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OSCILLATION OF A FORCED NONLINEAR
DIFFERENTIAL EQUATION

MAGDALENA VENCKOVA, Bratislava
(Received February 20, 1981)

The paper is concerned with oscillatory character of solutions of the differential
equation

() L) (%) + g(x, 3, ¥, ..., y*7V) = f(x),
where
) Lpy)(x) =0

is a linear differential equation of the n-th order (n 2 2), disconjugate on I =
= [0, o), g is a continuous function on (0, o) x R” and f'is a continuous function
on (0, ). In the paper, theorems from paper (1) on oscillatory character of the
second order differential equation are extended to the equation (1). Throughout
the paper we shall suppose that every solution of the equation (1) exists on some
interval [x,, ) « I° = (0, ) and by the oscillatory solution will be understood
any solution (1), which vanishes on every interval (a, ©0) = [x,,~00) at least
once. Denote

L(y) (¥) = y™®x) + py(x).y*"D(x) + ... + pu(x) y(%),-

where p,, ..., p, are continuous functions on I.

Supposing the differential equation L(y) (x) = 0 is disconjugate on I we get
that the differential operator L can be factorized on I° = (0,.00) onto a product
of n first order operators, that means L(y) is the n-th quasi-derivative of the func-
tion y (2, Lemma 6, p. 93 and Theorem 2, p. 91). Regarding it, in the first part
of the paper, we shall deal with the equation

€) : L) (*) = f(x)

on the interval 7°, where L,(») is the n-th quasi-derivative of the function y.

Let n = 2 be a natural number, q,, a,, -.., @, be continuous and positive func-
tions on the interval 1°. Throughout the whole paper we shall use this hypothese
and consider only the real functions. Then we shall call the expression L,(y)

-

59




(i=0,1,...,n), where
Lo(y) (x) = 'ao(x) y(‘x)’ Li(y) (x) = ai(x) (Li—l(y) (x))” xel .i =12,..,n

the i-th quasi-derivative of the function y on I°. Besides we suppose that the func-
tion y defined on I° is such that the expressions L,y, ..., L;y are well defined
on I°. We denote by M,(J) the set of all functions having the i-th quasi-derivative
continuous on an interval J < I°.

Consider now the functions y,, y,, ..., », defined on I° x I° by the relation

@ Y1(x, xo) = a—};)—

1 x 1 ti-y 1 ti-2 t2 1

| = : v | ———dt, ... dt,_
Yilx: o) ay(x) x{ ay(ti-y) x{ ax(t;-2) xj; xj; a;-4(ty) g fi-1

(i=2,..,nx,x5€l°.

The following Lemma shows their importance.

Lemma 1. Let x,€1° i€ {1, ...,n}. Then the function y(., X,) is the solution
of the initial-value problem
5 Li(y) (x) =0,

LO(y) (‘XO) = 09 Ll(y) (xo) = 0> 1 Z(y) (xO) - 0 Ll l\y) (xO) = 1.

Proof: It follows from the substitution of (4) into (5.

Consider now the nonhomogeneous differential equation (3). Writing the equa-
tion in the form of a differential system and applying well-known facts to theories
that system we get the statements:

1. For every x, € I° and every point (¥o, 5, ..., o~ 1) € R" there exists exactly
one solution y of the equation (3), which fulfils the initial conditions

Lo(y) (x0) = Yo
Ll(y) (x0) = ¥o

L,-1(») (xo) = y3 ¥

II. Solutions y,, ¥,, ..., ¥, given by the relation (4) and by Lemma 1 satxsfymg o)
are linearly independent.
' - Further the following theorem holds.

Theorem 1. Let x, € I° and let the functions y|(., Xo) (i = 1, ..., n) be given by the
relation (4). Let the function f be continuous on I°. Then .the solutzon of the equa-
-tion (3), which satisfies the initial conditions

(6) Lo(y) (x0) = Yo, Li(¥) (Xo) = ¥, -+» La-1(») (x0) = y(" D
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is of the form

M P(x) = yoyi(x, xo) + p6ya(%, x0) + ... + p&Vy(x, x0) +
p f(t ) 0
+x_[y,,(x, n(') xel®.

(The generalized variation of constants formula.)

