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ARCH. MATH. 1, SCRIPTA FAC. SCI. NAT. UJEP BRUNENSIS 
XV: 53—66, 1979 

ON CERTAIN IDEALS OF THE GROUP RING Z[G] 

LADISLAV SKULA, (Brno) 
(Received March 3, 1978) 

0. INTRODUCTION 

This paper deals with certain ideals 3, 3rm of the group ring 91 = Z[(7] of the 
cyclic group G of order / - 1 (/ an odd prime) over the ring Z of integers and especi­
ally the inclusion 3 £ 3rm- An equivalent condition for this inclusion is given by 
means of Bernoulli numbers (Theorem 3.4). 

The ground of the study of these questions is the class group of the /th cyclotomic 
field. The elements of Z[(7] act on this group and the elements of the ideal 3 
act trivially here. On the irregular class group of the /th cyclotomic field there 
act the elements of the group ring 91 = Z[G], where Z is the ring of /-adic integers. 
A great meaning for this irregular class group has the subring 91" of 91 and the 
ideal 3 " of 91"" which is derived from the ideal 3 . An important role is played by 
the Iwasawa's class number formula ([3]) expressing the first factor of the /th cyclo­
tomic field as a group index of certain additive group 9t~ in 91 and the group 
3~ = 3 n 91". Iwasawa proved this result in a more general form, for the /*+l th 

cyclotomic fields (n ^ 0). But we attend only to the case n = 0 in this paper. 
In the 4th paragraph we deal with the group 91""/3~ which is expressed as a direct 

sum of cyclic groups with special properties (Theorem 4.5 and 4.6). 
In the 5 th paragraph Theorem 5.3 gives some equivalent conditions for the M-group 

H" to be generated by a single element (over 91), where H" means the so called 
^imaginary irregular class group" of the /th cyclotomic field. 

1. NOTATION AND BASIC ASSERTIONS 

In this paper we designate by 

/ an odd prime number 
Z the ring of integers 
Z the ring of /-adic integers 
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r a primitive root modulo /* for each positive integer n 
rt the integer (/ e Z), 0 < rt < /, 

ri s r1 (mod /) for i = 0 
ry~f s 1 (mod/) for/ < 0 

G a multiplicative cyclic group of order / — 1 
s a generator of G, hence G = {1 = s°, s, s2,..., s*~2} 

Z $t = X ^i ^or suitable symbols 5,-
i i--0 

]£ <5* = 0 for suitable symbols S( and # = 0 
i'6_r 

91 = Z[G] the group ring of G over Z, 
thus 9t = {£ -V1 : « i e z } 

i 

91 = Z[G] the group ring of G over Z, 
thus 9t = {£ a,*1 : fl| 6 Z} 

i 

3 * { a 6 « : 3 ( ? 6 « , ( ? 2 ] r_V = /a} 
i 

= {X a/ : a, = - j - £ x,r_j+„ x, e Z, I x,r. = 0 (mod .)} 
i ' « » 

3 = {aeSR : 3 <?e5R, <?£-_,_' =/a} 

= {£ _,»': a, = -yXi x,r_i+„ x,eZ, I x,r. s 0(mod J)} 
i < t t 

» - = {ae9 . : ( l+s~-~ )a = o} 

= J£ a^': a, e Z, a, + a + i _ i = 0 for 0 < i £ -=—I 

« - = { « € « : (l + s~^~) a = o} = 

= j l <!,«': a._ Z, a. + a + i r i = 0 for 0 = i = ~y-[ 

3" - U n - r 
r=3n»-
m a positive integer, 
T an integer, 0 g J < / - 1 
A = rT'm-, 

3 = 3r - 3r» = { I V : - , e Z , £a,A' = 0(mod/»)} 
1 i 

3 - 3r - 3 r » = G-V 1 :a»6Z,Ia,A' • 0(mod/")} 

3" « 3r = 3F» = 3 n «~ 
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3~ = 3 " = 3f- = 3 n » -
h~ the first factor of the class number of the /th cyclotomic field over the rational 

field 
h~ = /a, where h~ = la . d, a, d non-negative integers, I)( d 

Obviously, 9T, 3, 3, 3~, 3 " are ideals in 9* and «"", 3, 3 , 3 " , 3T are ideals in 5R. 
We consider these ideals (together with 91 and 9?) additive groups, sometimes 91 ~ 
or 5R~ groups and the symbol [0 : Jf ] denotes the group index for a group # and its 
normal subgroup Jlf. 

