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AN EMBEDDING PROBLEM AND ITS APPLICATION 
IN LINGUISTICS 

JOSEF DALIK, Brno 

(Received June 27, 1977) 

0. I N T R O D U C T I O N 

We say that an ordered pair (V, L) is a language if V is a finite set (the alphabet) 
and L is a subset of the free monoid V* over V. 

Let (V, L) be a language. We define for a e V 

<rL(a) = {(u, v); (u, v) e V* x V* and uaveL}. 

We call <rL(a) the set of all contexts accepted by a in (V, L). We 

put 

ҖV,L) pure homonym 
ҖV,L) root 
P(V,Ľ) partial homonym 
KKL) > = {<тL(a); a is a < initial word-form 

ҖV,Ľ) nonhomonym 
ПKL) free homonym 
C(V,L) complete element 

in(ҚL)}. 

The definitions of the above mentioned special types of elements of the alphabet can 
be found in [6] or in [4]. Let us denote 

9I(V,L) = {(rL(a);aeV}. 

We say that a language (V,L) contains no parasitary elements whenever the empty 
set 0 is not in 9I(F,L). The set 9I(V,L), ordered by inclusion, is a finite poset for 
each language (V, L). 

Let G be a poset. If (V, L) is a language and r: G -> 9l(V, L) an isomorphism then 
we call the ordered pair (r, (V, L)) a p-representation of G. 

In the Main theorem we characterize, for a given finite poset G, all ordered seven-
tuples (H, R, P, I, N, F, C) of elements from 2° (the set of all subsets of G) such that 
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there exists a p-representation (r, (V, L)) of G with the following properties. (V, L) 
contains no parasitary elements and {r(a); aeM} = M(V, L) for M = H,R, P, I, 
N, F, C. 

1. FORMULATION OF THE PROBLEM 

Let n > 0 be an integer. We denote by {at, a2,..., an} the finite set containing just 
the elements ai9a2, ...,an. In case « = 0 w e define {al9 a2,..., an} = 0. Further, 
we put U0 = 0. 

Let A, D be sets and e: A -» D a map. We denote e[jB] = {e(#); * e B} for each 
5 £.4. If e(a) = a for all a e A then we call e an identity map. If, moreover, D = A 
then we put e = lA. We say that e is an embedding (of A into D) if A, D are posets 
and if a ^ & o e(a) ^ e(&) for all a, b e A. Obviously, any embedding is an injection. 

The definitions of the minimal condition, the closure operator, and the Galois 
connection can be found in [3]. 

Let G be a poset We put coG(a) = {b; b e G and b ^ a} for each ae G. Each 
subset of G is considered partially ordered by the restriction of the ordering on G. 

We denote by VGA the l.u. bound of A in G for each A £ G and write a V b 
instead of VG{a, b}. We define VG0 iff there exists the smallest element o in G; then 
we put VG0 = o. 

1.1. Lemma. Let G be a poset, aeG,B^G, C(b) £ G for each beB. If a = VGB 
andb = VGC(fr) for each beB then a = VG U C(b). 

beB 

1.2. Definition. Let G be a poset. We call ae G (completely additively) irreducible 
(in G) if a = VGA => a e A for each A £ G. 

We denote by IRG the set of all irreducible elements in G. Further, we put 

/ I R G U {#} 1f o is the smallest element in G, 
IKG — v 

XIRG if there is not a smallest element in G. 

1.3. Definition. Let if be a poset and G £ H. We call G a o-dense subset (in # ) 
if there exists A(a) £ G such that a = VHA(a) for each a e FT. 

1.4. Lemma. Let H be a poset and G a o-dense subset in H. Then IRH £ G. 

We now give a sufficient condition under which the converse of 1.4 is true. 

1.5. Lemma. Let H be a poset and let there exist a o-dense subset G, satisfying the 
minimal condition, in H. Then IRH is a o-dense subset in H. 

Proof. Let us put O = {a; a e G and a ^ VHA for each A £ IRH}. If 0 # 0 
then there exists m minimal in O. Since m £IRH, we can find A £ H such that 
m$A,m — VHA. As G is <r-dense in H, there exists B(a) £ G with the property 
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a = yHB(a) for each a e A. If we put B = \J B(a) then B £ G and m = VH# by 1.1. 

The obvious fact J n O = 0 implies the existence of C(b) £ IR# such that £ = 
= VHC(b) for each 6 eB. By this and by 1.1, it follows that m = VHC for C = 
= (J C(b). Since C s IRH, we have a contradiction with meO. Thus, 0 = 0 and 

the statement follows by 1.1. 

1.6. Definition. Let G be a poset and S a complete lattice with the smallest element o. 
We call the map e: G -> S a <r0-dense embedding (of G into S) if e is an embedding, 
e[G] is a cr-dense subset in 5, o <fc e\G\. 

1.7. Remark, (i) If we omit the requirement o $ e[G] in 1.6 then we obtain the 
concept of a cr-dense embedding which was studied in [1], [5], [7] and in many 
other works. 

(ii) Let 5 be a lattice. Then S is finite and nonempty whenever there exists a (70-dense 
embedding of a finite poset into S. 

