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ASYMPTOTIC PROPERTIES OF SOLUTIONS 
OF THE DIFFERENTIAL EQUATION 

{A;Mt).~[All(t)y]>...y - An(t)y + F(t) 

IVO RES, Brno 
(Received May 2, 1978) 

1. INTRODUCTION 

The object under consideration is the «th order nonhomogeneous linear differential 
equation of the form 

(1,1) {4T-V0... [VO)/]' .••}' = 4X0-v + nty 
As the asymptotic properties of solution of equation (1,1) for F(t) == 0 were studied 
in [5], the form of the particular solution of equation (1,1) and of its certain derivatives 
will be constructed and their asymptotic properties studied under a convenient 
combination of conditions. 

In the course of study it was found advantageous to use the so called Peano — 
Baker method, for it allowed to express the particular solution yx(t) of equation (1,1) 
in the form of infinite series converging on the interval /. The advantage of this 
method lies especially in the fact that when we express the solution in an approximate 
manner, it is possible to obtain a simple estimation of the error. 

Let us make the following agreements: 
t 

1° If a is a real number, then the symbol J A/v) dv denotes: 
«J 

a) Rieman's integral for aj =- a 
t 

b) lim J Aj(v) dv for a,- = oo. 
T-+-00 T 

2° Throughout this paper it will be assumed that: 

At(t)e C0(/), i =-= 1, 2,...,/*, Alt) > 0 for / = 1, 2 , . . . , n - 1, 

A;\t) - J L . f F(0eCo(/), /=- <r0, oo). 
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3° Provided no misunderstanding occurs, only f.4/, Fwill be used instead of 

fAj(v)dv,F(t),ctc. 
•i 

2. D E F I N I T I O N S AND NOTATIONS 

Definition 2.1. Denote D = —r- and define the linear differential operators 

(2.1) L, ^A^DA^D.^DA^D, for s = 1, 2,..., n - I 

(2.2) L^DL^. 

The identical operator is denoted by the symbol L0. 

Definition 2.2. Suppose that the function h(t)e Cq(l). Let the symbol Qj9 j = 
*» 1, 2 , . , . , n denote the integral operator which maps the set of functions of CQ into 
itself 

(2.3) Q^^SA^hWdv, 
*j 

and let Q(h) be defined by 

(2.4) Q(h)~\F(v)h(v)dv. 

For j # k, j9 k = 1,2,..., n define the operator QjQu 

(2.5) QsQk(h) - J Afv) ] Ak(u) h(u) du dv 
*j *k 

and the operator QjQ by 

(2.6) Qfi(h) - J Afv) ) F(u) h(u) du dv. 
aj «o 

Thp construction of further operators that occur in this paper will, similarly as 
above, be written in the form of products, such as DQj(h) = Aft. 

Definition 2.3. Let a € J be a real number and let aif i == 1,2,..., n denote either a 
or + oo, h(t) B Co(/). Define the integral operators Vj9J ** 1,2,..., n by relation 

(2.7) «ffi~QJQj+t...QnQ*+i.-*Q*+j-M> 

whereQt+j^Qj. 
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furthermore, let us put 

(2.8) <(A) = A, r / f c ) -« .«* /* (» . r = l , 2 , . . . 

Definition 2.4. Let j , k be natural numbers 1 <, j , k £ n, h(t) e CoCr). Define the 
integral operators 

XhJ{h) = A, 

(2.9) JTy,4(A) = QJQJ+. ... o.t_,(A), /ory < A:, 

*>..(A) = 0, /ory > * . 

Definition 2.5. Let j be a natural number 1 <, j <, n — 1. Define the functions 

<2,io) */o = e/0;+i...e,-,e(i). 
Furthermore; fef ws />wt 

(2.11) * / 0 = o.(l). 

Definition 2.6. Lei1 A(/)e c0(/). TAe symbols qj,j= 1,2, ...,n and q denote the 
operator 

(2.12) tj/fc) = j | .4 /P) | A(p) dp, «(«) = } I F(v) | A(p) dp. 
Oj «o 

By /Ae product of operators qflk and qfl, we understand the operator 

qMV = } I .4/P) | } | Ak(u) | h(u) d« dp, 

(2,13) 
^ ( A ) - J M/p)| J | F(u) | *(«)dudp. 

"j «0 

Definition 2.7. Le/ j be a natural number 1 < j <, n. Define the functions 

(2.14) y / 0 = I ?^/+i ••• ?»?»+i ... c7„+y_.(l) |, 

while putting qK+J = ty. 

Definition 2.8. Let j be a natural number 1 <, j <, n — 1. Define the functions 

(2.15) 9 / 0 - I W y + i . . . * 7 - - i 9 ( l ) | . 