1.1. Theorem (Iwasawa [3]). 

h~ = [ « " :3~] , h~ ==[91- :3~] . 

For the sequence of Bernoulli numbers Bn we use the "even-index" notation, thus 

B0 = 1, Bt = — —, 2J2 =• -g-, B3 -= 0, 2*4 = ——, ..., 

and we shall use their basic properties mentioned in the book [1]. 
By F we denote the set of all odd integers T, 1 £ T ^ / - 4 such that BT+X = 0 

(mod /). It is well known that for each Te F there exists a positive integer h(T) such 
that 

B,h (r)-ir + 1 5 0 (mod lhm) 

and for integer X > h(T) 
-5i-f-ir.fi -£0(modJ*) 

is satisfied. 

1.2. Theorem (Pollaczek [4], Satz IX). 

a==ZA(r) (TeF). 

2. THE IDEALS 3 

The following Proposition is easy to see. 

2.1. Proposition. 

3 = 3 n 9 t , 3~ = 3 n » - = 3 ~ n » - « 3 ~ n » . 

2.2. Proposition. The following statements are equivalent; 

(a) 3 c 3 , 
(b) 3 e 3 . 
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If T is odd, then we can add the statements: 

(c) 3~ s 3", 
(d) 3 " s 3 " . 

Proof. I. Let (a) hold and let a e 3 . Then there ejtfst xt e Z such that J] xfrf a 0 
r 

(mod/) and a = £ afs', where a, = — 2>,r_ i + f . Put ft, = - j -E^r . ,* , , 0 = £ V ' > 
i * t * t i 

where yfeZ, j , = xt (mod /m + 1) . Then j?e3 and 6f = af (mod/m). Therefore 
j? e 3 and 0 = £ ft^* s £ afA' (mod P). Thus a e 3 and the implication (a) -> (&) 

I i 

holds. 
If (b) holds, then according to 2.1 we obtain 3 e 3 n 9 t . _ ; 3 n 9 t = 3 - The state­

ments (a) and (b) are equivalent. 
II. The implication (b) -> (d) follows directly from the definition. 
If (d) holds, then according to 2.1, 3 ~ £ 3 ~ n W ~ ! £ 3 ~ n 9 t ~ = 3 ~ which 

gives the implication (d) -> (c). 
III. Let Tbe odd, 3~ £ 3~~ and a = £ afs

f e 3 (a, e Z). Then there exist integers xr 
i 

such that J] xfrf s 0 (mod /) and a{ «= -r-£ xfr_f+f. Put 

Л « < 

xf - x !_! for 0 g t <—— 
2 

í - 1 for i y i = t = / - 2. 

Then £ ytrf = £ xtrt - £ xfr ,_ t = 0 (mod /). 
t t t t + ~2~ 

If we put bi = - y £ y/_ i+f and j8 = £ -V', we get ß e 3 and 
* t t 

1 - 1 

ь , = 
a, - a _ ^ 

2 

вi - a j - i 
2 

for 0 rś i < 

for -І-Д < î < / - 2. 

From this we have /?e 3~ and according to the supposition /Je3~» hence 0 =s 
== £ tfl* s 2 ] [ fljA* (mod /m), whence we get a e 3- The implication (c) -* (a) is 

i < 

proved. 

23. Proposition. For even T the equalities 
3" - »~> 3~ - *" 

are satisfied. 
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Proof. Let a = £ ats
l e 5R , K (a, e Z, at e Z) respectively. Then a, + a i-1 = 

, *+ 
i ~ i 

= 0 for 0 <L i < * and according to the relation A( .2 A 2 (mod /""), 0 j£ i «J < - ! • . . . . _ , ł + 1 т 

1 - 3 
2 

= / - 2 , we get 0 = £ (at + a t.t) A, = £ ^A1 (mod/m), thus aeS", a e 3 - , 
.__o '+—2""* ' 

respectively. 