1.8. Definition. Let S be a lattice. 
(i) We call a e S strong (in S) if b < c, a \\ c => a V b < a V c for all b, c e S. 

(ii) We call a e S (completely additively) primitive (in S) if a ^ VSA => there 
exists & e A such that a = & for each 4̂ £ 5. 

We denote by Ss, P s the set of all strong, primitive elements in S, respectively. 

1.9. Definition. Let S be a lattice and o the smallest element in S. 
(i) We call a e S an atom (in S) if b < a => & = o for each 6 e S. 
We denote by As the set of all atoms in S. 
(ii) We call N s S a nonhomonymous set (in 5) if N is finite, N s Ss n P s n As 

and if no element from As is the smallest one in S — cos(VsN). 
We denote by 9ls the set of all nonhomonymous sets in S. 

1.10. Lemma. Let S be a lattice with a smallest element and N £ Ss n P s n As 

a finite set. Then IRS n cos(VsN) = N. 

Proof. Clearly, N c IRS n cos(VsN). If aecos(VsN) then a = Vs_4 for A = 
= {&; &eNand b = a} by [4] II, 1A6. If, moreover, aeIRS then aeA^ N. Thus, 
IRS n cos(VsN) c N. 

We shall see that our Main theorem is an easy consequence of the main results 
from [4] II and of the solution of the following 

1.11. Problem. Let G be a poset satisfying the minimal condition. What are the 
necessary and sufficient conditions imposed on an ordered fourtuple (I, R, N, C) of 
subsets' of G for the existence of a complete lattice S and a a0-dense embedding eofG 
into S such that <?[/] = As, e\R\ = IRS, e[N] € 9ls, e[C] = P s . 
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2. O-GENERATING SYSTEMS AND O-EMBEDDING 
OPERATORS 

2.1. Definition. Let G be a poset. We call A S G an initial segment (in G) if coG(a) S 
S .4 for each aeA. 

We denote by QG the set of all initial segments in G. 

2.2. Definition. Let G be a poset and © S 2°. We call © a O-generating system 
(on G) if 

(i) © S QG, 
(ii) n ^ e © for each 21 s ©, 91 * 0, 

(iii) o>G[G] S ©, 
(iv) {0, G} s ©. 
We denote by Gs(G) the set of all O-generating systems on G. 

2.3. Lemma. Let G be a poset, © e Gs(G), 91 s ©, § = © - 2 1 . If 
(i) 21 n (coG[G] u {0, G}) = 0 and 
(ii) ji>r each ,4 e 91 there exists aeG — A such that 

A^B9a^B=>Be^ forallBe® 
then § e Gs(G). 

Proof. Clearly, 2.2 (i), (iii), (iv) hold for §. For an arbitrary 93 s £, 93 ?- 0 
we have (193 e © and we can find A(a) e 93 with the properties (193 S A(a), a$A(a) 
for each aeG - fl-8. This and 9t n 93 = 0 give (193 #9t. It follows that (193 e § 
and 2.2 (ii) is true. 

2.4. Lemma. Let G be a poset and q> a closure operator on 2G. Then the assertions (i) 
and (ii) hold for all A9B S G. 

(i) B S A S <?(£) ==> <p0*) = <?>(£)• 
(ii) <p(<p(-4) u 5 ) = cp(A u J8). 

2.5. Definition. Let G be a poset and <p a closure operator on 2°. We call <p a 
O-embedding operator (on 2G) if q>({a}) = o)G(a) for each aeG and <p(0) = 0-

We denote by Op(G) the set of all O-embedding operators on 2G. 

2.6. Remark. If we consider Gs(G), Op(G) partially ordered then the ordering on 
Gs(G) is the inclusion and that on Op(G) is the following. For arbitrary <p9 \j/ e Op(G) 
we have <p S & whenever cp(A) s \j/(A) for each A s G. 

2.7. Definition. Let G be a poset. We associate a map £G© : 2G -> 2G, defined by 
ZQ<5(A) = f) B for every A s G, with each © e Gs(G) and a set £G<? = <p[2G] 

with each cp e Op(G). 
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2.8. Theorem. Let G be aposet. The pair £G, GG forms a Galois connection between 
the posets Gs(G), Op(G) and it holds 

&G%G = = 1 G S ( G ) » QG&G = -Op(G)* 

2.9. Lemma. Let G be a poset and © e Gs(G). Then ©, ordered by inclusion, is a 
complete lattice in which meets coincide with intersections and V^Sl = £G©(U3l) for 
each 91 c ©. 

Proof. The first part of the statement follows by 2.2 (ii), (iv) and by theorem 10 
from [3]. By 2.8, £G© is a closure operator on the complete lattice 2G. The second 
part of the statement is now a consequence of theorem 15 from [3]. 

The connection between the concept of a O-generating system and that of a ovdense 
embedding is formulated in the following fundamental theorem which was proved 
in [5] for the case of cx-dense embeddings. 

2.10. Theorem. Let G be a poset. Then 

(i) For each © e Gs(G), coG : G -» © is a a0-dense embedding. 
(ii) For each o0-dense embedding e ofG into a complete lattice S there exist © e Gs(G) 

and an isomorphism i : S -> © such that te = a>G. 

