) = col(cos t, —sin t), u^t) = col(sin t, cos t), 

u2(t) = col(cos r, sin t), u2(t) = col(sin t, —cos t). 
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We define Ci e Zc, £2 e Zc and P e J5f(Z) by 

(2.2) C/0 = "At) + « / 0 = «,f col(l, ( - i y + */), J = 1, 2 
and 

(2.3) Pz = JteKh, z> Ci + <C2 > *> C2), Vr e Z. 

It is easily seen that P is a continuous projection onto U = N(L), while Floquet 
theory implies that N(P) = R(L). So we have 

(2.4) z = N(P) e P(P), x = u e v, 
with V = N(P) n X; also, Z, maps K isomorphically onto P(L) = N(P). Remark 
that 

(2.5) PR±(0) = R±(0) P, PS±(cp) = S±(cp) P, V<9, (?) 6 R. 

This implies that all symmetry operators leave U and V invariant. 
Using the splittings (2.4) we can now perform an equivariant Liapunov— 

Schmidt reduction in precisely the same way as we did in section 1.1. The result 
is the following: there exist a neighborhood Q of (0, 0, 1) in XxRxR, a neigh­
borhood Q of (0,0, 1) in UxRxR, and smooth mappings v* : Q -+ V and 
G:Q-> U such that 

{(*, X, a) e Q | M(x, X, a) = 0} = 
(2.6) 

= {(w + v*(u, X, a), X, a) \ (u, X,a)eQ and G(u, X, a) = 0}. 

The mappings M, v* and G are related to each other by 

(2.7) (/ — P) M(u + v*(u, X, a), X, a) = 0, V(w, X, a) 

and 

(2.8) G(w, X, a) = PM(u + v*(u, X, a), X, a), V(w, X, a). 

The bifurcation mapping G:QcUxRxR-+U has the following properties: 

(i) G(0, X, a) = 0,VA, a; 
(ii) DwG(0, 0, 1) = 0; 

(iii) G(yu, X, a) = yG(u, X, <x),Vy e F; 

similar properties hold for v*. 
By (2.6) the problem is reduced to that of solving the F-equivariant bifurcation 

equation 

(2.9) G(u, X. a) = 0 

for (u, X, a)s UxRxR near (0, 0, 1). As in part I we will write down (2.8) in 
complex coordinates. To do so we identify U with C2, considered as a real vector-
space, via the linear isomorphism 

(2.10) x : C2 -> U, (zx, z2) +> x(*i ,z2):= M*iCi + ^Ca). 
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Then (2.9) takes the form 

(2.11) F(zt,z2,k,o):=x~xG(x(z,, z2), k, <r) = 0. 

It follows from (2.8) and the definition of P that F = (Fx, F2) : C
2 xRxR-+ C2 

is explicitly given by 

(2.12) Fj(Zl, z2, k, a) = <C/, M(x(zx, z2) + v*(X(Zl, z2), k, <r), k, <r)>. j = 1, 2 

As for the symmetry operators, we will identify each y e F with x~xlXe £(C2)-
We have 

S+(<P) d = e"Ci, S+(<p) C2 = e'*s2, 5.(0) Ci =C2, S.(0) C2 - Ci> 
,R+(0) Cl = ef*Ci, *+(©)C2 = e-i9l29 il.(0)Ci = C2, *-(0)C2 = Co 
(2.13) 

and therefore 

S+W ^ ' ̂  = ( e ' ^ ' ***->' 5 - ( ° ) ^ > ^ = &* • 2i)' (2.14) 
*+(©) (z,, z2) = (e'%, e~iez2), R_(0) (Zl, z2) = (z2, zx). 

The equivariance of G induces the equivariance of F: 

(2.15) F(y(zt, z2), A, <T) = yF(z,, z2, A, <r), Vy e P. 
Taking y equal to R+(<p) S+(<p)> R+(—<P) S+(<p) and R-(0) gives the following 
symmetry properties, which will be particularly useful for our further analysis: 

(2.16) F1(e
i<pz1,z2,k,<r) = ei<pF1(z1,z2,k,<j), VcpeR, 

(2.17) Fx(zl9 ei(pz2, k, <T) = F,(zx ,z2,k,a), V<p e R, 

and 

(2.18) F2(z1,z2,k, a) = Fx(z2, z,,k, a). 