2.4. Lemma The following statements are equivalent: 

(a) 3 <= 3, 

(b) £ (r_l+, - r_,rr) A' ___ 0 (mod/w+1) for each t e Z. 
i 

Proof. Let xt e Z (0 g f = / - 2), £ x,r, = 0 (mod /), *i = -7- £ */-<+* (° = 
. * t 

:g / :g / — 2). Then there exists an integer 7 such that 
1-2 

*o = ~ £ xtrt + /y. 
t - = i 

From this we obtain 

£ _(A' = j, £ r.J + 1 '£x ,£ (r_ f + f - r_,r,)A'. 
i i * t = - l i 

If (b) holds, then T 4= 0, since otherwise for T = 0 we have £ (r_i+f — r„ft) A1' = 

= £ ( r _ , + , - r _ i r I ) = f c i ^ - ( l - r r ) . It holds / £ r.(X' i_ £ (/r_, - 1) A' = 
i - i f 

= £('- . '- .-i - r ,_.)A' s 0 (mod/M+1), hence £a,A' a 0 (mod/") and a = 
• ' + - 2 

= £afs'e3-
i 

If (a) is satisfied, we put x0 = —rt, xT = 1 and xt = 0 (1 = / ^ / — 2, f # T), 
where 1 «£ T ^ / - 2. Since a = £ ats* e 3, we have a 6 3 and according to y = 0 

i 

we obtain 
£ (r.<+T - r^r%) A< = / £ afs< _» 0 (mod r + 1 ) . 

i i 

The Lemma is proved. 

2.5. Consequence. For T = 0 am/ T - I the relation 

3ife3 
w satisfied. 
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Proof. If T = 0, then by the proof of 2.4 we have £ (/•-.*+, - r„ft) X1 4_ 0 
i 

(mod/1**1) for t + 0 (mod / - 1). From 2.4 it follows that 3 $ 3-

If T = 1, then for * = —s— we have 
H " 1 - 1 ___ Xtr-^-r^r/^X'a-^r' 

i , 

= - £ - _ / ( m o d I ) = - ( . - l ) . 
i 

Then from 2.4 we obtain the relation 3 ^ 3 * 

3. THE I N C L U S I O N 3 s 3 AND BERNOULLI NUMBERS 

In this paragraph we designate by 

c = / « - 1 ( / - r - 1) + 1 

s ___ r + 2c + ... + (/ - i)c. 

3.1. Lemma. If k is an integer, then 

( 0 -
Ci 1 ) ' -" 
\ fc p C + 1 " k - ° ( m o d r + 2 ) /or 0 = k ^ c - 2 and I > 3 . ' 

_ . « _ . . For m = 1 the assertion is clear. Let m > 1 and let t; be the /-adic expou-, 

Put a = (f\lk, p = (C ~ ! V, y - r * ! J/c+1-*, where k is an integer 

(a) í \ lk s 0 (mod /m+1) for 2 š k š c, 

(b) ( C _ 1 ) . * = 0(modr) / o r l ^ f c g c - 1 , 

(c) 

Proof. For m = 1 the assertion is clear. Let m > 1 and let i? be the /-adic exponent. 

in 

bounds from (a) — (c). We can also suppose k % c — 2. Further put 

x = ty(c — fc) + i?(c — fc — 1), 

y =_ V(c - k - 1), 

z = t;(c - fc - 1) + v(c - fc) + v(c - fc + 1). 

It holds 

w v k ) ( c -
c(c - 1) 
fc- l)(c-fc) ' 

/c - 1\ /c - 2\ c - 1 
V fc / v fc / c - f c - 1 ' 
/c + 1\ /c - 2\ (c + l ) c ( c - l ) 
\ fc ) \ k )(c-k- l ) (c - fc ) (c - fc + 1) ' 
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whence we obtain 

V(OL) jgm— 1+fc — x, 

v(p) ^ m - 1 + k - y, 
v(y _: m + c — fc — z. 