2.11. Corollary. Let G be a poset and ©eGs(G) . Then IR@, P^ , A®, and all 
N e 9t$ are subsets of wG\G\. 

Proof. This assertion is a consequence of 2.10 (i), 1.4, and of the inclusions 
P@ <= iR^ f A3 s IR@, N c IR@ for each N e Sfl%. 

3. S P E C I A L P R O P E R T I E S O F E L E M E N T S 

I N O - G E N E R A T I N G S Y S T E M S 

A N D T H E 0 - E M B E D D I N G O P E R A T O R q>l 

3.1. Definition. Let G be a poset and a e G. We put 

(oG(a) = coG(a) — {a}, eG(a) = {b; beG and a <; b), 

tG(a) = G - eG(a). 

3.2. Lemma. Let G be a poset. Then 

(i) BG(a) _= BG(b) oa ^ 6 for all a, beG. 
(ii) caG (a) c £G(6), a e eG(6) => a -= ft for a// a, beG. 

(iii) A $ s G ( a ) o a e A f o r all aeG, AeQG. 
(iv) coG (a) e A[ o A \j {a} e QGfor all aeG, AeQG. 

3.3. Lemma. Let G be a poset and aeG. Then a $ IRG if and only if a = VGooG (a). 
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3.4. Lemma. Let G be a poset, © e Gs(G), a e G. Then the assertions (i) and (ii) 
are equivalent. 

(i) coG(a)eIR^. 
(ii) coG(a)e©. 

Proof. Let us put 91 = (o®((oG(a)). If be coG (a) then b e (oG(b) e 91 by 2.10 (i) and 
we have (oG(a) c U91. This inclusion and the obvious validity of its converse imply 
oG(a) = U91. By 2.9, it follows that V@9I = £G©(U9I) = £G©(coG(a)). Since either 
c;G©(coG(a)) = (0G(a) or £G©(coG(a)) = (oG(a), it holds V@9l = coG(a) iff coG(a) # ©. 
Now, the statement follows by 3.3. 

3.5. Lemma. Let G be a poset, © e Gs(G), a e G. Then the assertions (i), (ii), (iii) are 
equivalent. 

(i) coG(a)eP@. 
(ii) £G(a) e ©. 

(iii) a £ £G©(A) for each AeQG such that a$ A. 

Proof. Let us assume coG(a) e P@. Then (oG(a) $ V^9I for each 9t £ © such that 
coG(a) $ U91. We have US = eG(a) for 93 = ©G[*G(a)]. By (oG(a) $ U93 and by 2.9, 
it follows that coG(a) $ V -̂B = ^G©(%(a)). Hence, a £ £G©(£G(a)) e © and, con
sequently, £G©(%(a)) c gG(a) by 3.2 (iii). Since the inverse inclusion is obvious, we 
obtain £G©(£G(a)) = €G(a) and, consequently, £G(a) e ©. We have proved (i) => (ii). 

If BG(a) e © then for A e QG satisfying a £ A it holds A c eG(a), £G©(AT) £ 
£ ^G©(go(«)) = 5G(«) and a £ £G©(A). Thus, (ii) => (iii). 

Suppose a £ c;G©04) for each AeQG with the property a $ A. If coG(a) £ V@9l 
for 91 s © then a e £G©(U9l) by 2.9. This gives a e U91 and there exists 
.v4e2l such that fle.4; we have coG(a) £ A and, therefore, coG(a)eP@. Hence 
(iii)=>(i). 

3.6. Definition. Let G be a poset, © e Gs(G), a e G. We denote by f (©, a) the follow
ing assertion. 

A V (oG(a) s . 4 u coG(a) u eG(a) for each A e ©. 

3.7. Lemma. Let G fo? a poset, © e Gs(G), a e G. Then 

(i) (oG(a) e S@ n P@ => r ( © , a), 
(ii) coG(a) 6 A^, ^(©, a) => coG(a) e S@. 

Proof. Suppose (oG(a) eS@nP@ . Let us admit that there exists A e © such that 
.4 V (oG(a) $ . 4 u coG(a) u eG(a). Then, clearly, A \\ (oG(a) and we can find be Aw 
v oG(a) with the properties wG(b) $ 4̂, coG(&) || coG(a). If we put B = A V coG(6) then 
A c B. Further, 5 s coG(a) would imply A £ coG(a) which is a contradiction. 
Similarly, coG(a) s B = .A V coG(A) would imply either coG(a) ^ A ox (oG(a) c coG(&) 
because coG(a)eP@; both cases are impossible. Thus, JJ||coG(a). Simultaneously, 
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A V coG(a) = (A V coG(a)) v coG(£) = B V c0G(a) which contradicts coG(d) e S 0 . Thus, 
TT(®, a) is true. 

Suppose coG(a) e A@, ^(©, a). Let us take A9 Be® such that A <z B9B\\ (oG(d), 
Then a4B, a$ A and there exists beB — A. The facts coG(a) e A$, *5 n c0G(a) c: 
c coG(a) give 5 n c0G(a) = 0. For this reason b $ a. As, at the same time, a $ B9 we 
obtain a $ b. Hence, b\\ a and it follows that b$Av coG(a) according to f (©, d)> 
Since A s 5 and beBv coG(a), it holds A V cyG(a) c i v <wG(a). We have proved 
coG(a)eS®. 