Proof. It follows from Lemma 1 that the function yoy(., Xo) + yoya(., Xo) +
+ ... + ¥ Uyp.(., x,) is the solution of the equation
® L,(») (x) =0,

which satisfies the initial conditions (6). Using the variation of constants formula
we get that the solution of the equation (3), which satisfies the homogeneous
conditions corresponding to (6), thus

® ) Ly(») (?Co) =0, Li(») (xp) =0, ..., L,_;(»)(xp) =0
is of the form
(10) W) = aoix) | va,’z;)’) / ((‘t)) &, (xel,
where (at a fixed x,) _
Lo(yy) (8, xo) woo Lo(ys) (8, Xo)
W) = Li(y1) .(t’ Xo) .o Li(yw) (t,.xo)
Ln—l(y‘l) (t’ xO) Ln—l(yn)'(t’ xO)
and
Lo(yy) (1, x?) coe Lo(yn) (8, X0)
Ll(yl) (t’ xO) e Ll(yn) (ts xO)
Wix, t) = : :

Ln—Z.(yl) (t9 xO) an-—z‘(J’n) (t’ ‘xO)
Lo(yy) (x, x0) ... Lo(ya) (%, Xo) -

(x e I°, t lies between x, and x).
By the relations (4) it follows that W(t) = 1, (te1°). If te I° is fixed (and of
course x0 € I is fixed, too) we have

w(x, t) = _;10,:[40(_)’,‘) (x, xo) = Lo Z_:lajyj(x’ Xo))-

This means that W(x, f) can be written in the form

W(x, 1) = Lo(3) () = ao(®) 7,
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where y = y(x) is the solution of the equatlon (8), which satisfies the initial condi-
tions

L) (1) = 0,L,3) (1) = 0, ..., Loz () (1) = 0, L,_4() M=1

Because the function y,(x, t) is the solution of the differential equation (8), which
fulfils at the point ¢ the same initial conditions, the uniqueness theorem implies
that y(x) = y,(x, t) and thus ‘ '

W(x”t) = Lo(y») (x’ 1) = ao(x) YalX 1).

By this we have shown the relation (7).

Lemma 2. Let '

< 1 ® 1 < 1
(11) xj; 0} dt v= oo,x{ o) dt = o0, ,;[ ) dt

for an x,e€I° Then the functions y,(., Xg), ¥2(.s Xo), ooy Yal-» Xo) given by the
relation (4) form such a fundamental system of solutions of the equation (8) that

yt(x9 xO) .
12 lim ——=—_——""_ =0, i=12..,n-1
12 . x> Yi+1(%; Xo)
holds.
Proof. With respect to (11) we get that
lim 252X _ L _g
x- 0 .Vz(x’ xo) X0 j-‘ 1
x a1(t1)

and applying L’Hospital principle
‘ 1 3 1

—_—— | ——dt,
V3%, x0) .. ay(x) xj ay(ty) y
lim = lim 2 = lim = 00.
x=o0 .V2(x’ xo) X~ 00 -1 x>0 x{ 2( l) -
ay(x)

Thus (12) holds for i = 1, 2. Supposé now that

lim 25 %) o j=1,2,.. k(ksn—1) is true.
x=o Yi+1(X, Xo) .

Tﬁen

x 1 7% 1 fx-1 .
) .. dg
hm &‘_t!.(__’_‘l)_= lim x{ ay(t) x{ ay(t-1) x I x{ ag(tx) *
| xw yk(x, o) xr0 ¥ 1 -1 1 tx-3 lz' 1
d“ e dr'-!

s (th-1) 5 ﬁz(';-—z) xquo ()
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As lim ao(x) y,(x, xo) = © (i = 2, ...,n) follows from (11), we .can use

X~ 00

the L’Hospital rule £ — 1 times and we get

x
lim ;VL*_lgx_’x_O)..=limI d(k=w

X~ yk(x xo) x—*a Xo ak(tk)

Thus it holds that lim 22X _ _ 0 (i = 1,2,...,n - 1).
s+ Yi+1(X, Xo) "
Lemma 2 states that the solutions Y105 X0)s s ¥ul(.s Xo) Of the equation (8)

given by the relation (4) form a hierarchic fundamental system.

Remark. Let x, € I° and let y be the solution of the initial problem

L)) =1, (xel),
Lo(y) (x0) = 0, Ly(y) (xo) = 0, ... Ly_1(¥) (Xo) = 0.

Then y fulfils
Ln+ l(y) (x) = 0) (x € 10), .
Lo(y) (x0) = 0, L;(») (x0) = O, ..., Ly~4(») (x0) = 0, L,(y) (xp) = 1
and hence y(x) = Y. 1(@, Xo).
The proof follows by differentiating as well as by the uniqueness of the solution

of the initial-value problem.
Consider now the differential equation (1). In what follows we shall assume that

(13) a,e C,,T,(IO) @ = 0,1,...,n),

further relations (11) hold, f is continuous on I°, g is continuous on I° x R" and it
enjoys the property -

(14) Y186V s ) 20 (K€L (1, yz, s ) R,
Theorem 2. If
1 f®)
(13 I S o) o, [ 02546 =
and
— 1 f® 4
= i 5y 140 04y

Jor each xo > O sufficiently large, then every solution y of the di ﬁ'erennal equation (1)
is oscillatory.