If x = 0 (y = 0, z -= 0), then (a) ((b), (c)) is satisfied. 
a) If x ^ 1, then k = PC.X+ fi, where X is a positive integer, / ^ X a n d s = 0 

or e = 1. Then V(OL) ^m-l+3x-x^m + l. 
b) If y ^ 1, then k = /y . X, where X is a positive integer, / ̂  X Then v(p)^m-

-l + 3y-y^m + L 
c) If z £> 1, then k = lz. X + e, where X is a positive integer, / ̂  X or X »• 0 

and € = 0, 1, 2. Then for / *> 5 we obtain c - k ^ 5r - 1, thus i>(y) § m + 5Z -
- 1 - z > m + 2. 

The Lemma is proved. 

3.2. Lemma. If t is an integer, then 

s(l - rc) = err1 £ (r- i + , - r_,r,) A<(mod JM+1). 

Proof. For any integer i(0 __ i f_ / - 2) there exists an integer u such that 

r_, = r*"1"* + lu. 
By 3.1(6) we have 

r c - i ^ r ( i - - i - i K c - i ) ( m o d r ) 

Since (/ - 1 - i) ( c - 1) = ( / - 1 - 0 / m ~ H / - -T- 1) s irr'^mod / " - H ' - *))» 
we get 

riV a Af(mod T). 
For i, r e Z we have 

r_ i+í * r-.^ + l r_ í + t ~ Г^Г, 
I 

from which, according to 3.1(a), it follows that 

„c __ _c „c , ^ .-c- l l-c- l r - i + t "~ r - i r f / ^ r t r 4 i m + 1 \ 

r_i+t = r-(rt + crt lr^t - (mod l h 

Thus we get for each t e Z 

s t t - r ^ I r i ^ - E r i ^ i E 
i i 

s c r r i - .A' r - ' + t " r - ' r ' (mod T+1) - e r r 1 1 (r.,+, - r_,r,)(mod T+1). 
i ' i 

Thus, the Lemma is proved. 
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3.3. Remark. The proof of Lemma 3.2 is realized according to the model of 
Pollaczek [4], proof of Satz VIII). 

3.4 Theorem. For T = 0 and T = 1 the relation 3 £ 3rm is satisfied. 
If T # 0, T # 1, then for T odd it holds 

3 s 3:_*<*-»im--<i-r-i)+i = 0Cmod/w), 

for T even and m > 1 it holds 

3 s 3rm<*£j--(i-r-i) = 0(modlm~l) 

and for T even and m = 1 the inclusion 

3 S_ 3rm = 3ri 
is satisfied. 

Proof. By 2.5 3 £ 3r« for T = 0 and F = 1. Let 0 # T * 1. Then 2 £ _T £ 
<» / — 2 and / > 3. According to 2.4 and 3.2 the relation 3 <__. 3rm is equivalent to 
the relation s s ©(mod/**1). Using 3.1(c), we see that 

- (:: ; ) w + ( c tl)™™* ^ = ^ - . . <2+ *+D*.., 

thus 

s = i-/2
JBc_1 + IBc(modr+1). 

Since c, c - 1 ̂  0(mcd/ - 1), Bc, Bc^x are /-integers. 

In case c = 2 we have m = 1, T = / - 2, _ s -^-(1 - 3/) * 0(mod/m+1) and 

.8,„-i(,_T_i)+i = B2 £ 0(mod/"+1). 

If c > 2, we have, in case T is odd, s = /£»c(mod / m + 1 ) , and i" case r is even, we 

get__=-l/-_.c_1(mod/"+1). 

It follows the Theorem. 

4. THE GROUP 8.-/3" 

4.1. Proposition. The groups «/3r»> */5i_. are cyclic groups ofor4er /». 
IfTis odd, the groups 9T/3r"«> * ~ / 3 . _ . *»» _yc/fc group. «»/ ̂ J - /" and if T is 

even, the groups are trivial. 
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For each element A of these groups (A e 8t/3r«. u 8t/3rm u 81-/3T* U ^"I^Tm) 

s(A) « r r r " ^ 
15 valid. 

