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MONOTONICITY THEOREMS FOR SECOND
ORDER NON-LINEAR DIFFERENTIAL EQUATIONS

MIROSLAV BARTUSEK, Brno
(Received November 23, 1978)

1. Consider the differential equation
0)) Y +f(tsy9y') =0

where fis continuouson D = {(t, y,v):te[a,b),b < w0,ye R,ve R} f(t, y,v) y>0
fory # 0.

A non-trivial solution y of (1) is called oscillatory if there exists a sequence of
numbers {#,} suchthata < #, < ti+;, ¥(%) =0, p(t) # Oon (4, ty4y), k = 1, 2, ...,
lim ¢, = b holds.

ka0
In all the paper we shall omit the trivial solution y = 0 from our considerations.
Let y be an oscillatory solution of (1) and {1} the sequence of all its zeros.
Then there exists exactly one sequence of numbers {7,} called the sequence of
extremants of y, such that ¢, < 7, < 4.4, ¥'(t,) = 0 holds. This is a consequence
of the following lemma (see [1], [2]):

Lemma. Let y be an arbitrary non-trivial solution of (1) and t, < t, its consecutiye
zeros (y(t) # Oforte(ty, ). Thent,, t, are the simple zeros of y, there exists exactly
one number t such that t; <t < t;, y'(r) = 0 holds. Further,

S y®,y®) >0, te(ty,1),

f(t’ y(t)s y’(t» < 0, te (ts tz)-
Denote D, = {(t,y,0):(t,y,v)e D,y >0}, D, ={(t,y,v):(t,y,0)eD,y < 0},
DJ.= {(‘9}’9 v):(ty,v)eD,v # 0}’ D, = {(t’y’ v):(ty, ")EDU v> 0}, Dy =
={t,,):(t,y,0)€D;,v> 0}, Dg={(t,y,v) : (¢, y, ) € Dy, v < O}, Jy = [, 0],
Ly = [t 41 k= 1,2,3, ... ' ,

Consequently, we must state some of the following assumptions on the func¢tion

Sf@, y,v)
(2) f(t: =¥ v) = "f(t’ Vs v) in D,
3 S, y, =v) = f(t,y,0) in D,



of af Y exists i
@ TR exist in D, 55 CXists in D;,

5) fis decreasing (increasing) with respect to ¢ in D,(D5),
©) f is increasing (decreasing) with respect to ¢ in D,(D2),

) %f(t.y,v)go in D,

() f is non-increasing (non-decreasing) with respect to v in Dy(Ds),
) f is non-decreasing (non-increasing) with respect to v in D(Ds),
(10) fis non-decreasing (non-increasing) with respect to v in D4(D).

Put 4y =ty — i, S = o — by, Ve = ey — T k= 1,2,3, ... Thus 4, = 6, + .
Our aim is to find conditions under which the sequences {| ¥(t) I}7, {l¥'(t%) I}T
(i.e. the sequences of the absolute values of all local extremes of the solution y and
its derivative) and {4,}? are monotone. This problem was studied é.g. in [3—7], but
for the special cases of the differential equation (1):

Y +/1,9)g0) =0 in[3],[4][7]

Y +ft,y)=0 in[6],

Y + e fG)h0) =0 in[5]
We use the method of ““local inverse functions” used in [3]. As the oscillatory solution
»(?) is monotone on J, or L,, there exist the inverse functions T ,(z) and T,,(2)
to | »(t)| on J, and L,, respectively, ze [0, | ¥(z)|], k = 1,2, ... Similarly, as
y'(t) = 0<>t = t,, the function y'(f) is monotone on J, or L,; let us denote the
inverse function to | y'(¥)| on J, and L, by T7 (z) ze[0, |y'(x)|] and T3 .(2),

z€[0, | y'(ty+1) |], respectively.
The differential equation (1) has been investigated in [3], too. The basic results
are given in the following

Theorem 1. Let y be an'oscillatory solution of (1).
(i) Let (5), (8), ((6), (9)) and (3) be valid. Then
V(T2 1Y T0 - Tiw ST — %
(Iy'(Tl.k)lSly’(TZk)ls =T 2 sz"‘tk)’
ze[0, | yx) ], k = 1,2, ... holds, so that, in particular, the sequence {| y'(t,) l},
non-increasing (non-decreasmg) and 6, = 7 (6x = 1)

(ii) Let (5), (10), ((6), (8)) and (2) be valid. Then the sequence {| ¥(,) |};° is non-
decreasing (non-increasing) and

V(T S 1Y@, ze[0, 1 ¥x) 1]

(YT 2 1YT20l,  z€[0,]¥5y) 1D
]wlds. ‘
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2. 'Theorem 2. Let y be an oscillatory solution of (1) and let (3), (4), (5), (9) be
valid. Then

YT 2 1YT)),  w-— Tl,t STw—

ze[0,] () |], k = 1,2, ... holds, so that, in particular, the sequence {|y'(t,) |}{
is non-increasing and 6, £ 1, k = 1,2, ... holds.