Proof: Suppose that y is such a solution of the equation (1) that y > 0 on (a, ®),
for an @ > 0. Choose x, > a. Then y fulfils initial conditions of the form (6)
at’ the point x,. It follows from Theorem _1 that this solution can be written. as
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P(x) = yoy1(x, %o) + ¥oya(x, Xo) + ... + yI Uy, (x, xo) +
+ .“yn(x9 t)[_—g(t’ Y, .V’, ey y("—l)) + f(t)]mdt’ (,\'G [xO’ w))

and further on the basis of (14)

10 g4

0 (x€[xq, 00)).

Y(x) £ yoyi(X, Xo) + .. + ¥§ T Vyux, x0) + 5 Yulx, 1) ==

y(x)
Yu(%, Xo)

-, yi(X, Xo) ., Ya(%, xo)
V(X X0) = ° V(X5 Xo) 0 yn(x’ Xo)

1 £(0)
HETCE AR J 3t a O

on [xq, o). Then

~1) Ya(%, Xo)
+ o g2
Yo yn(x’ x())

Using the assump‘uon (15) and on the basis of Lemma 2 we get that lim 7(25(—% =
x—w 7N 0
*= — o0 and thus y cannot be positive on (a, o). In the case that y < O we use the
assumption (16).
Theorem 3. If ’
17 lim j' f((t)) dt = —o0  for every x, sufficiently large,
5w %o
' - ¢ S .
(18) lim | () dt=+4+00  for every xo sufficiently large,
X0 Xo "
1 (@)
19 — [y, dt
> S L0 4y

for each x = x, and every x, sufficiently large. Then every solution of the equation (1)
is oscillatory. . :
Proof: We suppose again that there exists a solution y of the equation (1)
which is positive on a certain interval (a, oo), a > 0. We choose x4 > a. From
the equation (1) we get that this solution fulfils the relation

1O 4 _ jg(t (0, -, ") 4,

L,—1(y)(x) = L, 1(y) (xo) = ;

%o an(?) %o - a(®)
and thus also the inequality
Lns0)0) S L) ) + 119 2w
Therefore
(20) lim £, ,(y) (x) = —o

X~ a0
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holds according to (17). Now we choose K > 0 such that M — K < 0. From (20)
it follows that there exists X, > x, such that L,_,(») (x;) < —K. The solution y
fulfils at the point x; some initial conditions of the form (6). It follows from
Theorem 1 that this solution can be written as follows

Y(x) = yoyi(%, X1) + yoya(x, x() + ... + ye Dy (x, x1) +

£ T ya L=t Y0, (@, wees Y O0) + (O] —ee

(x € [xl ’ (XD))

..(t)

and further regarding (14)

. . ¢
Y S poyaCe, )+ o+ 300 + e 0 L0 dt (xelx, )
'l
Consider the ratio =) on [x;, ). Then
yn(x, xl) .
)
yn(x9 xl) -
yl(x, xl) (n—1) yn(x’ xl) 1 f(t)
< yo L1l .+ —<—dt =
=V yGx) T ey T D ;s a,(f)
y1(x, x1) (n—-1)
Syl 44 + M.
0 y,,(x, xl) y
Thus
m ) y(x)

_V( xl)-.. nl(y)(x1)+M< K+M<0 E

and y canndt be positive on (a, ).

Lemma 3. Let k be a naturdl number, K > 0, ¢ be real numbers and let the function

Y € My((c, o)) satisfy -

21 L(y) £ —K  on the interval (¢, )
or »

(22) L(y) = K  on the interval (c, ).

Let further the relations (11) (for n = k) be fulfillea and let m > 0 exist such that

(23) ao(x) S m _ on the interval (c, ).
Then

lim p(x) = — o0 (lim y(») = + ).

x—* . x=*

Proof. Consider only the case (21). Denote
L) =LG)(x) + K (xe(c, o))
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Then y fulfils the equation
L(y) = —K + fi(x),  whereby  fi(x) <0 on (c, o).
Regarding Theorem 1 and Remark following this theorem we can write

Y(x) = yoy1(x, Xo) + yoya(%, xo) + ... + ye ‘)yk(_x’ Xo) +
K+ f,(t
+ fh(x, f)——:('t')—f—l'(—)-dt S Yoyi(%, xo) + ... +

X0

IR0, x0) + (=K) | 2D g
k(f)

X0
= yoyi(% %) + o + YETVR(x, X0) — Kps1(%, Xo) =
J’x(x, Xo) k—1) (X, Xo) _ K)
Yr+1(%, Xo) Yr+1(%, Xo)

Using Lemma 2 and the assumption (23), leads to the conclusion lim y(x) = — .