3.8. Corollary. Lef G be a poset. Let us take © e Gs(G) and aeG in such a way that 
coG(a) e P$ n A&. Then the assertions (i) and (ii) are equivalent. 

(i) coG(a)eS(^. 
(ii) r(%9 a). 

We shall now deal with a O-embedding operator of a special kind which will often 
appear in our considerations. 

3.9. Definition. Let G be a poset. We call R an irreducible Set (in G) if IRG s i? s G. 

3.10. Definition. Let G be a poset and R an irreducible set in G. We put 

§G = {A; AeQG and coG(a) ^ A => aeA for each a e G — JR}. 

3.11. Lemma. Let G be a poset and R an irreducible set in G. Then § G e Gs(G). 

Proof. The condition 2.2 (i) is satisfied trivially. Let 91 s §G be nonempty. 
Then, clearly, 091eQG . If a>G(a) c fl9l for a6 G - JR then coG(a) £ AmdaeA 
for each A e 91. It follows that a e 1191. We have R9T € ££ which proves 2.2 (ii). If 
ct>G(a) c coG(6) for ae G - JR, 6e G then 6 is an upper bound of coG(d). Since 
a = VGco~(a) by 3.3, we obtain a e a>G(6). For this reason coG(b) e § G and 2.2 (iii) 
is true. If co^(a) £ 0 for a e G then a is minimal in G. Clearly, a e IRG and, conse
quently, a$G — R. Thus, 0 e §G . As G6 §G in an obvious way, 2.2(iv) holds. 

3.12. Lemma. Let G be a poset andR an irreducible set in G. Then IR$g =* coG[R\ = 
= Pag. 

Proof. Clearly, coG(a)$§* for each aeG - R. By this, 3.4, and 2.11, IR$g £ 
£ G)G[JR]. Suppose coG(6) £ BG(a) for arbitrary aeR9 beG — R. If b$BG(d) then 
b e sG(a) and b = a according to 3.2 (ii). This is a contradiction. Hence, we have 
beBG(a) and, therefore, %(a)e$G . Since a>G(a)eP#g by 3.5, we obtain coG[R\ £ 
c p#g. The statement follows by the proved inclusions and by P#g s IR#g. 

3.13. Lemma. Let G be a poset9 R an irreducible set in G, © e Gs(G). Then 

IR® £ coG[R\ if and only if © £ §*. 
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Proof. Suppose IRg. £ COG[JR]. Take an A e © arbitrarily. If coG(a) £ ,4, a$A 
for some a e G - R then coG (a) = A n coG(a) € ©. Since coG(a) e IR@ by 3.4, we have 
coG(a)eCOG[JR]. This result and 2.10(i) give asR which is a contradiction. Hence, 
aeA, Ae&S, and S g §J , 

Let us now assume © £ §*. If A e IR$ then A = coG(a) for some a e G by 2.11. 
According to 3.4, a)G(a)e© £ §G and ^ = o>G(a)eIR$g = ct>G[.K] by 3.4, 3.12. 
Thus, IR@ £ coG[Rl 

3.14. Definition. Let G be a poset and R an irreducible set in G. We put <p* = £G§*. 

3.15. Remark. From the definition of ©G it follows that ©G = QG for any poset G. 
Then, clearly, cpG(A) = A for each A e QG. 

The following implication is of a great importance. 

3.16. Lemma. Let G be a poset, © e Gs(G), R an irreducible set in G with the 
property coG [J?] = IR@, N £ G a y?/?ife sef such fhat <%[N] £ S& n P @ n A @ . 
JAe« /ar arbitrary a e G, A e © 

coG (a) £ ^, cp*(A u N) = £G(a) => coG(a) e V%. 

Proof. Let us put cp = £G®. Then cp e Op(G), (£G<p = © by 2.8. Suppose coG(a) £ 
£ A, cpG(A u N) = £G(a) for a e G, ^ e ©. As a £ <pg(A u N), it holds a $ A = <p(A). 

Let us denote {al5 a2 , . . . , a„} = N — A. From a{e^G(a) it follows that a ^ af; 
coG(a) £ .A gives aÎ coG*(a) which is equivalent to af <fc a. Thus a || ax and we have 
a$coG(ai) u £G(ai) for i = 1,2,..., n. 

Suppose a <£ <p(-4 u {ax, a2,..., a,}) for somef e {0,1, . . . , n — 1}. Then, according 
to a $ coG(aj+ x) u eG(aJ+1) and 3.8, we obtain a $ cp(A u {ax, a2,..., a,}) V coG(aJ+1). 
By 2.9, 2.4 (ii), it holds cp(A u {aua2,..., a,}) V <p({ai+1}) = <p(<K-4 u {al5 a2, ..., 
aj}) u cp({aJ+1})) = <p(A u {al9 a2, ...,aj} u <p({ai+1})) = cp(A v{al9al9...9 

aj+i}). Since <p({ai+1}) = coG(ai+1), we have a<frcp(A u {a1?a2, . . . ,a i+1}). 
By induction, we obtain a $ cp(A u N) which is equivalent to cp(A u N) £ £G(a). 