Proof. Let y(t) > 0 on (4, t,+). If ¥y < 0, the proof is similar. Thus especially
£, (), ¥'(®) > 0, y°(t) < 0 on this interval, y'(f) > 0 for te [, ), »'(f) < O for
t€ (Tx, t+1] (see Lemma). Let & be an arbitrary integer. Put for the simplicity 7' =

= Tyu, To = Tpy, ¥y = Y'(T1), ¥y = ¥'(T), ¥ = y"(Ty), y; = y"(T3). From this
and from the assumptions of the theorem we obtain for the fixed z € [0, y(z)):

.}’z=
AT

2 vi-inn=2 [~ 1931 AT 2,70 + ¥4 (T3, 2,39)] =

an F11 (T 299 = 1T 2 D))
Loi-tnh< llzﬁwlyaﬂnuwn+wux
(12) x(f(Tl’ z, y2) - f(T!.’ z, Yi))],

d " ” d ’ ’
50— = ""z-(_f(Tla z,y}) + f(Tz, 2, ¥3)) =

1 9 , g ,
-‘='—7~ét-f(T1:Z,.V1) 6 == f(Ty, z, ) — ij,: v 55 T (T 2, y1) +
1 )

1 0 a
(13) +—,—"5?.,(T2’z y2)+ (Tz,z’h)"‘ ' av f(TZs z,y;).
y2 V2

Now we show by the indirect proof that
(19 Y= 1¥120  for ze [0, y(x)]

holds. Let ¢ € [0, y(r)) be a number such that ¥,(¢) — | ¥3() | < 0. The validity
of the following relation follows from (12)

. ’ ’ d‘ ’ ’
i) = |y | = 0= -d—}-,-(yl(n) =1 y2(m) <0
and thus the following relation must be valid

(15) Yi—1yal <0  for ze[& ¥s)).

1%




From this and from (13) we have
d ”
dz Or1—ra)z

1 0 ’ » 0 ,
P {""é't_f(Tl,zs.VI)—yl‘%‘f(Tuz,yl)—yz E» f(Tz,z,yz)}

0 , 7} ,
- Wf(Tx » 2, Y1) + *a?f(Tz 2, ¥2),  z€[€, y(r))).

As
lim ——f(Tl’ Z, y1) = 3t f('tk, (), 0) <0,
z-y(t)
. ” 7 ” a ’
lllyl::k)[—yl —a-v—f(Tn z, }’1) - )2 E;f(Tz, z, .Vz)] =0,

(we must use the assumption f(¢, y, v) = f(¢, y, —v)) we can see that

. d
llm —_— "o W = o0
2 3(tn) dz (yl .Vz)

Thus there exists a number ¢ 1 2 & such that diz- 01 —ypz0oforzel=[¢&, )]

holds and from the fact that y{ — y; = 0 for z = y(t,) we can conclude that yj —
— y3 < 0 on I. According to (11)

d ’ ’ 1 ” y 1 ”
d—z(yl—lyz|)=;,l—(y1—| o ) — 01 —y2) S0
on I and (see (15) y3(z) — | ¥2(2) | < ¥1(§) — lJ'z(én)l < 0, ze I. However, it is
a contradiction because y; — | y; | = 0 for z = y(t,). Thus we proved that (14) is
valid and the first part of the statement is proved.

Consider two functions hy(z) =1, — T1(2) 20, hy(z) = T,(z) — 1, 20, ze
€ [0, »(x)]. From the proved part (14) of the theorem it follows that

L@ - @] = -~ L 20, ze[oy)
Y1 Y2
The function h, — h, is non-decreasing and with regard to 4,(z) = h,(z) = 0 for
z = )(t,) we can conclude that A, < h,, i.e. 7, — Tl(z) < T,(2) — 1, z € [0, ()]
The theorem is proved.
The following theorem can be proved in the same way as Theorem 2.

Theorem 3. Let y be an oscillatory solution of (1) and let (3), (4), (6) and (8) be
valid. Then
DY (TwW ! S 1Y (T, =TTy — %
ze[0, |y 1], k=123,..
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holds, so that pamcularly the sequence {| y'(ty) |} is non-decreasmg and O 2 o
k=1,23, ... holds.