Furthermore, we put 
9 ^ 0 - I 9(1) I-

Definition 2.9. Lety, £ be natural numbers. Define the functions 

*/ / 0 - 1 
*j.k(0 - I 9/9>+I • • • 9*-1(0 I. /<wj < * 

*y.*(0 - I 9Wy+i — 9. ••• !?.+*-i(01- / '" ' j > * 

while putting qn+i = qi-
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3. LEMMAS AND RELATIONS BETWEEN OPERATORS 

Lemma 3.1. Let the operators <$j and the functions $j be defined by the formulae 
(2,8), (2,10), and (2,11). Then it holds 

(3.1) rffij) = Qj%+i(<Pj+i), for j = 1, 2,. . . , n - 1, r = 0 ,1 , . . . 

(3.2) rfpj) = G ^ ; l ( # i + 1 ) , for j = n, r = 1, 2, ... 

while putting <€n+i ~<eu<Pn+x ~ <t>x. 
The proofs for existence of these relations will be given by using the method of 

complete induction. Both being analogous, only the proof of (3,1) will be given. 
For r = 1 with regard to (2,7) and (2,10), 

* j ( * j ) » QjQj+l 'QnQn+l . . . <?. + , - i ( * j ) -

= QjQj+i . . . QnQn+l -Qn + J-lQ/fij+l) = G ^ + l ( * J + l ) , 

which is the relation (3,1) for r = 1. 
And now suppose that (3,1) holds; then according to (2,8), (2,7) and (3,1), 

«j+1(*/) - Vjrjpj) « QjQj+i... QnQn+i .. a + J . , f l , + i «; + i («y + i ) = 
= QjVj+irj+i(<Pj+i) = e^: i(4>y + 1) . 

The proof is completed. 

Lemma 3.2. It holds 

i i(*i) = #i+i> fori = 1,2, ...,/i - 1, 
4,(*i) « F, 

1 ^ 0 ) = Anh. 

These statements follow immediately from definitions 2.1, 2.3, and 2.5. 

4. ASYMPTOTIC PROPERTIES OF SOLUTION 
OF DIFFERENTIAL EQUATION (1,1) 

In this Section we shall deal with formal construction of the particular solution 
yt(t) of differential equation (1,1) and its derivation having the form Layi. Using the 
notation as indicated above, the equation under consideration may be written as 

(4.1) Lny = Any + F. 

Theorem 4.1. Suppose that 2° holds; then the particular solution yt(t) of differential 
equation (4,1) can be expressed in a formal way as 

(4.2) yi(t) = t < W , ) . 
r = 0 
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The proof will be given by verification. According to (2,7), (2,8), and Lemma 3.2 
we obtain 

i+yt = u t «i(*i)=i-^(*i)+i+i «i(#.) -
r=-0 r x- l 

= L»(#.) + J L^.^r1^,) - F + f Axr1^) -
r = l r = l 

=- F + A, £ "Tf *(*!) = F + An £ <<?!(*,) ~F + Anyt. 
r = l r = 0 

Hence L,,^ = F + .A-j^; thus the proof is complete. 

Theorem 4.2. Suppose that 2° ZioWs; f/ien 

(4,3) Lj^f) = f #r
+1(<-Vi), for s = 0, 1, ..., n - 1. 

r = 0 

The proof will be given by the method of complete induction. According to (2,1), 
(3,1), and (4,2) and for s = 1, 

L1y1 = AllDVl = A^D f ^ ( * i ) = V > f Q&Vi) - f «r
2(*a), 

r=0 r=0 r=0 

and thus (4,3) holds for s = 1. 
Now suppose that (4,3) holds for s = j - 2. Then 

L ; . ^ = Ar^L,..^ = Ari.D f ^ ( ^ - i ) -
r = 0 

If J ¥" n, we obtain according to (3,1) 

Lj-iyi = Ajl.D f Qj-Mtj) - f «£*,). 
r=0 r=0 

Iff = w, we obtain according to (3,2) 

Lm-lVl = ^--1
1D f K~l(*n-X) » AT-l^ f Q«-l W » ) « I «x#«). 

r=0 r=0 r = ° 

The proof is completed since (4,3) holds also for s = j — 1. 

Note 4.3. From the previous relation we can easily verify that yi(*) is a formal 
solution to (4,1). Indeed, according to (3,2), 

DLn„iyx m Lnyx = D f <?n(<Ptt) = D[*n + f W J ] * 
r=0 r = l 
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- ->[*. + 1 ÔX;H*.+I)] - DІФ„ + e. z ^+i(*-+i)] 
r-=l r » 0 

- ->[*. + ß. Z «í(*i)] - Ғ + ^Уi-
Г S - 0 

Note 4.4 In the subsequent Section we shall study uniform convergence of the 
series (4,3). We shall prove that yt(t) is a solution of (4,1) on an interval 7t e/if the 
series (4,3) are uniformly convergent on It for s = 0,1,..., n - 1. 

