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ON CERTAIN IDEALS OF THE GROUP RING Z|[G]

LADISLAV SKULA, (Brno)
(Received March 3, 1978)

0. INTRODUCTION

This paper deals with certain ideals 3, Jr, of the group ring R = Z[G] of the
cyclic group G of order / — 1 (/ an odd prime) over the ring Z of integers and especi-
ally the inclusion I = J,,. An equivalent condition for this inclusion is given by
means of Bernoulli numbers (Theorem 3.4). _

The ground of the study of these questions is the class group of the I'® cyclotomic
field. The elements of Z[G] act on this group and the elements of the ideal 3
act trivially here. On the irregular class group of the /"™ cyclotomic field there
act the elements of the group ring ® = Z[G], where Z is the ring of /-adic integers.
A great meaning for this irregular class group has the subring R~ of R and the
ideal 3~ of R~ which is derived from the ideal I. An important role is played by
the Iwasawa’s class number formula ([3]) expressing the first factor of the I'® cyclo-
tomic field as a group index of certain additive group R~ in R and the group
3~ = 3N R". Iwasawa proved this result in a more general form, for the /**1t
cyclotomic fields (n = 0). But we attend only to the case n = 0 in this paper.

In the 4" paragraph we deal with the group R ~/3~ which is expressed as a direct
sum of cyclic groups with special properties (Theorem 4.5 and 4.6).

In the 5" paragraph Theorem 5.3 gives some equivalent conditions for the ﬁ-group
H~ to be generated by a single element (over R), where H~ means the so called
»imaginary irregular class group* of the I'* cyclotomic field. '

1. NOTATION AND BASIC ASSERTIONS

In this paper we designate by

l an odd prime number
Zz ‘ the ring of integers
Y 4 the ring of l-adic integers
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r a primitive root modulo /" for each positive integer
r the integer (i€ Z),0 < r; <,
ri=ri(mod/)fori= 0
rr i=1(mod/)fori <0
G a multiplicative cyclic group of order / — 1
s a generator of G, hence G = {1 = s%,5,5% ..., 5' %}

1-2
Y 8, =Y 6, for suitable symbols §;

i i=0

Y. 6,=0 for suitable symbols , and & = 0

R = Z[G] the group ring of G over Z,
thus R = {} a;s' 1 a,€ Z}

R = Z[G] the group ring of G over Z,
thus R = {Y ass’ 1 a,€ Z}

I={aeR ZBQE‘R,QZI‘_iSi = lo}
; 1
=(Yas:a= _I_Z X _ive, X, €Z, Y, X,y = 0 (mod )}
i t t
I={aeR:30eR, 0 r_;s' = ln}
1 —
= {Z as':a; = TZ X —jres €L, Z x,r, = 0 (mod )}
i t t

91’={a69%:(1+sg—‘)a=0}

1-3
={ aisi:aieZ,ai+a 1-1=0 forogig——f—}
H-T

oy 1-3
={ ais.:aiez9ai+a -1 0f0r0§i_s_———2——}
i+
3

m a positive integer,
T aninteger, 0 S T'<l/ -1
l = rrlm-l

I=3r=3m={>as:aq,€Z, zai},‘ = 0 (mod I™)}
i i
I=3r=3m=_3as 50;6—2—,20,}»‘ = 0 (mod I™)}
i i

IJ7=3r =3Jm=JnR"”
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3 =37 =3m=3n®R"

h~  the first factor of the class number of the /'® cyclotomic field over the rational
field
h~ = 1° where h~ = 1°. d, a, d non-negative integers, / ¥ d

Obviously, R, 3, 3, 3~, 3~ areidealsin Rand R™, 3, I, I, I~ are ideals in R.
We consider these ideals (together with R and R) additive groups, sometimes R~
or R~ groups and the symbol [% : #°] denotes the group index for a group ¥ and its
normal subgroup .

1.1. Theorem (/wasawa [3]).
Am=[R":3], A =[R:37]
For the sequence of Bernoulli numbers B, we use the “even-index” notation, thus

1 1 1
BO= I,Bl = ""'5-, Bz=—6-, B3 =0,B‘= '——3-—(')-, ey

and we shall use their basic properties mentioned in the book [1].