Theorem 4. Let y be an oscillatory solution of (1) and let (3), (4), (5) and (7) b¢
valid. Then
XTI >1XTDL 2O, |yt 1]
k=1,2,3,... holds. The sequence {| y'(t) |} itself is decreasing. _
Proof. Let ¥(t) > 0 on (&, i) If y < 0, the proof is similar. Thus y*(¥) < 0,

£, ¥(8), y'(®) > 0 on this interval, y'(f) > 0 for t & [#, %), ¥'(t) < 0 on (;, tH.,]
Let k be an arbitrary integer number. Put for the s1mphcxty T, =Th, T, = T,

=WTY), y2=T3), Y. =y"(T), yi=y"(Ty), I=(0,c) ¢=min ('),
ly’(t.ﬂ) ). We have for ze I

d 1 1
(16) 5 01 - y)—-Z(—;,——-~—)
dz : Y1 Y2

d n ” — 1 a a a
"&' Y1 —y2) = ;{[_E—f(leyl’z)_—a;;f(Tl,yl: Z) - o f(Tlvyl’z)]+

1 0 0 0
+ 'E[__é‘—f(Tz’ Yas 7') - a_y'f(TZ; stz) + _%’f(TZﬂ Y2, Z)].
According to (17) and y; — y; = 0 for z = 0 we can see that

lim -3 () — y9) <0

o dz Yi— )2 .

There exists an interval I; = (0, {) such that yi — y; < 0 on I, . Further, it is shown
that we can put I; = 1. On the other hand let n be the smallest number n € I such
that y{() — ¥3(n) = 0. Then y{(z) — y3(z) < 0, z€ (0, ),

1s) . Y10 =20 #£0,  y,(0) = y,(0) # 0

and according to (16) -g—z—(yl —-5)>0,2z¢(0,n).
Therefore
19) yi—y2>0 for ze (0, 1]
Consequently,
0 = yi(m) — y3(n) = .
= [Ty, y1,m) + T2y, )] + [ T2, 71,1 + f(ngyz, ] <
< =fT3, y1,m) + £y y2,m)-
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The inequality y, < y, following from the notation -‘%- f2 0 is a contradiction
to (19). Therefore
(20) Yi@) - »i2) <0, zel

and y,(z) — y,(2) >0, ze(0, c] (use (20), (16) and (18)). As a consequence, we have
¥a2(€) = 0, y,(c) 2 0 wherefrom ¢ = | y'(t,41) |, | »’(t) | > | ¥'(tx+1) |. The statement
of the theorem is proved.

The following theorem can be proved in the same way as Theorem 4.

Theorem §. Let y be an oscillatory solution of (1) and let (3), (4), (6) and (7) be
valid. Then

XTI < IXTW),  ze@© 1y 1],  k=123,..
In particular, the sequence {| y'(t)) |} is increasing.

Theorem 6. Let y be an oscillatory solution of (1) and let (2), (4), (5) and (7) be valid.
Then

INT | S [ Ty x40) |, ze [0: |V (tee ) 1]

holds, so that, especially, the sequence {| y(t,) |} is non-decreasing.

Proof. Let y'(f) > 0 on (13, 7,+,)- If ' < 0 holds, the proof is similar. Thus
y(’) < osf(t’ J’(f), }"(’)) > 01 }"(1) > ,0 on [Tks tk-i-l) and y(t) > O,f(t’ y(t)9 y'(t)) < 0'
Y'(t) <0 on (fy+y, T+, ] (see Lemma). Let k be an integer number. Put for the
simplicity T = Tyx, Ty = Tp 41, Vi = YT1), y2 = Y(T3), yi =y (Ty), yi =
= y"(T;) and I = [0, y'(t;+,)). Then we get for the fixed ze I

@ Snl-py= -2 -2 o
Y2 B 41
=y,,|y {[f(szl}’z"z) f(Tn'J’zl,z)]+[f(TnU’zLZ)—f(Tu)'uz)]}
2

Now, considering the assumpuons of the theorem, we have

d .
@ =y = 0= (vt | - ys(m) > 0.
The following relation will be proved indirectly:
@3) [ y2(2) | — »1(2) é 0, zel

Let a number ¢ e I exist such that | y,(§) | — y,(&) > 0, then it follows from (22)
that :

29) [ 72| =y () >0 forzel, = [f: .Y'(‘u D)
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Furthermore, if y; = | y{ | for some z € /,, then

0=y, —1yil= =f(T2,92,2) =Ty, 5, 8) =
= [f(Tz: [y21,2) = ATy, | y2 !»2)] + [ﬂTn (yal,2) ‘f(Tno-Vu')] <
2 f(Ty, 1 yal2) = ATy, 31, 2)
and because f is non-decreasing with respect to y we obtain the relation y; — | yi | =
=0=(y,| S y,. Takmg (24) into consideration, one of the following inequalities
is valid
(25) »2—1yil>0 onl,
(26) f y2—1yil<0 onl.
But if (26) is valid, then