In the time-reversible case we can also take y = R_(Q) S_(0) which gives 

(2.19) Ft(2,, s2, A, <r) = F,(zx,z2,k, <r). 

3. COLLINEAR AND CIRCULAR SOLUTIONS 

Before analyzing the full bifurcation equations (2.11) we briefly indicate how 
one obtains from them the branches of collinear and circular solutions found in 
part I. Collinear solutions are solutions such that R_(0) x = x for some 0 e R; 
they correspond to solutions of (2.11) for which z1 = e"i9z2 for some 0, i.e. for 
which | zx | = | z2 |. By an appropriate rotation we may restrict to collinear 
solutions for which -R-(0) x = JC; that means that we take zx = z2 = z in the 
bifurcation equation. By (2.18) this bifurcation equation reduces then to a single 
complex equation 

(3.1) H(Z,k,a):=F1(Z,z,k,tT) = 0. 
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It follows from (2.16) and (2.17) that H is 5O(2)-equivariant: 

(3.2) H(ei<pz9 X9 a) = eitpH(z9 X9 <x), V cp e R; 

in the time-reversible case we also have 

(3.3) H(29 X9 a) = #(z, X, a)9 

i.e. / / is O(2)-equivariant. The equation (3.1) can now be solved by exactly the 
same approach as in sections 1.1 and 1.2. 

Circular solutions of (1.6) are solutions such that either 

(3.4) R+(cp)S+(—(p)x = x, VcpeR, 
or 
(3.5) R+(cp)S+(cp)x = x9 VcpeR. 

Solutions satisfying (3.4) correspond to solutions of (2.11) for which (zi9z2) = 
= R+(cp) S+(—cp) (zl9 z2) = (zl9 e~2i(pz2)9 for all cp e R9 i.e. for which z2 = 0. 
But then the equivariance of F implies that F(zi9 0, X9 a) = R+(cp) S+(—cp) x 
x F(zx, 0, X9 a) for all (peR; that is, we have F2(zi, 0, X9 a) = 0 for all (zx, X, a). 
The same result also follows from (2.16) and (2.18). So, for solutions satisfying (3.4) 
the bifurcation equation reduces to 

(3.6) Hi(zl9X9 a) := Fi(zi909 X9 a) = 0. 

Again, (2.16) implies that Hx is .SO(2)-equivariant, and even O(2)-equivariant in the 
time-reversible case (see (2.19)). The existence of a branch of circular solutions 
satisfying (3.4) then follows once more by the approach of sections 1.1 and 1.2. 

In exactly the same way we must, for circular solutions satisfying (3.5), take 
zt = 0 in (2.11), which then reduces to 

(3.7) H2(z2, X, a) : = F2(0, z2, X9 a) = 0. 

But (2.18) shows that H2(zl9 X9 a) = Hl(z29 X9 a)9 so that (3.7) is in fact the same 
equation as (3.6), and therefore has the same solution branch. This reflects the 
fact that circular solutions satisfying (3.4) are by reflections R„(&) taken into 
circular solutions satisfying (3.5), and vice versa. 

It is easily seen that both the collinear and the circular solutions are such that 

(3.8) x(t + n) = —x(t)9 VteR. 

In fact, (3.8) holds for all solutions (x9 X9 a) of (1.6) in a sufficiently small neigh­
borhood of the bifurcation point. Indeed, we have S+(n) (zx, z2) = R+(n) (zt, z2)9 

for all zi9 z2e C; this implies via the equivariant Liapunov—Schmidt reduction 
that each solution of (1.6) will be such that R+(n) x = S+(n) x9 i.e. will satisfy 
(3.8). 