Xx=>a

= Yr+1(x, Xo) (yo + ... + yo

Theorem 4. Let n be even, let (23) be true and let g have the property:

(i) To every B > 0 there exists such a B, >0 that if y, > B >0, then
8(X, Y1y ¥2s sy > By >0 forall (yy, ..., y)e R Y and if y, < =B <O, then
g%, y1, ..., ¥2) < =Py <0 for all (y;, ..., y,) € R*" 1. Let

(i) lim ——1—-(1 + M ®)dt=c0  forall xo>0
x>0 X0 an(t)
and for every A # 0.
(iii) Let there exist a, b > 0 such that

hy(x) = j'y,,(x, t) f((t)) t20 forall xza,

hy(x) = jy,,(x, t) f"((t)) dt<0 forall x2 b,

” (iv) hy, h, have arbitrarily large zero-points,
™
1 S
x,t)——dt| <M forall xy £ x,
) 4 s 29 G) °
then every squnon of the equation (1) is oscillatory.

Proof. Suppose there exists such a solution y of the equation (1) which is not
oscillatory. Thus let it be positive on the interval (¢, ©), for some ¢ > a. In the
case y < 0 we shall proceed analogically. Regarding the fact that by Theorem 1
h, is a solution of the differential equation

L,(h;) = f(x)



we have
L(y—h)+gxpy,..y"")=0 on ( ©)

Because y >0 on this interval, by (14) g(x,», ¥, ...,y" ) >0 and thus
L,(y — hy) (x) <0 for all x > c. It follows from this inequality that the function
L,_(y = hy) is decreasing on (c, o). If on some subinterval (cy, ©), ¢, > ¢,
L,_,(y — h,) were negative, then there would exist such a K >0, that
L,_y(y — h) < —K for xe(c;, ®), ¢c; > ¢;. According to Lemma 3 y(x) —
— hy(x) < 0 would hold which would together with the assumption (iv) lead to
a contradiction with the fact that y is positive on (¢, ). Thus L, (y — h;) (x) >0
on (¢, ). We claim that there exists such a ¢; > ¢ that

(24) . Li(y—-h)(x)>0
holds for every x € (c;, ).

It follows from the inequality L,_,(y - h,)(x) >0 on (c, ) that either
L, ,(y — h)) (x¥) > K, > 0 on some interval (c,, ©), ¢, > cor L,_,(y —h)(x) <
< 0 on the whole interval (¢, w). According to Lemma 3 the first case leads to (24),
while in the second case the situation is analogical to that as for L,(y — #;) <0,
but we have lowered the order of the quasi-derivative by 2. Using this procedure
we come to the alternative: Either some of the quasi-derivatives L, (y —h;) >
> K > 0 on some interval (¢;, ©), ¢, > ¢ and this leads to (24) or the inequalities

Ly —h) <0, Li_(y —hy) >0, L,_,(y = h) <0, ..., L,(y — hy) <0,

L,(y — h;) > 0 hold on (¢, ). Then (24) is true again.

Integrating (24) from x, to x where x; > c, and x, is according to (iv) such that

(25 y(x;) = hy(x,) >0,
we get ,
ao(x) y(x) > ao(xy) ¥(xy) + ao(x) Hy(x) "Aao(xx) hy(x) 2

2 ao(xy) (V(x1) = hy(xy))
and thus taking into consideration (23) and (25)
1 _ 7 .
(26) () > —ao(x1) [y(x)) ~ hy(x)] =f >0  forall x> x.

The integration of the equation (1) from x, to x > x, for an x, > x, gives that

: x (n—1)
L)) = Liwi) ) — | £ 20D = 0 o,

a,(t)
From (26) and according to (i) the last expression equals or is smaller than
B - f(1)
L, X —_—dt,
1(}’)( 2) x{ a (t)
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thus
1
Lioi) (9 S LoV 5) = B | o (1 - E;(o)_dz
Then the condition (ii) implies that

lim Ln—l(y) (X) = — 0.
Let K, > 0 be such that M — K, < 0. Then therc exists such an x; > x, that
L,_,(») (x3) < —K,. Further by the same proceeding as in the proof of Theorem 3,
just x, is replaced by x; and K by K, we get that
fim 2%
X= 0 y,,(x, x3)
which contradicts the fact that y is positive on (c, ). This completes the proof
of Theorem 4.
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