With respect to 3.13, it holds © £ §£ which gives cp G ^ cp by 2.8. Now, £G(a) = 
« <pSU u N) £ <p(_4 u N) £ £G(a) and, clearly, <p(,4 u N) = sG(a). Then £G(a) € © 
and a)G(o) e P@ by 3.5. 

4. SOLUTION OF THE PROBLEM 

4.1. Definition. Let G be a poset. We denote by MG the set of all minimal elements 
in G. 

4.2. Theorem. Let G be a poset and © e Gs(G). Then 

A® = coG[MG"j. 
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Proof. For aeMG we have (oG(a) = {a} and, clearly, 0)G(fl)eAr If a$MQ 

then there exists b < a in G. We obtain 0 e a)G(b) c c0G(fl) by 2.10(i) and (0G(a) # 
£ A@. The statement now follows by 2.11. 

4.3. Definition. Let G be a poset and R an irreducible set in G. We say that N is 
an R-nonhomonymous set (in G) if N is finite, N £ MG, and if no element from MG 

is the smallest one in R — N. 

4.4. Definition. Let G be a poset, R an irreducible set in G, N an jR-nonhomonym-
ous set in G. Then 

(i) We denote by FG(R, N) the set of all ae R such that either (pG((oG(a) u N) = 
= BG(a) or there exists be G satisfying (oG(a) c (oG(b), <pG((oG(b) u N) = £G(a). 

(ii) We say that C is an R, N-primitive set (in G) if PG(JR, N) u N £ C £ R. 

4.5. Definition. Let G be a poset. We call an ordered triple (R, N, C) suitable (in G) 
if R is an irreducible, N an .R-nonhomonymous, C an R, N-primitive set in G. 

<ĹQ 

6 o o 
A i> or 

Figure 1 

4.6. Example. Let G be the poset from Fig. 1. We construct a suitable triple (R, N, C) 
in G. As IRG = G, there is only one irreducible set R in G, namely R = {a, b, c, d}. 
We can easily check that N is {a, b, c, d}-nonhomonymous in G iff Ne {0, {a}, {b}, 
{c}, {a, b}, {a, c], {a, b, c}}. Let us put N = {c}. According to 3.15, PG({a, b, c, d}9 

{c}) = {x; xe {a, b, c, d} and either coG (x) u {c} = sG(x) or there exists y e G such 
that (oG(x) c coG(y) and coG(y) u {c} = £G(x)}. We see 0 = (oG(a) c coG(b) = {b} 
and (oG(b) u {c} = {b, c} = sG(a). That is why a e PG({a, b, c, d}, {c}). Similarly, we 
verify *ePG({a, b, c, d}, {c}), c$PG({a, b, c, d}, {c}), d$¥G({a, b, c, d}, {c}), so 
that PG({a, b, c, d}, {c}) = {a, b}. Now, C is {a, b, c, d}, {c}-primitive iff {a, b, c] £ 
£ C £ {a, b, c, d}. We put C = {a, b, c}; then (R, N, C) = ({a, b, c, d}, {c}, {a, b, c}) 
is a suitable triple in G. 

4.7. Theorem. Let G be a poset satisfying the minimal condition, © 6 Gs(G), N e 9lm. 
If(oG[R] = 1R&, (oG[N] = N, (oG[C] = P@ then (R, N, C) is a suitable triple in G. 

Proof. R is an irreducible set in G: Suppose a e IRG. If a is not a smallest element 
in G then a e IRG and a is not the 1. u. bound of coG (a) in G by 3.3. Thus, there exists 
an upper bound b of (oG(a) in G such that a %b. We obtain (oG(a) £ coG(a) n coG(b). 
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Since a 4 coG(b), it holds also the inverse inclusion and coG(a) = coG(a) n coG(b) e ©. 
If a is the smallest element in G then coG(a) = 0 e ©. In both cases we obtain coG(a) e 
6IR@ by 3.4. As coG is an injection by 2A0(i), we have aeR andIRG £ R; this gives 
the statement. 

N is an jR-nonhomonymous set in G: iV is finite by 2.10(i) and N s MG by 4.2. 
Suppose that there exists a e MG which is the smallest element in R — N. Let A e 
e © — c%(V@N) be arbitrary. Obviously, cuG[G] satisfies the minimal condition. 
It is a tj-dense subset in © by 2.10(i). It follows by 1.5 that IR@ is a cr-dense subset 
in ®. Thus, there exists 2C £ IR® = COG[JR] such that A = V^Sl. Since A $ c%(V@N), 
it holds 21 $ N. As coG[R - JV] 2 21 - N *- 0, we can find b e R - N with the 
property coG(b) e 91. But then a ^ b and c0G(a) c coG(b) £ -4. We have proved that 
coG(a) is the smallest element in © — c%(V^N). As, at the same time, coG(a) e A^ 
by 4.2, we have a contradiction with N e 5l@. 

C is an i?, N-primitive set in G: Suppose a e FG(R, N). Then a e R, coG(a) e IR@ 

and, by 3.4, co^(a)e ©. Further, <pG(A u N) = £G(a) for some v4 6 c%[G] u {<%(#)} 
such that coG (a) _= A. As c%[G] u {a>G (a)} £ (g? it holds ^ G ©. By 3.16, we obtain 
coG(a) € P® = c%[C]. Then a e C according to 2.10(i) and we have proved PG(R, N) c 
S C. The remaining inclusions N ^ C, C ^ R hold trivially. 