As a final remark we observe that for each (zx, z2) e C2 we can find Q9 <p9 Q19Q2G 
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e R such that 

(zl9z2) = (e«*+»Ql9 e*-e+*>Q2) = R+(0) S+(<p) (Q19Q2); 

also R-(0)S-(0)(Q19Q2) = (Q19Q2). It follows that in the time-reversible case, 
when R-(0) S-(0) belongs to the symmetry group F, we can find for each solution x 
of (1.6) some appropriate 09q>e R such that x0 := R+(&) S+(cp) x is a solution 
belonging to the subspace 

X0 := {x e X | R„(0) S_(0) x == x} = 

= {x E X | *!(—0 = *-.(*), *2(—0 = —x2(t)}. 

Then it is sufficient to solve (2.9) for we U0 := Un X0 = span {i^, W2}, or> 
equivalently, solve (2.11) for (zl9 z2)eR2. This approach has been worked out 
in [7]: it leads to a 2-dimensional bifurcation problem (dim U0 = 2) with a ^-sym­
metry; that is, with the symmetry of a square. 

4. NORMAL FORM OF THE BIFURCATION MAPPING 

In this section we use the equivariance properties (2.16)—(2.19) to bring the 
bifurcation mapping F in an appropriate normal form. We start with some general 
lemma's on real- and complex-valued functions of a real or complex variable, 
and dependent on a parameter X belonging to a bounded open subset A of a finite-
dimensional Banach space. Let us remind also that we consider C as a real vector-
space, and that statements on smoothness always refer to smoothness for mappings 
between real Banach spaces. 

Our first lemma describes a classical result of Whitney [11] on even functions. 
The proof uses BorePs theorem (see e.g. [1]) and the result has been extended to 
functions which are invaiiant under a general compact group by G. Schwartz [4]. 

Lemma 1. Let h : RxA -> R be smooth and even: h(Q9 A). Then there exists 
a smooth function h : RxA —> R such that 

(4.1) h(Q9 X) = %(Q9 X)9 V(o, X) e R x A. 

Proof. First we consider the case where h is flat at Q = 0 : Dk
eh(09 X) = 0 for 

all k e IV and all Ae/l.We define h : R xA -> R by 

(4.2) h(L X) := h(K 11/2, ̂ , V«, X)eRxA. 

It is clear that (4.1) holds and that h is smooth for £ # 0. To prove that h is also 
smooth at £ = 0 it is. sufficient to show that 

(4.3) lim Dfytf, X) = 0, VA e A9 Vfc e IV. 

Now (4.3) is obvious for k = 0. By induction it is easy to prove that, for fc *> 1 
and <J # 0, Dktfi(£> X) is given by a linear combination (with different coefficients 
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in £ > 0 and in ^ < 0) of terms of the form 

Dj
Qh(\t\xl2,X).\t\il2-\ 

with 1 S j -§ k. Since A is flat at Q = 0 and A compact we can find for each (j, k} 
with 1 < j ^ k some constant Cjtk ;> 0 and some ejtk > 0 such that 

\DJ
eh(Q,X)\ ^ Cjtk\Q\2\ V(? : | C | <ejtk. 

This implies (4.3). 
For the general case we denote by Iafc(A) QU the Taylor expansion of A at Q = 0. 

By BorePs theorem there exists a smooth Aj = ht(£, X) : R xA -> R having 
Safc(A) <!;* as Taylor expansion at { = 0. Let A2(o, A) = h(Q, A) — h^Q2, X); then A2 

is even and flat at Q = 0. By the first part of the proof there exists a smooth 
h2:RxA-+ R such that h2(Q, X) = A2(0

2, A). Then A(f, A) = A ^ , X) + A2(f, A) 
satisfies the requirements of the lemma. Remark that the condition (4.1) determines 
A(£, X) uniquely only for ({, X) e [0, oo) xA . 

Lemma 2. Let H : CxA -+ C be smooth and such that 

(4.4) H(ei<pz, X) = H(z, X), Vp e R. 