5. UNIFORM CONVERGENCES OF FUNCTION SERIES 

Theorem 5.1. Suppose that 2° holds and at = oo for all i = 0, 1,..., n. Assume 

;(5,1) y,+ i(0 < oo, <P,+ i(0 < °°» fors = 0, 1, ...,w - 1. 

If so, the series (4,3) converge uniformly on the interval L 

Proof. The uniform convergence of series (4,3) is proved by constructing their 
convergent majorants. Applying complete induction we can prove that 

<5,2) |Җ+ 1(#,+,)|.Ś«p.+i(0 7Î+»(0 foг s = 0, 1, ..., n — 1. 

Indeed, for r = 1, 

I «?+,(*,+ ,) I = lo.s+,o.,+ 2"-o.. + ,o..+,+ l--o-« + n-lo,(l)l ^ 

S | <7,+ 1</, + 2 ••• <7.+ ,?» + ,+1 ••• *i-r--l?0) I ^ 

^ y.+i(0?. + i(0. 

'which is the inequality of (5,2) for r = 1. 
Suppose that (5,2) holds. Then 

i« : : i(*. + , ) i-- i» , + ,«: + i (*. + , ) i« 

- 1 G,+iQ,+2... G-+.K*,(*.+,)] I = i «.+,«,« - «„+s(l«I+,(*.+i) I) I £ 

= </>,+1(0 

= <p,+i(0 

f Й+,(т) 

r! 
M,иWU,+2-.»+»( l ) 

}--^TІ+i(t)dt = <p,+i(0 
у,+К0 

(г + 1)! 

Hence the inequality of (5,2) is proved. 
For every tel 

£ I^+1(Ф.+1)І sft+l(o£ ^Äšf>,+i(fo)f ^ Ц ^ 
r = 0 r = 0 r : r = 0 Г ! 
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Theseries 
yUiih) 

<p.+i(to)£ r ! 

is the convergent majorant to series (4,3). The statement of Theorem 5.1 is proved. 
* •<• •» , . ; 

Theorem 5.2. Suppose that 2° holds. Be at = oo for ail i » 0 ,1 , . . . , n. If 
00 00 

(5,3) J I A£s)ds 1 < oo, J | F(s)ds | < oo, for i =- 1, 2, . . . , w, 
-0 -0 

then all series of (4,3) converge uniformly on the interval I. 
The proof of this Theorem being analogous to that of the foregoing one, may be 

omitted. 

Theorem 5.3. If the conditions given for Theorem 5.1 are fulfilled, then for te I 
the following estimate holds: 

(5.4) i L,yi - £«:+1(*.+1) i g 9.+i(o T5T+?JT e x p { y , + 1 ( 0 } -

Proof. Let us denote 

«n+l(0 = f <+l(*-+l). 
r-ru+l 

Then according to (5,2) 

- ^ + I ( 0 T M T ) T L 1 + ^TT + (n + 2)(n + 3) + "J < 

< ^ + i ( 0 ^ | ^ M p { y . + i ( 0 } . 

which was to be proved. 

Theorem 5.4. Suppose that 2° /b&fe. Let a% » a /or a// / « 0 ,1 , . . . , /f. rfa?K fAe 
.yems o/ (4,3) converge uniformly on the interval It = </0, £>, where b > t0 is an 
arbitrary number. 

The proof of this Theorem is analogous to that of 5.1. Since 

(5.5) i«:+ i(*.+ i)i s 9 . + i W J - ^ - , 

00 ,vr (h\ 
the scries ]T ffj+iW , *s a convergent majorant to the series (4,3), so thai 

r«o r ! 
(4,3) converges uniformly on the interval / t . 
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Theorem 5.5. If the assumptions of Theorem 5.4 are fulfilled, then for t€lt it holds 

n v**1(t\ 
(5.6) | L,yt - I o « : + , . ( • , + ,) I g y.+ 1(0 J , 5 ^ , exp {ys+1(f)}. 

The proof of this Theorem, being analogous to that of 5.3, may be omitted. 