By J we denote the set of all odd integers T, 1 £ T < ! — 4 such that Byyy =0
(mod /). It is well known that for each T € J there exists a positive integer #(T) such
that

Bp.(r)-q-+‘ =0 (mod lh(T))

and for integer X > A(T)
Bix-s744 % 0 (mod I*)
is satisfied.

1.2. Theorem (Pollaczek [4], Satz IX).
a=3IKT) (Ted).

2. THE IDEALS §

The following Proposition is easy to see.
2.1. Proposition. , .
F=3nR, I =FnR " =F nR =3 nRK.
2.2. Proposition, The following statements are equivalent:
(a) RE=I
(b) 33
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If T is odd, then we can add the statements:

(C) B = 3-.:
C)) I"c§ .

Proof. L. Let (@) hold and let « € 3. Then there exist x, € Z such that Z xr, 30

(mod /) and « -ZG:S where g, ———Zx, —ise- Puth; = Zy,r 4B = Zb‘s,

where y,e Z, y, = x, (mod [I™*1), Then Be3 and b; = a;(mod I™). Therefore
BeJ and 0 = Z b' =} ail (mod I™). Thus xeJ and the implication (a) — (b)

holds.

If (b) holds, then according to 2.1 we obtain 3= I N R = JNR = 3. The state-
ments (a@) and (b) are equivalent,
II. The implication (b) — (d) follows directly from the definition.
If (d) holds, then according to 2.1, T =3 "R = J~ AR~ =3I~ which
gives the implication (d) — (¢).
III. Let Tbe 0odd, 3™ < I~ anda = ) a;s' € 3 (g, € Z). Then there exist integers x,
i

such that ) x,r, = 0 (mod/) and q, = -17-2 X,r— ;4. Put
1 i

Xe— X -4 for0§t<—l:2—1—

Xe—X -y for 1_1§t§l—2.

Then z“,y,r, = ;x,r, -y xr 1.1 =0 (mod I).
t _i'_

If we put b, = -II—Zy,r..,-,,, and B =Y b;s', we get feJ and
t 4

mr05i<111

PR
i+— 2

-1 .
@G =a i-1 for 5 <igl-2

From this we have fe 3~ and according to the supposition fe J~, hence 0 =
=Y bA' =2) a,A (mod /™), whence we get acJ. The implication (c) — (a) is
i i

proved.
2.3. Proposition. For even T the equalities

I = R-, 3- =R"
are satisfied.
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Proof. Leta = Y a;s'e R™, R~ (a,€ Z, a, € Z) respectively. Then a; + a,1-1=
i 2

- 1+ 121
! and according to the relation'A' = 4 2 (modI™),0<i S

=Ofor0§i<l2

1-3
2
Sl1-2,weget0= Y (a + a. - DA = Zail‘(modl”'), thus ae 3", 2e 3",
=0 ~5
respectively.
2.4. Lemma The following statements are equivalent:

(a) Jc3J,
(b) S oy —ror)A =0(modI™")  foreachteX.
i

Proof Let x,eZ 0<t<1-2), Y xr,=0(modl), a; = —%—Zx,r_“, =<
t

4
=< i £ 1 — 2). Then there exists an integer y such that
1-2
Xo = — Y. X1+ Iy.
t=1

From this we obtain
i i 1 'S
Ztail =yYr A+ T le, ; (Pogae = ror) AL
i t=
If (b) holds, then T # 0, since otherwise for T = 0 we have Z (Fojse—r_r) A =
I(l 1) i 1

=Z(r_,+,—r_,r,) = (1 —r). It holds IZr A= Z(Ir = DA =
= Z(r ir, 1=t 1)/’L = 0 (mod /™*"), hence Za,}.‘ 0 (mod /™ and «

-—Za,s eS

If (a) is satisfied, we put xo = —r,, x, =1land x, =0 (1 £t 1 -2, t#1),
where 1 <t </~ 2. Since « = ) a;5'€ 3, we have a € J and according to y =0
i

we obtain -
Y (reipe—r-rd A =13 a;s' = 0(mod I"*"),
i i
The Lemma is proved. -

2.5. Consequence. For T = 0 and T = 1 the relation

J¢3

is satisfied.
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Proof. If T = 0, then by the proof of 2.4 we have Z(r-H, —r_r)A %0
i

(mod I™*1) for ¢ £ 0 (mod / — 1). From 2.4 it follows that 3 & J.