Then there exists a smooth function A : RxC -» C such that 

(4.5) H(z, A) = A(| z |2, A), V(z, A) G C x 4 . ' 

Proof. Define H: R xA -• C by H(0, A) := Hfe, A); it follows from (4.4) with 
<p = n that / / is even in Q; an application of lemma 1 to the real and imaginary 
part of H gives us the existence of a smooth function A : RxA -» C such that 
H(o, A) = A(o'2, A). By (4.4) we have then for each (z, X) e CxA that #(z, A) = 
= i / ( | z | ,A) = A(|z|2,A). 

Lemma 3. Let H: CxA -+ C be smooth and such that 

(4.6) H(ei<pz, X) = ei<pH(z, X), V<p e R. 

Then there exists a smooth function h: RxA -* Csuch that 

(4.7) //(z, A) = A(| z |2, A) z, V(z, X) e C x A. 

If moreover H(z, X) = H(z, X) for all (z, X) then A can be chosen to be real-valued. 
Proof. Let H(Z, X) = H(z, X) 2; then H satisfies the requirement of lemma 2, 

and we have H(z, X) = A(| z |2, A) for some smooth h:RxA-+ C. Since H(0, A) = 
= 0 it follows that also A(0, A) = 0, and therefore we can write h(i, A) = ^(f, A) 
for some smooth A : R xA -• C. Then (4.7) follows from H(z, A) 2 = H(z, A) = 
= | z |2A(| z |2, A). If i/(2, A) = H(z, A) for all (z, A), then (4.7) still holds if we 

replace A(£, A) by — [h(£, A) + h(^, A)]; this shows that we can find a real-valued 

function A(£, A) satisfying (4.7). 
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Lemma 4. Let A : R2 xA -> Cbe smooth. Then there exist unique smooth mappings 
h1:R

2xA -+ C and h2: R2xA-+ C such that 

(i) AKlf t29 A) = A ^ , £2, A) + (£1 - «2) A2« l f «2f A); 
(") A^2 ,^ l f>l) = A ^ l f ^ f A ) , i = l f2. 

Proof. Let ht(Zl9 {2f A) :=- 1 [A« l s «2f A) + A(£2, « l f A)] and A2(^, £2, A) : = 

:=y[A(« 1 , « 2 f A)-A(« 2 , { 1 ,A) ] . Since A2«i,«2,A) = 0 if {, = £2 we have 

h2(£i, 2̂> A) = (^ — ̂ 2) A2(< !̂, <̂2> A), for some smooth A2. The functions ht 

and A2 defined in this way satisfy the requirements (i) and (ii); the same conditions 
also easily imply the uniqueness of hx and A2. 

Now we apply the foregoing lemma's to obtain a normal form for the bifurcation 
mapping F(zl9 z2, A, 0); because of (2.18) it is sufficient to consider the function 
^i(zi > z2> A, a). Restricting all variables to a bounded neighborhood of (0, 0, 0, 1) 
it follows from (2.17) and lemma 2 that 

(4.8) Fx(zx, z2, A, 0) = f1(z1, I z2 |2, A, o) 

for some smooth^ : CxR xR2 -• C. Using (2.16) we may replacefx(zlf <̂ 2, A, o) 
in (4.8) by 

(4.9) A.2{e^fl(e^zl9^29 A, o) d<p9 

this symmetrizatidn allows us to assume that 

(4.10) / i(e"z l f £2f A, a) = e^ft(zl9 £2, A, a), Vp e 1*. 

An application of lemma 3 then shows that 

(4.H) fl(zl5 i29 A, (7) = gl(\ Zt |
2 , rj2, A, (7) z t 

for some smooth g1 :1? x R x R2 -» C This gives 

(4.12) Fifei,z2. A, a) = g l ( | zt |
2,1 z2 |2, A, a) zx. 

Moreover, we can apply lemma 4 to gt and rewrite (4.12) in the form 

(4.13) FJXZ!, z2, A, o) = [ A ^ 2 , .02, A, a) + (o2 - £2)h2(Q
2
l9 Q\9 A, (7)] zx, 

where Qt = | z{ \ (i = 1, 2) and the smooth functions Af: RxRxR2 -» C are such 
that 

(4.14) A^ 2 , {lf A, a) = A ^ , £2, A, o)9 i = 1, 2. 