Lemma 5.6. Provided, y / 0 < oo, <p/f) < oo, then it holds 

(5.7) I <T/*,) | < sup «p/s) . (sup y/s))'. 
S€J S€j 

The proof will be given by using complete induction. For r = 1 it is 

I «}(#i) I = I QJQJ+I ... G.+i-i(#i) I ^ I w i + i . . . ft+i-id #i I) I * 
g sup <p/s) I qflj+x ... qn+J-i(l) | = sup <p/s) sup y/s), 

seJ seJ seJ 

which is the inequality of (5,7) for r = 1. 
Now suppose that (5,7) holds. Then according to (2,8) 

I «J+1(#y) I = I < W * y ) I = I W i + i - «.+i-i(l < W I) I = 
g sup <p/s)(sup y/s))r | q}qj+x ... ^ + i - i ( l ) | ^ 

seJ seJ 

<? sup <JO/S) (sup yj(s))r sup y/s) = 
seJ seJ seJ 

= sup<p/s)(supy/s))r+1. 
seJ seJ 

The proof is thus completed. 

Theorem 5.7. Suppose that 2° holds. Let us assume that for some s, 0 ^ s £ n — 1, 
as+t = oo, a/id that there exists at least one i,0 ^ i ^ n so that a,- = a. Suppose that 
it holds 

(5.8) ys+1(t) < oo, <ps+i(0 < oo. 

If a j> /0 is swcA tAat yS+1(a) < 1, */*<?# /Ac? series (4,3) converges uniformly on the 
interval <a, oo). 

Proof. If the assumptions of (5,8) are fulfilled, the functions ys+i(t) and <ps+i(t) 
are finite, continuous, and decreasing. Hence there exists a number a ^ t0 such that 

?s+i(0 -S ?s+i(a) < 1 

for t e <a, oo). According to Lemma 5.6., for t J> a it is 

(5.9) I <€l+ t(<Ps+1) I £ <ps+ x(a) fs+ t(a). 
00 

Since ys+i(«) < 1, the geometric series ]T <ps+1(a). yj+1(a) is a convergent majorant 
r-=0 
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to the series (4,3); therefore (4,3) converges uniformly on the interval <a# oo). 

The proof is completed. 

Theorem 5.8. If the assumptions of Theorem 5.7 are fulfills^ then for t $ <a, oo) 
the following estimate holds: 

(5,io) \L,yi - £o#:+1(#.+i)i = y;:i(a). ; * ^ } • 

Proof. Denote 

кя+i(0= I ^ + I(Ф, + I)-
г = n + l 

According to (5,9) 
GO 

I Rn+1(01 ^ <*»*+1(«) E r,r

+1(«) • -* 
r = n + l 

= cps+i(a)bn

s:i(a) + rfjjfo) + yn

stl(a) + y^fta) + ...] -

- ^s+i(a)ys

n:i(a)[l + yJ+1(a) + yf

2

+1(a) + ...] = 

~ Ys+lW"! - ^vT* 
1 - Vs+iW 

The proof is completed. 

Theorem 5.9. Suppose that 2° holds. Let a J + 1 = a a/td fAere ex/sfs / , 0 S / $ / i sa 
/hat a* = oo. Lef a, be the first number in the cycle a/a J + 1 , a s + 2 , . . . , aw + s swcA that 
aj = oo. Suppose that 

(5.11) y i ( t ) < oo, <p,(0< oo, 

Ao/d and there exists a number a g> t0 swcA fAa* y,(a) < 1. JAefi tAe series (4,3) con­
verges uniformly on the interval <a, b>, wAere b is an arbitrary number such that 
b > a. 

Proof. If the conditions of (5,11) are satisfied, the functions yt(t) and <p,(t) are 
continuous, finite, and decreasing. Accordingly, there exists a number a j> t0 such 
that yt(t) S yt(a) < 1 for all t *_ a. Taking into account the statement of Lemma 5.6, 
we can easily prove that 

1. if s + 1 g /, then for f € <a, 6> it holds 

(5.12) l*!,+ 1(*,+1)l = * S + M ( W (a)<Pi(a), r = 0,1, ... 

2. if s + 1 > /, then for r e <a, b> it holds' 

(5.13) | <^s+1(#s+1)| g x5+itl(t>)yr\a) <Pi(a), r =-= 1, 2, ... 

On the assumption that yt(a) < 1, there exists in either above case a convergent 
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geometric series to the series (4,3), which is its majorant; thus the series (4,3) con­
verges uniformly on the interval <a, by. 

Hieorem 5.10. Suppose the conditions of (5,9) are satisfied. Then for t€ <a, A> 
it holds 

(5,14) \LByt - t <d(»a+i)| £ *t+tMyr\a) *&> 
r-0 1 - 7lW 

for s + 1 £ /, 

<Pt(a) 
(5,15) \L#r- Ф.+1 - £ < + . ( • . + . ) , -SX.+i.X») ľľ(а) . У ł V"' , 

Xi - - УЛfl) 

fors + I > I. 
Since the proof of this "theorem is analogous to that of 5.8, it may be omitted. 
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