IfT=1,thenfort=l_2

Z(r—iu —r_r) A= Z 1 —r_) Jmt
= —Zr ir (modl):-_ _(l__ 1)

Then from 2.4 we obtain the relation I ¢ J.

we have

3. THE INCLUSION 3< 3 AND BERNOULLI NUMBERS

In this paragraph we designate by

c=I"Y1-T—-1+1
s=1°4+2°+ ...+ (U -=1)r
3.1. Lemma. If k is an integer, then

(a) (;) I* = 0 (mod I™*) for2<k<e,
(b (C-I:l)l"s()(modl"') for1<k<ec—1,

© (C Jl: l)l‘“" =0(modI"*?)  for 0sks<c—2and1>3.

Proof. Form = 1 the assertion is clear. Let m > 1 and let v be the /-adic exponent.

Put ¢ = (Ii) * B = (c ; 1)1", y = (c ',t l)l‘“'k, where k is an integer in

bounds from (a) — (c). We can also suppose k < ¢ — 2. Further put
x=vfc—-k)+vic—-k-=1),
y=1uvc—-k-1),
z=v(c—-k-1D+vic—-k)+vic—k+ 1.

c\ _[c-2 cce—=1)
"\ k J—-k-=1)(c—-k)’
c—l c—2 c—1
"\ k Je—k=-1"

c+1 2 (c+De(c-1)
c-k—-D@c—-k(c—-k+1)’

It holds
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whence we obtain

v@)zm-—-1+k—x,
zm—-1+k-—y,
vyzm+c—k -z

If x=0(y =0, z =0), then (a) ((b), (¢)) is satisfied.

a) If x 2 1, then k = I*_ X + ¢, where X is a positive integer, / f X and ¢ =0
ore=1Thenv@2m—-1+3F=-x=m+ 1.

b)If y = 1, then k = /7. X, where X is a positive integer, / ¥ X. Then vp)zm-—
—1+3¥—-y2m+1.

¢) If z2 1, then k = I* . X + ¢, where X is a positive integer, [ ¥ X or X =0

and ¢ = 0,1,2. Then for [ > 5 we obtainc — k = 5° — 1, thus o(y) 2 m + 5 —
—1=z>m+ 2.

The Lemma is proved.

3.2. Lemma. If t is an integer, then
S(l - rf) = crf-l Z (r—i+t - r_,r,) }.i(mOd lm+1)-

Proof. For any integer i(0 < i £ ] — 2) there exists an integer # such that

roy=r g
By 3.1(b) we have

rot = T mod 1.

Since (| — 1 — i) = 1) =( =1 = i)"Y= T—1) = i7" *(mod I"*U = 1)),
we get

r°3t = A(mod ™).
For i,te€ Z we have

T—ij+e = T-ils
T_H.‘ = r_.iT‘ + l'__—l"_—,

from which, according to 3.1(a), it follows that

—tye=t T—i4s =TT, m+1
e = oot = S (mod I™T).

Thus we get for each te Z
s(1 —r) = ; e — 2‘: rerl =

- +1
=crft ; par Imiee = Toile 7 Tt (mod I™*1) = cr¢ ™t z‘: (F_iay = Tt (mod I" 7).

Thus, the Lemma is proved.
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3.3. Remark. The proof of Lemma 3.2 is realized according to the model of
Pollaczek [4], proof of Satz VIII).

3.4. Theorem. For T =0 and T = 1 the relation I & Jr., is satisfied.
If T#0,T # 1, then for T odd it holds '

3 E Jrm e Bim-1(=1-1)+1 = O(mod I™),
Jor T even and m > 1 it holds

3 S Jrm <> Bim-1g-1-1, = O(mod ")
and for T even and m = 1 the inclusion

3 < Jrm =In1
is satisfied.