Proof. We can easily see that {0, 1, 2, ..., lm - 1} is a complete system of 
representatives W/3rm a n c l W/3rm- _ 

In case Tis even we get from 2.3 that the grouds W73TI*
 and W / S T * are trivial. 

If T is odd, then \x (l -_f~*J - * = 0, 1, 2,. . . , r""1) is a complete system of 
representatives 9l~/3rm a n d 8t"73r»»-

Since r7'"1"1 - se3rm> we have s(A) =- r r ,m" ,A for each element ^ of given 
factor groups. 

Thus, the proposition is proved. 
From 4.1 we immediately get 

4.2. Proposition. 3Tlll 2 3r«+i> 3n* i 3rm+i and in case T is odd 

3TM us 3Tm+l>3Tm -? 3 r m + l ' 

4.3. Lemma. 2>f m(T) be a positive integer for each l ^ T ^ / - 2 , r odd. Then 

f l S f W l ^T£l-2> Todd,T*x) + 3 ^ t ) = 9T 

/or eacA odd integer T(1 4= T «* / — 2). 

Proof. Let aeK~, a =2>fA£(ajeZ, a, + a^ j - i « 0 for 0 ^ i? £ -~5~")« 

Put Ar - r ^ ' ^ ' f o r 1 S r £ / - 2, r odd. Since det (A'r) (o g i £ ^ - ^ , 1 £ 

< T£ I - 2, JoddJ = n(A r - Ar)(l £T<T'£l~-2;T, Tf odd) * 0(mod /), 

the system of linear equations 
1-3 

2 

X x ,^ = 0 (l ST SI- 2, Todd, T * t) 
1*0 J 

1-3 1-3 

i*0 i = o 

has a solution in /-adic integers x0^xt,...9 ^ # 

1-3 
2 

1-3 

If we put /? - £x,*'( l - , V ) and y _ £ ( f l , - xt)s'(i - ir) , we have /9< 

e (1W><» _ r <; / - 2, r odd, r * t), y'Vg-^} and a _ ^ + y 
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4.4. Notation. According to the Iwasawa's class number formula (1.1) we have 
[5HT : 3~] =ft~ and therefore by 4.1 for each odd T there exists a non-negative 
integer m(T) such that 3r»i(r) 2 3~ and 3rm -£ 3~, f°r integer m > m(T), where 
we define 3ro = W . 

4.5. Theorem. The %-group 9l~/3~ is W-isomorph to the direct sum of the %-groups 
9T/3fm<r) (T odd). For T odd it is satisfied 

(h(l - 1 - T) for T #. 1, B^T = 0 (mod /) 

-{? m(T) ,„ f 
, n otherwise. 

Further, (] ^Tm{T) (T odd) = 3~. 

Proof. Let S be the direct sum of the 9l-groups «"/3rm(T)> T_ °&&- F o r x ==: 

= [..., Xt, ...] e S (x odd, 1 £ t £ / - 2) there exists aT 6 Xt n f] 3 ™ ^ ^ T = 

^ / - 2, T odd, J 4= t) by 4.3. The mapping X-> £<zt (t odd, 1 g t g / - 2) + 
+ fl 3T»»(T) (-T odd, 1 £ T £ I - 2) is an ^-isomorphism of 5 on the M-group 
ST/PI 3rW)> (1 g T g / - 2, Todd), which has order I* by 4.1, where ^ = Sm(r) 
(1 <J T <; / - 2, r odd). From 3.4 we get for T odd 

-£ _ fft(/ - 1 - T) in case T * 1, B^t s 0 (mod /) 
' n otherwise. 

From Pollaczek's result 1.2 we obtain that the order of the group 9t"7f) 3rm(T) 
(1 <£ T <j / - 2, Todd) is equal to /i"", which follows the Theorem according to the 
Iwasawa's formula 1.1. 