This gives then finally, via (2.18): 

{4.15) F2(zl9 z29 A, <7) = [ A ^ 2 , ^2, A, 0) - (ej - £2) h2(Q
2
l9Q

2
29 A, a)] z2. 
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In the time-reversible case we have also (2.19); this allows us to use the sym-
metrization 

(4.16) JL j V ' T O e ^ - f c , A, ^ +'f1(e-i<p2i^2,X,<T)]d<p 

instead of (4.9). Thenf! not only satisfies (4.10) but also 

(4.17) / i ( 2 i , « 2 ^ ^ ) = / 1 ( z 1 , « 2 , A f a ) . 

Then lemma 3 implies that the function gt in (4.11) and (4.12) is real-valued; con­
sequently also ht and h2 are real-valued in that case. 

5. CALCULATION OF h^O, 0, A, a) AND h2(0, 0, A, a) 

For our further analysis we will need h,(0, 0, A, or) and h2(0, 0, A, <r); it follows 
from (4.13) that in order to determine those expressions we must calculate 
F1(zl, z2, A, a) up to third order terms in zx and z2. The following lemma gives 
a first step in this calculation. 

Lemma 5. The bifurcation mapping G(u, A, <r) defined by (2.8) is such that 

(5.1) G(u, A, <T) = PM(u, A, <T) + O(| I u 115). 

Proof. Define G : UxRxR -* U by G(u, A, a) = PM(u, A, a). Then we have 
to prove that DUG(0, A, a) = DuG(0, A, <r) for 0 ^ k ^ 4 and for all A, (T. First 
we remark that both G and G commute with y = R+(n) = —I; this implies 
D2kG(0, A, a) = Du

2fcG(0, A, <r) = 0 for all k e N and all A, (T. Also v* and M have 
this symmetry property, and therefore D**M(0, A, tj) = 0 and Du*v*(0, A, <r) = 0 
for all k e N 

Next the definition of M(x, A, (T) implies that 

(5.2) DxM(0, X,G).W = <T2W + <rg(0, 0, A) w +f(0, 0, A) w, Vw e X. 

It is easily seen from this that DxM(0, A, <r) leaves U invariant, and maps V 
into N(P). Differentiating (2.7) at u = 0 then shows that Duv*(0, A, 0) = 0 for 
all A, <T. Now we differentiate (2.8) three times in u; putting u = 0 in the formulae 
and using the foregoing results then shows that DuG(0, A, <r) = DuG(0, A, (T) and 

xDuG(0, A, (T) = DuG(0, A, (T). This completes the proof. 

Now we take z, = Qte R and z2 = Q2e R in (4.13), and combine with (2.11), 
(2.12) and lemma 5. This gives 

O i t e i ,Ql, *-,<!) + (QI - Q\) h2(Q
2
t 9QI,X, <T)] QX = 

(5.3) = <d, MOhu! + ^2u2, A, (T)> + 0((| ffl | + | Q2 |)
5). 

In order to calculate the expression at the right hand side of (5.3) up to third 

49 



A. VANDERBAUWHEDE 

order terms in QX and Q2 we need to consider the Taylor expansion of the functions 
fand g appearing in (1), The condition (1.1) on those functions'implies that 

(5.4) f(x, x, X) = <x(X) + px(X) \x\2 + p2(X) (x, x) + p3(X) \x\2 + h.o.t. 

and 

(5.5) g(x, x, X) = y(X) + 5X(X) \x\2 + 52(X) (x, x) + S3(X) \x\2 + h.o.t. 

for some smooth functions a(A) = f(0, 0, X), p{(X), y(X) = g(0, 0, X) and 8t(X) 
(i = 1,2,3). Using these expansions a lengthy but straightforward calculation 
gives: 

<Ci> M(QXIIX + Q2U2, X, a)} = QX(—a2 + iay(X) + a(X)) + 

(5.6) ' + QX(Q2 + Q2) (PX(X) +,a2p3(X) + iadx(X) + ia*53(X)) + 

+ QiQliPiW + iap2(X) - a2p3(X) - ia8x(X) + a2S2(X) + ia383(X)) + h.o.t. 