In the following, we find a O-generating system © on G satisfying coG[R~\ = IR@> 

coG[N] € 9l@, caG[C] = P@ for a given suitable triple (JS, N, C) in a given poset G. 
According to 3.13, © c ££. By 3.16, each A( e § G , such that there exists aeR - C 
with the properties a)~(a) c A[, ̂ (Al u JV) = gG(a), is necessarily in §G - ©. This 
leads to the 

Figure2 
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4.8. Definition. Let G be a poset and (R, N, C) a suitable triple in G. We put 

t)G(R, N, C) = {A; A. e §£ and there exists aA e R - C such that 

^ofai) £ A, cpR
G(A u N) = eG(aJ} and 

3G(i^,N,C) = § G - t ) G ( i? ,N ,C ) . 

We shall often write D, 3 instead of DG(i?, N, C), 3G(K, N, C), respectively. 

4.9. Example. Let us take the suitable triple (R, N, C) = ({a, b, c, d}, {c}, {a, b, c}) 
in the poset G from 4.6. Then DG({a, b, c, d}, {c}, {a, b, c}) = {A; A e§g and 
co~(d) £ A, cpg(A u {c}) = eG(d)} = {A; A e 0G and {a} £ A, ^ u {c} = {d, 
&, c}} according to 3.15. It is clear that DG({a, 6, c, d}, {c}, {a, b, c}) = {{a, b}, 
{a, b, c}} and 3 = 3G({a, b, c, d}, {c}, {a, b, c}) = 0G - £>G({a, b, c, d}, {c}, {a, 
b, c}) = {0, {a}, {b}, {c}, {a, c}, {a, d}, {b, c}, {a, b, d}, {a, c, d}, {a, b, c, d}}. We 
can easily verify 3 G Gs(G). In Fig. 2 we can see that coG[{a, b, c, d}] = IR^, 
coG[{c}] e 91^, cyG[{a, b, c}] = P^. 

We prove that the conclusions of 4.9, namely 3 = 3G(#> N> Q G Cta(G), coG[R] » 
t= IR^, coG[N]e9l^, coG[C] = P3, are true for any suitable triple (R, N, C) in 
any poset G. 

4.10. Lemma. Let G be a poset and(R, N, C) a suitable triple in G. Then 3GOR> N,C)e 
€ Gs(G). 

Proof. We verify the validity of 2.3(i), (ii) for D. 
If there exists A = coG(a) in D then cp*(coG(a) u N) = BG(aA) and co^(aA) £ coG(a). 

Each of the cases co^(aA) = coG(a), co^(aA) c coG(a) implies aA e 1?G(R, N) £ C which 
contradicts aAeR - C. Thus, coG[G] n £> = 0. If 0 e $ then co~(a%) = 0, <pG(N) = 
= £G(a0). It is clear that a0 e MG. For an arbitrary aeR — N, coG(a) e P#* by 3.12. 
This, the obvious fact Ne QG, and 3.5 give a $ cp*(N). Since cpG(N) = £G(tf0), we have 
a £ %(a0). Then a e eG(a0) and, consequently, JR — N £ eG(tf0). By this and by 
a0 e R -N, it follows that a is the smallest element in R — N. But then N is not an 
.R-nonhomonymous set which is a contradiction. We have proved 0 £ I). Since 
G $ 35 in a trivial way, 2.3(i) is satisfied. 

Clearly, aA£A for each A e X>. Let us assume jBe$G , A. £ B, dA$B. Then 
°>G(^)

 s & and> a s -8 -̂  BG(aA) by 3.2(iii), it follows y 4 u N £ j 8 u N £ £G(aJ = 
= (^04 u N). This and 2.4(i) imply cpl(B u N) = zG(aA). Thus, Bet) and we 
have proved 2.3(H). 

The statement follows by 3.11 and 2.3. 

The following lemma formulates an interesting property of the operator cp*. 

4.11. Lemma. Let G be a poset, R an irreducible set inG,Ae$G
1
9ae G. I/COQ (a) £ A 

and B £ A u eG(a) for some BeQG then cp*(B) £ A u eG(a). 
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Proof. Let us admit that there exists b0 e (p%(B) ~ [A u eG(a)]. Since b0 e (p*(B) -
- B, we obtain o>G(b0) $ P$« by 3.5 and b0 e G - R by 3A2. 

Let there exist an integer / = 0 and elements b0,bx, ...,bt such that b0 > bt > 
> ... > bt and bj e q>l(B) - [A v eG(a)], bjeG - R for j = 0, 1, ..., i. Then, 
clearly, (oG(bt) n eG(a) = 0 and we also have coG(£,)$ -4. Indeed, coG(bi) c ^4, 
&, e G — ./?, A e § G give if e A which is not true. Thus, there exists bi+l < bt such 
that bi+i$A KJ eG(a). Since bi+1 e q>G(B) - B, we obtain bi+leG - R by 3.5, 3.12. 