From 4.5 and 4.1 we obtain 

4.6. Theorem. The 9t~group 5R~/3~ is a direct sum of Wi-groups &T(T e &"), where RT 

is a cyclic group of order lhm and for each Xe&T 

s(X)^r^1-T^lm'1X 
is valid. 

5. THE IRREGULAR CLASS GROUP 
OF THE Ith CYCLOTOMIC F I E L 0 

We can consider the group G the Galois group of the /th cyslotomic field over the 
rational field, where s is the automorphism fulfilling 

( 2ni\ 2tti 

e ' ) = e ' r. 
This automorphism s acts on the divisor class group F = (F, +) of the /th cyclo-

tomic field in the natural way and so the elements of the group ring 91 = Z[G] act 
on F as homomorphisms, 
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From Hubert's „Zahlbericht" ([2], Kapitel XXIV) we obtain the following 
assertion going back to Kummer. 

0) <p(y)=0 forq>e3,y-r. 

The /-Sylow subgroup of the group T is said to be the irregular divisor class group 
of the Ith cyclotomic field and we shall denote it by # . 

By Pollaczek ([4], Satz III) the group # is the direct sum 

# = £#, 
» = i 

of cyclic groups H{ of orders lm (mi are positive integers). We shall denote a generator 
of Ht (1 ^ i <; n) by Xi> For each 1 <£ i ^ zi there exists an integer T(, 0 ^ Tt < I - 1 
such that 

(2) s(Xi)^r^mi'1xi. 

Using equality {<? e 9t : ^(x) = 0 for each x e #,} = Sr,*, we obtain 3 c 3Tjm< 

and we get from 3.3: 

5.1. Theorem. Let 1 g / g «, Then 0 + 7*1 + 1. 
If r f is odd, then -#im.-i(,-r i-1)+1 = 0(mod/m'). 
IfTi is even and m{ > 1, then Blmi-i{l_Ti^1) == OimodT'"1). 

5.2. Remark. The assertion of 5.1 about odd T's is due to Pollaczek ([4], §6) 
(see also Remark 3.3). 

Put 
G = {1 = i£n : J, odd} 

and denote by 

# " -=£#, (/e(P) 

the direct sum of the groups # , (ie G). The subgroup H" of # is said to be the 
imaginary irregular divisor class group of the Ith cyclotomic field. 

The elements of the group ring JR -= Z[G] act on the group # in the natural way 
and from (1) we get 

(3) <K*)=0 for<pe5, X e # . 

For x e H" set 3X = {<p e 5R~ : <?(*) = 0}. 

5.2. Proposition. The following statements are equivalent for coe H": 

(<0 %» = {q> e M" : <p(x) = 0/or eacA *€ # ~ } , 
(b) co as £*,& (i'G), where xt are integers such that for each ieG there exists 

jeG with the property Tt~ Tj^mj^ mi and IJfXj. 
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Proof. Obviously, 3^ 2 {(p e 9T : <?(*) *= ° for each x e # " } . Let 0 g x, < /mi 

be integers (i e 0) such that co =- z * # , 0" e 0). 

I. Let (b) hold and let <p = J] ^s* e 3^(0* e Z). For i G 0 there exists j e 0 such 

that r, = Tj, mj ^ /w, and / ^ Xj. We have Xj(p(Xj) = 0, which follows 

X aJ / r ' , w '~' = 0(mod /m0, hence £ akrk7VM'"' = 0(mod /m<) 

and consequently <p(Xi) = 0. Thus <p(x) = 0 for each / G # ~ . 

II. Let (ft) not hold. Then there existsfe 0 such that //*, and ̂  < mi or m, = mj 
and //x,for / € 0 , T, = Tj. 

For i G 0 put 

= frT^1-s forrl + r i f 

If T, 4= Tj, we have <?,(/,) = 0. In the case Tt = Tj we get ^,(/f) = Fi~1Xi- Put 

<p = \1 -- s - * / Ucpi (ie0) (in the case 0 = 0, n<p, (ie 0) = 1). Then <p(aS) = 0 and 
consequently (p G 3 W . But (p(x7) = 2ylmj~1xj9 where >> is an integer, /^j?. 