0>y, —Iyil==f(T2,52,2) = f(Ty,y,2) =
=[fT21y:1,2) = f(T1, 1 321, 2)] +
+ [T, 19,2 = [Ty, 0, 0] 20, zely
and we get the contradiction. Thus (25) is valid and it follows from (21) and (24)

.that

1 1
(|Yz|-y1)—2(——————)>0 zely,
Vi Y

[722) | = y4(2) > | y2(O) | = y1(§) > 0O, ze[§, y'(they)).
Especially for z = y'(t;41) | y2 | = y1 > 0, which is a contradiction, as y;, = y, = 0
for z ="y'(t;+,). So we have proved that the inequality (23) is valid. For z = 0 in
particular, we get | y(T,) | S y(T,)
Theorem 7. Let the assumptions of Theorem 6 be fulﬁlled Let ;, gﬁ be non-
of

increasing with respect to t and y in D, and let 7— ¥ be non-decreasing with respect
to t and y in D, and non-increasing with respect totandyin Dg. Then

T — T S Tryy — :,kﬂ, Ze[O’ | ¥ (te41) U. sothat yy S 04y, bk = 1,2,3,...
holds.

Proof. Let y'(¢) > 0 on (1, T44,). If ’ < O, the proof is similar. Let T, Ty, yy,
Y2,.¥1,y; be of the same meaning as in Theorem 6. We prove the inequality
27 Yi@) - 1¥i@ 120, ze©y )] =1

by the indirect proof. Let ¢ € I be such number that Yi® - | Y,(C) | <0. Thcn there
exists n > £ whereby

(28) 7@ - 1yi@1 <0, . ze[imel

13




Ya(m) =1 y{() | (use the fact that ¥5(2) = | 1(2) | for z = y'(tx+1)) and
d n ”
—(T;(]nYZ —In|yih=

1 0 d 0
=”y‘73“['5—tf(Tz,iyzl,2) =25, /(T2 121, 2) +—a;-f(T2’|yzl,Z)-y'z']+

2

1
ARZY

0 0 , 0
[\a_tf(Tla yl’z)_ Z_('/zyf(Tls y15z) - yl'g'v—f(Tl, Vi Z)]<

0 0
2 —éYf(Tz,lhlaZ) Wf(Tl,ylﬁz)
— - +
Vs J(T 1921, 2) fTyno |+

5 /T 13319 STy,
f(T29|y2'aZ) f(Tl’,V1,2)

! d ” 17”
As | y,(2)| < »1(2), z€ [O,J’ (tc+1)), then E(ln ¥ —In|y] ) <0 and thus the
y 2_ is decreasing. As J—%@—
[yil lyitm |
ze€[&, n]. This is a contradiction to (28), so that (27) is valid.
Consider two functions h,(2) = T5(2) — T, hy(2) = Ty — T1(2), z€ [0, y'(t44,)]-
Then

function

= 1, we can conclude that y}(z) 2 | yi(2) |,

O - m@] =~ =20, ze[0, (),

” ”

Y1 2

The function h; — h, is non-decreasing and with respect to 4,(0) = h,(0) = 0 we
can conclude that i, = h,, i.e. T5(z) — 7, £ 7441 — T1(2). The theorem is proved.
The following theorem can be proved similarly to Theorems 6 and 7.

Theorem 8. Let y be an oscillatory solution of (1) and let (2), (4), (6) and (7) be
valid. Then '

| J’(T;k)l 2| .V(TT,H Db ze[0,| y'(te )]

holds, so that in particular, the sequence {| y(t;) l}‘f" is non-increasing. If, in addition,

1 of of

. . . 1 ,
Ty is non-decreasing (non-increasing) with respect to t(y) in D,, T is non-
increasing (non-decreasing) with respect to 1(y) in D,(Dg), then
T:k =T = Tgt1 — T:,k+1’ zZ€E [0, | y'(tkn) |]

It should be emphasized that y, = 0x+1> k = 1,2, ... holds.
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Corollary 1. Let y be an oscillatory solution of (1) and let (2), (3), (4), (5) and (7)
i)

1
be valid. Further, let 7 % be non-increasing with respect to t and y in D, and 7—6—0—

non-decreasing with respect to t and y in D,. Then the sequence {| y'(t) |}T is non-
increasing, {| y(t,) |}¥ and {4,}7 are non-decreasing.

Corollary 2. Let y be an oscillatory solution of (1) and let (2), (3), (4), (6) and (7)
of

. .1 . ,
be valid. Further, let the function T be non-decreasing with respect to t and non-

. , . . 19 . . .
increasing with respect to y in D, and ——f— be non-increasing with respect to t

f ov
and non-decreasing with respect to y in D,. Then the sequence {|y'(t)) |}7 is
non-decreasing, {| y(t,) 1}7 and {4,}7 are non-increasing.
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