By induction, we construct an infinite descending chain b0 > bt > ... which is 
a subset of (pG(B) - [A u eG(a)]. Let us put C = q>l(B) - U %(*.)• lt i s c l e a r that 

CeQG. If coG (6) c C for * e G - R then co<:(6) c Cpl(B) and b e (?£(£). If b e 
e U %(^i) then there exists fe {0, 1, ...} such that beeG(bj). It follows that bJ+le 

€ (oG(b) c c and we have a contradiction. Thus, be C and Ce § G . Since B c C, 
we have <?£(£) £ <PG(C) = c» t h i s contradicts C c <pG(B). 

4.12. Lemma. Let G be a poset, (R, N, C) a suitable triple in G. If aeN then 
r{%(R,N,C),a). 

Proof. Let us take an A e 3 arbitrarily. We prove A V coG(a) £ A u eG(a) by 
transfinite induction. 

(1) We put B° = <pl(A U {a}). Since A e §£ , (oG(a) = 0, it holds A u {a} e QG 

and £° £ A u eG(o) by 4.11. In case B°eT> we have q>G(B° u N) = £G(aflo) and 
(oG(aBO) c j5°. If (oG(aBo) £ A then A e 3D. Indeed, eG(aBo) = <pG(B° u N) = 
= <pG(<pG(v4 u {a}) u N) = <pG(A u N) by 2.4(ii) because a e N. It is a contradiction. 
Thus, there exists Ae(oG(aBO) - A. As beB° - A and B° £ A u eG(a), we have 
b e eG(a) and %0 e eG(a), too. 

(2) Let A # 0 be an ordinal number. Suppose BM e D, B" c A u eG(tf), aBM e eG(a) 
for each ft < A and i?M c iT for all fi < v < A. 

(a) If A is a successor ordinal then we put 2?A = y^B*'1 u {aB;-i}). Since aBA-i e 
e Bk - £ A ~ \ we have J5A_1 c Bk and 5M c 5V for all pi < v < A H- 1. Clearly, 
£ A _ 1 u {%A-I} £ A u eG(a) and it holds Bkl u {%A-I} e (2G by 3.2(iv) because 
Bk~l eQG and coG(aB,.-i) £ BA_1. 

(b) If A is a limit ordinal then we put BA = <pG( \J BM). For each \i < A there exists v 
fi<X 

such that \i < v <A and we have B" c J5V £ BA. It follows that B" c Bv for all 
/ *< v < A 4- 1. Simultaneously, \J B^eQG and (J B" c A u eG(a). 

(c) Both in (a) and in (b) we obtain BA c ^ u eG(a) by 4.11. If BA e D then B° c 5A 

gives BG(aB0) = <p£(-B° u N) c (pG(BA u N) = sG(aBA). Thus, aB0 g aB,. according to 
3.2(i); by this and by aBo e eG(a), it follows that aB* e eG(a). 

(3) If Bk is defined then B° c J?1 c . . . c 5A , £* c G for each ^ g A, and J T e © 
for each ix < k. This and the connections between cardinals and ordinals (see [2]) 
give the existence of an ordinal \i such that B* is not defined. Then, necessarily, there 
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exists an ordinal v < \i satisfying Bv e 3- As A £ 5°, coG(a) £ B°9 we have A 5 B*% 

coG(a) £ Bv and A v coG(a) £ Bv. On the other hand, by (2)(c), 5V £ ^ ^ eG(a) 
and we have A V coG(a) £ A u eG(a). 

4.13. Theorem. JLe/ G be a poset and (K, N, C) a suitable triple in G. Then coG[#\ ** 
= IR^G(KiV c), coG[NJ e 9l̂ 0(R,Ar,c)> <%[£] = ^G(«.iV,c)» 

Proof. (1) a>G[l(| = IR^: As 3 £ £*, we obtain IR3 £ coG[.R] by 3.13. By 4.10, 
0 6 3 = §* - D. By this and by N £ MG, it follows that co~(a) = 0 £ D for each 
#eN . Let aeR — N be arbitrary. According to 3.12, coG(a)eP£g. This, a§§ 
£ <%(#) u N, 3.5, give a £ <pG(coG(a) u N). If coG (a) e D then cp*(coG(a) u N) = BG(b) 
for b = a^-^). That means coG(a) £ BG(b), a&sG(b); by 3.2(h) we obtain 6 =* a. 
But then &e PG(JR, N) £ C and we have a contradiction with beR — C. We have 
proved coG (a) £ D for each aeR. Since 3 = So ~" ^ anc* © G W e 6G by 3.12, 3.4, 
we obtain coG(a)e3 for each aeR. Then ct>G[.R] £ IR^ by 3.4. 

(2) coG[C] = P3: It follows from (1) that P 3 £ coG[i?]. Let us take aeR - C. 
It holds £G(a) e §£ by 3.12, 3.5. As a $ C, N £ C, we have aeN.lfb$ BG(a) for 
some 6 e N then a < b and & £ MG which is not true. For this reason BG(a) u N =* 
= BG(a) and <p£(sG(a) u N) = £G(a); this and coG(a) £ gG(a) give BG(a) e D. Then, 
clearly, BG(a) $ 3 and coG(a) $ P^ according to 3.5. We conclude P^ £ coG[C]. 