Thus the Proposition is proved. 

5.3. Theorem. The following statements are equivalent: 

(a) The 'Si-group H~ is ^-isomorphic to the "Si-group JR~/3"\ 
(b) The Si-group H~ is generated (over 9t) by a single element. 
(c) 3 ~ = {<? e 9T : cp(x) = 0 for each x e # " } . 
(d) 1 = / * J = Ai=>r, 4= r,.. 
(e) If T is odd, 3 < T < I - 2, a/id m is a positive integer such that 

jB,m-.(j-r-D+i =" 0(mod /m), fAew fhere exists 1 ̂  i ̂  n so that T = T, a/jd m <> mt. 

If these conditions are satisfied, then the element I^,x, 0*^0) (jc, integer) is 
a generator of H~ over 9t if an only ifl)( x{for each i e 0. 

5.4. Remark. The equivalence of the statements (a), (b) is due to Iwasawa ([3], 
paragraph 4). 

P roof of 5.3. I. Let (d) hold. Let 0 * 0O £ 0 and x = Eytfi (/ e 0o)> 
where y{ are integers, //f JV F o r j e 0 o we have s(x) - rTjimj X =~ Xyi(rrilW<~ — 
_ rT'imj~X)Xt ( / e0 o ) = £z,x, 0'e<Po ^ {/})> where z, are integers, I Jf z,. 

It follows that every element co e # ~ of the form to = Sx,x, (i e 0), where x, are 
integers, / X *u is a generator of # ~ over 91. 
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Thus, (b) holds. 
Let co = HXiXi (*e 0) be a generator of H~ over % where xt are integers and Irt 

1 ._* J * & _* n so that Tj = Tk. Then there exist /-adic integers au(0 <_ u __ I -. 2) 
such that Xy = E *i_*"(o>)- Since 

x, = _«„ _ Vг«,я"~1x. - _ зд Z «/""""" _ _ù_-V""''~ t 

we have 
1 - Xj _ auruT'(mod 1), 

0 = xk_ aar
uT'(xaod I), 

U 

consequently xk s 0 (mod /) and Xj -£ 0 (mod /). On the other hand we can also 
show the contrary relation, which is a contradiction. 

Thus, (d) holds. 
The statements (b) and (d) are equivalent and according to 5.2 the assertion about 

the form of a generator of H~ holds, too. 

II. Let co be an element of H~ of the form from 5.2 (b). In a similar way as in [3] 
(p. 177) we put for q> e 9t~ 

Obviously, / is an 9t-homomorphism from 9t~ to / f with the kernel 3W =3 

= {<p e 9t ~" : g>(#) = 0 for each x e #"} (by 5.2). For q> == z\l - -?""*/ , where z is 
an integer such that 2z s 1 (mod lmi) (1 e 0), we have f(q>) = j9. The factor group 
SR"/30 is embedded into the factor group 9t~/3"" and also into H~. 

From I, 1.1. and 5.4 we obtain the equivalence of statements (a), (b), (c). 

III. For 1 e 0 put Ut = / - T( - 1. According to 3.4 U^ST and /,([/_) _r «<f 

hence _r ^ {(/<: / e 0}. According to 1.2 EWf (1 € 0) =- !h(U) (Ue^). 
If (d) holds, we have 3T -= {Ut: ie&} so that (e) holds, too. 
Let j \ keGJ * k, Tj -= Tk. Then there exists Uetr - {(7f : / e0} . The integer 

7* = / - u - 1 is odd, 3 <_ T <; / - 2, r 4= Tt for each 1 <i i <\ n and 5,_ r m 0 
(mod /). Consequently, it follows from the statement (e) that 

/ , je0, i + j ^ r , * ^ 

and according to the well-known Theorem ofPollaczek ([4], Satz VI) the statement (d) 
holds. Thus, the statements (d) and (e) are equivalent. 

The Theorem is proved. 
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