Together with (5.3) and the symmetry property (4.14) this implies 

(5.7) * hx(0, 0, X, a) = -a2 + iay(X) + a(X) 
and 

h2(0,0, X, a) = - y (px(X) -f iap2(X) - a2p3(X) - iadx(X) + a2d2(X) + ia%(X)). 

(5.8) 

It follows in particular from (5.7) that 

(5.9) hx(0, 0, 0, 1) = 0, DA(0, 0, 0, 1) = - 2 , DA(0, 0, 0, 1) = a'(0) + i/(0). 

In the time-reversible case the additional conditions (1.3) on fand g imply that 

(5.10) p2(X) = 0, y(X) = 0, 5X(X) = 0, 83(X) = 0, V A. 

Then the right hand sides of (5.6), (5.7) and (5.8) become real-valued, in accordance 
with the fact that hx and h2 are,real-valued in that case. 

It remains to discuss the solution set of the bifurcation equation (2.11), with 
F = (Fx, F2) given by (4.13) and (4.15). We will do this in the last two sections 
of this paper. 

• 6. HOPF BIFURCATION WITH 0(2>SYMMETRY 

First we consider thfe case of hypotheses (HI); remark that the transversality 
condition (1.3) means that y'(0) ¥* 0 in (5.9). Because of the factorizations (4.13) 
and (4.15) of Fx and F2 we can, next to the trivial solution zx = z2 = 0, consider 
three types of solutions. 

(a) Solutions with | zx \ = QX 9-= 0 and z2 = 0. For such solutions (2.11) reduces 
to a single complex equation 
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(6.1) h,(Q\, 0, A, a) + Q\h2(Q\, 0, A, a) -= 0. 

Because of (5.9) we can split (6.1) in its real and imaginary parts and apply the 
implicit function theorem to solve for A = X*(Q\) and a = a*(Q\)9 with A*(0) = 0 
and a*(0) = 1. This gives us4he branch of clockwise circular solutions discussed 
in part I and in section 3; remark that multiplication of (6.1) by zt gives (3.6). 

(b) Solutions with z1 = 0 and | z2 \ = Q2 ¥> 0. Now the bifurcation equation 
reduces to 
(6.2) h,(09 Q\ , A, a) + Q\h2(09 Q\ , A, ex) = 0. 

Because of (4.14) this is the same equation as (6.1); therefore it has the solutions 
A = X*(Q\)9 a = a*(Q\). This gives a branch of anti-clockwise circular solutions, 
which can also be obtained by reflecting the solution branch found under (a). 

(c) Solutions with | *i I = (?i 9* 0 and | z2 \ = Q2 ^ 0. For such solutions (2.11) 
reduces to the system 

h1(Q
2

l9Q
2

29A,a) = 0 

(Q\-Q2
2)h2(Q

2
l9Q

2
29A9a) = 0. 

Now suppose that h2(09 0, 0, 1) ^ 0, or equivalently 

(6.4) (Pt(0) + S2(0) - j83(0)) + i(-*i(0) + P2(0) + 83(0)) * 0. 

Then (6.3) has, in a neighborhood of (0, 0, 0, 1), only solutions with Q\ = Q\ = : Q2
9 

and (6.3) reduces to 
(6.5) hx(Q

2
9 Q2

9 A, a) = 0. 

Again by (5.9) we can solve (6.5) for A = A*fe2) and a = a*(Q2)9 with A*(0) = 0 
and a*(0) = 1. Since for these solutions we have | zx | = | z2 |, we have found 
here the branch of collinear solutions discussed in part I and in section 3. 