~

Proof. By 25 3¢ S for T=0and T=1.Let04+ T# 1. Then2 T <
< I -2and! > 3. According to 2.4 and 3.2 the relation I € JIrm is equivalent to
the relation s = O(mod I™*1). Using 3.1(c), we see that

Cc+Ds=Y (c -’t I)Bklc+1~k =

k=0

(c ! l) Byl + (c . 1) Bimod ) = XD p Pty pypy,

]

c—1 ¢ 2
thus

I’B,_; + IB, (mod I"*1).

_c
s = —2-
Since ¢, ¢ — 1 £ O(med !/ — 1), B,, B._, are l-integers.

Incase c=2wehave m=1, T=1-2 5= -‘1,7(1 —3* 0(modAI’”“) and

Bl"'"(l-'r—l)'l'l = Bz * O(mod l'+l). .
If ¢ > 2, we have, in case T is odd, s = /B (mod /™*"), and 1" ®@se T is even, we

—;-1219 _,(mod I"*1),

1t follows the Theorem.

gets =

4. THE GROUP R°/3"

4.1. Proposition. The groups R/Jrm @gr.. are cyclic groups of ordey m,

If T is odd, the groups R~ [J1m, R [I1a are cyclic groups of Order m and if T is
even, the groups are trivial.
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For each element A of these groups (A € R|I1m U R/IJ1m U R-/I1m U R™/I7)

s(A) = rT"7'4
is valid.
Proof. We can easily see that {0, 1, 2, ..., /™ — 1} is a complete system of

representatives /I, and R/Jrp.

In case T'is even we get from 2.3 that the grouds R~ /Jr, and R~ /Iy, are trivial.
-1

If T is odd, then {x (1 - s_z—) 1x=0,1,2,.., l"‘"’} is a complete system of
representatives R~ /Jrm and R~ /J7m.

Since 7" — s€ Jrm, We have s(4) =r
factor groups.

Thus, the proposition is proved.

From 4.1 we immediately get
4.2. Proposition. Srp 2 Srm+1s I1m B Irm+1 and in case T is odd
31w 2 Irme 15 Itm B Jtmes-
4.3. Lemma. Let m(T) be a positive. integer foreach 1 S T <1 — 2, T odd. Then
NI S TS =2,Todd, T+ 1) + Jpey = K™
for each odd integer 1(1 + 1 S 1 — 2).

T4 for each element A of given

Proof. Let ae®™, « =Z“‘°'(".-Ef, a,+a,.,.l_1 =0for 0gis 123).
T -1
2

Put Ay = ™" "7 for 1 £ T <1 -2, T odd. Since det (1) (0 <is 5—?2—3- 15

s T§1—2,Todd)=ﬂ(/1r-lr)(l ST<T S1-2;T, T odd) % 0(mod ),

the system of linear equations

™

l

™Me

xAr =0 (ISTZ1-2Todd, T+1)

i=0
1-3 1-3
2 . 2
L
Z xllf = Z al"‘f
i=0 i=0

has a solution in /-adic integers xo, X, , ..., x,_5 .

1-3 1?
2 -1 R -3
If we put § = ;Z:ox‘s‘(l -5 2 ) and y = ¥ (¢; — x)) s'(l - s\z“) , we have B e
i=0

€ﬂ§¥.m(l STsS!1—-2,Todd, T 1), ¥ € Sy and & =B+

61




4.4. Notation. According to the Iwasawa’s class number formula (1.1) we have
[®~ :37] =h" and therefore by 4.1 for each odd T there exists a non-negative
integer m(T) such that J7,q) 2 3~ and J;, 2 37, for integer m > m(T), where
we define 370 = R~

4.5. Theorem. The R-group R~|3~ is R-isomorph to the direct sum of the R-groups
R [Smer) (T 0dd). For T odd it is satisfied

m(T) = hl-1-T) forTéf:I, B,_r =0 (mod /)
0 otherwise.
Further, (| S1mcry (T 0dd) = J~.