We conclude with a remark about the condition (6.4); since we have already 
imposed the condition y(0) = g(09 0, 0) = 0, it follows that generically the condi­
tion (6.4) will be satisfied. We conclude that for generic 0(2)-symmetric systems 
of the form (1) one has only bifurcation of collinear and circular solutions. This 
property can be extended to general 0(2)-symmetric systems (see [2]). 

7. TIME-REVERSIBLE SYSTEMS WITH 0(2>SYMMETRY 

In this last section we consider the time-reversible case, i.e. we assume (H2). 
Then the functions hx and h2 in (4.13) and (4.15) are real-valued. For solutions 
with zt = 0 or z2 = 0 we obtain again the equations (6.1) and (6.2), which are 
now real equations. Since Daht(09 0, 0, 1) = —2 # 0 we can solve for a = &(Q2

9 A). 
This gives us two branches of circular solution.?, connected by reflections. 
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For solutions with | z1 | = QX # 0 and | z2 | = Q2 ^ 0 we have to consider the 
system (6.3) which consists now of two real equations. Let 

(7.1) WA) = j8iW) + « a (A)-ft (A). 

If iKO) T* 0 then h2(Q\, Q\, X,c) * 0 for all (zx,zl9X, <r) near (0, 0, 0, 1), and (6.3) 
has only solutions with Q\ = Q\ = : Q2; for such solutions we have to solve the 
real equation (6.5). By the implicit function theorem it has a solution of the form 
a = d(Q2, X), with a(0, 0) = 1, and corresponding to a branch of collinear solu­
tions. 

We conclude that if {j/(0) ̂  0 then we have for all sufficiently small X two one-
parameter families of circles of circular solutions and a one-parameter family 
of tori of collinear solutions (see part I, the parameter is in each case the 
"amplitude" Q). There is no qualitative change in the picture when X passes 
through zero. 

However, in time-reversible systems with 0(2)-symmetry of the form (1) the 
condition y(0) = 0 is automatically satisfied, since y(X) = 0 for all X; therefore 
in generic such systems there may be parameter values X0 at which \I/(X0) = 0. 
Assuming that X = 0 is such a critical value (i.e. \j/(0) = 0) we see that then (6.3) 
may "have solutions for which Q\ ¥> Q\- Indeed, for such solutions (6.3) reduces 
to the system 

(7.2) h^Q2 ,Q\,X,a) = 0, h2(Q\ ,Q2
2,X,a) = 0. 

This system has the solution (Q19 Q29 X, <f) = (0, 0, 0, 1), and if we assume that 

<7-3> 3fntv- <0' °' °' X> = a 'W 03(°) " ̂ (0)) - ^0) + ° 
d(X, <T) 

then it may be solved for a = <T(Q\, Q\) and X = X(Q\, Q\), with <r(0, 0) = 1, 
1(0, 0) = 0, £(£2, £x) = a(£l9Z2) and X(£29 £t) =- %{Zl9S2). That means that for 
each (zl9 z2) e C2 we can find (X, a) = (X, <r) such that (1.6) has a solution of the 
form x = u + 0(| | u | |3), with u = / ( z ^ z2). Such solutions have no other sym­
metries than the ones mentioned in section 3 : S*(n) x = —x and R„(0) S-(q>) x'= 
= x for some 0, cp e R. In a (QX , g2)-plane we can depict the situation as follows. 
To fix the ideas we will assume that D?11(0, 0) > 0. 

For each X there are four solution lines in the (Q19 £2)-plane: the coordinate 
axes QX = 0 and Q2 = 0, corresponding to circular solutions, and the diagonals 
t?i — ±(?2> corresponding to collinear solutions. These are the only solutions near 
the origin if X S 0. For fixed X > 0 there is also a small closed curve of solutions, 
given by the equation X(Q\ , Q\) = X. This closed curve encircles the origin and 
connects the branches of circular and collinear solutions. Each point on the curve 
represents a torus of periodic solutions, obtained by application of rotations and 
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phase shifts; the curve shrinks down to the origin as X decreases to zero. Observe 
finally that this picture has a D4-symmetry, in accordance with the remark made 
at the end of section 3. 
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