Proof. Let S be the direct sum of the R-groups R~ /Jzmcr)» T 0dd. For X =
=[..,X,..]eS(todd, 1 £t <! —2)thereexistsa, e X, N () Jrmrl ST =
<1-2,Todd, T+ 1) by 43. The mappin_g X—-3Zq,(todd, 1 7= l: 2) +
+N Srmry (T 0dd, 1 £ T £/~ 2) is an R-isomorphism of § on the R-group
R/ Smery, (1 S T < [ — 2, T odd), which has order /* by 4.1, where u = Zm(T)
(1£T< 1 -2, Todd). From 3.4 we get for T odd

_Jhd—1-T) incase T * 1, B,_, =0 (mod ])
m(T) = {0 otherwise.

From Pollaczek’s result 1.2 we obtain that the order of the group R”/(\ Jzmr)

(1 £ T 1 -2,Todd)is equal to £, which follows the Theorem according to the

Iwasawa’s formula 1.1.
From 4.5 and 4.1 we obtain

4.6. Theorem. The R-group R~ |3~ is a direct sum of R-groups K(T € T), where Ky
is a cyclic group of order I"™) and for each X € Q¢

s(X) = r@-1-1 m=iy
is valid.

5. THE IRREGULAR CLASS GROUP
OF THE /" CYCLOTOMIC FIELD

We can oonsider the group G the Galois group of the /' cyglotomic field over the
rational field, where s is the automorphism fulfilling

2ri Znir
s(c ! ) =e! .

This automorphism s acts on the divisor class group I' = (I, +) of the I'* cyclo-
tomic field in the natural way and so the elements of the group ring ® = Z[G] act
on I' as homomorphisms.
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From Hilbert’s ,,Zahlbericht* ([2], Kapitel XXIV) we obtain the following
assertion going back to Kummer.

¢)) oy =0  for e, yerl.

The /-Sylow subgroup of the group I’ is said to be the irregular divisor class group
of the I'*® eyclotomic field and we shall denote it by H.
By Pollaczek ([4], Satz III) the group H is the direct sum

=ZH
i=1

of cyclic groups H; of orders I™ (m; are positive integers). We shall denote a generator
of H;(1 £i < n)byx;. Foreach1 < i £ nthereexistsaninteger 73,0 S T; </ — 1
such that

@ sGr) = ™ My,

Using equality {¢p € R : ¢(x) = 0 for each x € H;} = Jr,m, We obtain I S Jrm,
and we get from 3.3:

5.1. Theorem. Let 1 <i<n. ThenO # T, % 1.
If T, is odd, then Bym.~1_1,_y),y = 0(mod /™).
If T, is even and m; > 1, then Bym~1_,—1, = O(mod I™™").

5.2. Remark. The assertion of 5.1 about odd T’s is due to Pollaczek ([4], § 6)
(see also Remark 3.3).
Put
O0O={1<i<n:T odd}
and denote by

H™ =XH, (ic0)

the direct sum of the groups H; (i € 0). The subgroup H~ of H is said to be the
imaginary irregular divisor class group of the I'® cyclotomic field.

The elements of the group ring ® = Z[G] act on the group H in the natural way
and from (1) we get

(3) o(x) =0 for pe3, yeH.
For ye H™ set 3, = {peR™ : (y) = 0}.
5.2. Proposition. The following statements are equivalent for o € H™ :

@ 3, ={peR™ : @) =0 for each ye H"},
(®) @ = Zxx; (i€ 0), where x, are integers such that Jor each ie O there exists
Jj € @ with the property T; = T;, m; 2 m;and 1 f x;. .
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Proof. Obviously, 3, 2 {p e R~ : o(y) = 0 for each ye H™}. Let 0 < x; < I™
be integers (i € @) such that o = Xx;x; (i€0).

I Let (b) hold and let ¢ =Y g,s* € J(a € Z). For ie O there exists je 0 such
3
that T, = T;, m; 2 m; and I } x;. We have x;¢(x;) = 0, which follows

Y a7 = 0(mod ™), hence Y ar*T™ ' = O(mod I™)
k k

and consequently ¢(x;) = 0. Thus ¢(y) = 0 for each ye H™.

IL Let (b) not hold. Then there exists j € @ such that //x; and m; < m; or m; = m;
and l/x; for ie 0, T, = T;.

For ie 0 put

{r“m‘_1 -5 for T; + T},
@i pTAMTL L mtt s for T, =T,

If T; % T;, we have @(x;) = 0. In the case T, = T; we get ¢,(x,) = I™ ;. Put

-1
Q= (1 - sﬁz-—) Ig; (i€ 0) (in the case 0 =0, Ig; (ie 0) = 1). Then ¢(w) = 0 and
consequently ¢ €3,,. But o(x;) = 2yI™~'y;, where y is an integer, / t y.
Thus the Proposition is proved.

5.3. Theorem. The following statements are equivalent:

() The R-group H™ is R-isomorphic to the R-group R~|3~.

(b) The R-group H~ is generated (over R) by a single element.

) 3" ={peR™ : () =0 for each ye H}.

@D1=si*xjsn=>T+T,

@ If Tis odd, 32 T<1—2, and m is a positive integer such that
Bim-1j-1-1y+1 = 0(mod I™), then there exists | < i < nsothatT = Tyand m < m,.

If these conditions are satisfied, then the element Tx;y; (ie 0) (x; integer) is
a generator of H™ over R if an only if | ¥ x,for each i€ 0.

5.4. Remark. The equivalence of the statements (a), (b) is due to Iwasawa ([3],
paragraph 4).

Proof of 5.3. I Let (d) hold. Let 8 + 0, < 0 and yx = Zyy; (i € Oo),
where y, are integers, 1 1 y,. For je 0, we have s(x) — r™™ 'y = Ty (™ ~

P g (ie®y) =Xz (i€ 0y — {j}), where z, are integers, ! } z,.
It follows that every element w € H~ of the form w = I xx; (i € 0), where x, are
integers, I Y x;, is a generator of H™ over R.
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Thus, () holds.

Let o = Zx,x, (i € 0) be a generator of H~ over R, where x; are integers and let
1 £j# k < nso that T; = T,. Then therc exist [-adic integers q,(0 S u <!~ 2)
such that y;, = ) a,s%(w). Since

Tam—1 Tam=—1
X= Za..Zx;r' ! = inx‘Za,,r" !
u ie® ie® "

we have
1=x;Y a,r*T(mod I),
"

0=1x7Y ar*"(modl),

consequently x, = 0 (mod/) and x; £ 0 (mod /). On the other hand we can also
show the contrary relation, which is a contradiction.

Thus, (d) holds.

The statements (b) and (d) are equivalent and according to 5.2 the assertion about
the form of a generator of H~ holds, too.

II. Let w be an element of H~ of the form from 5.2 (8). In a similar way as in [3]

(p. 177) we put for p e R~
f(®) = o(B).
Obviously, f is an R-homomorphism from R~ to H~ with the kernel 3, =
-1

={peR" :p(x) =0 for each ye H~} (by 5.2). For ¢ = z(l - ST) , Where z is
an integer such that 2z = 1 (mod I™) (i € 0), we have f(p) = . The factor group
R~/I,, is embedded into the factor group R~/3~ and also into H™.

From 1, 1.1. and 5.4 we obtain the equivalence of statements (a), (b), (c).

1. For i€ 0 put U, =/ — T, — 1. According to 3.4 U,eJ and h(U) = m,,
hence 7 2 {U, : i e 0}. According to 1.2Zm,; (ie 0) = ZTh(U) (Ue J).

If (d) holds, we have F = {U; : i € 0} so that (¢) holds, too.

Let j, k€0, j + k, T; = T,. Then there exists Ue I — {U, :ie 0}. The integer
T=1-U-1is0dd,3£T<!-2, T+ T,foreachl<i<nand Bj_r =0
(mod /). Consequently, it follows from the statement (e) that

Lje0, i%j=>T, #T,

and according to the well-known Theorem of Pollaczek ([4], Satz VI) the statement @)
holds. Thus, the statements (d) and (e) are equivalent.
The Theorem is proved.
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