Let us take an a e C arbitrarily. Then BG(a) e § G by C £ R, 3.12, 3.5. If coG(£) s 
£ BG(a) for b e R - C then b eBG(a). Indeed, by b e eG(a) and 3.2(h), it follows that 
a = b which is a contradiction. Now, eG(a) $ D in an obvious way and BG(a) e 3 = 
= §G — D. Then coG(a) e P^ according to 3.5. We have proved coG[C] £ P3 . 

(3) coG[N\ e 9ls: By (2) and by 4.2 we obtain coG[N] £ P^ n A3. This inclusion, 
4.12, and 3.8 give coG[N\ £ S^. Thus coG[N] £ S^ n P^ n A3 and, clearly, coG[N] 
is a finite set. Let us assume that there exists A e A^ which is the smallest element 
in 3 - co3(VscoG[N]). Regarding 1.10 we have IR3 n co%(V%coG[N\) = coG[N\. Then 
(IR^ — coG[N\) n co3(VcvCOG[N]) = 0 and, consequently, IR^ — coG[N\ £ 3 — 
"""" ^ ^ c t ^ ] ) * ®y ^ s anc^ by t^ie properties of A we obtain that A is the smallest 
element in IR^ — c%[N]. As AeA^, there exists a e M G such that A = coG(a) 
according to 4.2. By these results and by (1) it follows that a is the smallest element 
in R — N. We have a contradiction with the fact that N is an i?-nonhomonymous 
set in G. 

4.14. Corollary. Let G be a poset satisfying the minimal condition and (I, R9 N, C) 
an ordered four tuple of subsets of G. Then there exists a a0-dense embedding e of G 
into a complete lattice S such that e[I\ =- As, e[R\ = IRS, e[N] e 9ls, e[C\ = P s 

if and only if I = MG and (R9 N, C) is a suitable triple in G. 

Proof. Let there exist a <70-dense embedding e of G into a complete lattice 5 
such that e[I\ = As, e[R\ = IRS, e[N]G9ls, e[C\ = P s . By 2.10(h), there exist 
<& e Gs(G) and an isomorphism i: S -* © such that le = coG. Then coG[J] = ie{I\ = 
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= *[AS] = A^ and, similarly, CDG[R] = IR@, coG[N"]e 91®, (oG\C\ = P@. By this 
and by 4.2, 4.7,1 = MG and (R, N, C) is a suitable triple in G. 

Suppose that J = MG and (R, N, C) is a suitable triple in G. If we put S = 
= 3GC#> -V, C) and e = c0G: G -> 5 then e[7] = As by 4.2 and e[jR] = IRS, e[N] € 
e9l s , e[C] = P5by4.13. 

5. MAIN THEOREM 

Let (V, L) be a language. We put 

Z9r(V,L) = {UcrL[A];Ae V}. 

For each language (V, L), XS&(V, L) is a finite lattice with 0 as the smallest element 
and with union as the operation of join. If a language (V, L) contains no parasitary 
elements then the identical map from 9I(V, L) into £5I(V, L) is a <r0-dense embedding. 

Let S be a lattice. We call an ordered pair (r, (V, L)) an 1-representation of S if 
(V, L) is a language and r: 5 -> Z2I(V, L) an isomorphism. 

Using the statements [4] II, 3.1 and [4] II, 3.3, we can easily prove 

5.1. Theorem. Let Sbe a nonempty finite lattice and (H, R, P, I, N, F, C) an ordered 
seventuple of subsets of S. Then there exists an 1-representation (r, (V, L)) of S such 
that (V, L) contains no parasitary elements andr\_M\ = M(V, L)for M = H, R, P+I, 
N, F, C if and only if H s S - IRS, R = IRS, P = IR5 - As, I = As, N€ 9ls, 
F = As - N, C = P s . 

5.2. Main theorem. Let G be a finite poset and (H, R, P, I, N, F, C) an ordered 
seventuple of subsets of G. Then there exists a p-representation (r, (V, L)) ofG such 
that (V, L) contains no parasitary elements andr [M] = M(V, L)for M = H, R, P, I, 
N, F, C if and only if I = MG, (R, N, C) is a suitable triple in G, H = G — R, P = 
= R - MG, F = MG - N. 

Proof. Let there exist a p-representation (r, (V, L)) of G such that (V, L) contains 
no parasitary elements and r [M] = M(V, L) for M = H,R, P, I, N, F, C. The ordered 
pair( lm F ,L ) , (V ,L)) isan 1 -representation of I%(V,L) andH(V,L) s I9l(V,L) -
~ IRm(v,L)> R(̂ > L) = lRm(VtL), P(V, L) = TRm(VtL) — AimVtL), I(V, L) = 
= Amv,L)9 N(V, L) e 9tmv.L» HK L) = A W , L ) - N(V, L), C(V, L) = P W , L ) 

according to 5.1. By these results, by the fact that r: G -> Z2I(V, L) is a cr0-dense 
embedding, by 4.14, it follows that / = MG and (JR, N, C) is a suitable triple in G. 
By the definition of a pure homonym we have H = G — R. The assertions P = R — 
- MG, F = MG - N hold trivially. 

Let now I = MG, (R, N, C) be a suitable triple in G, H = G - R, P = R - MG, 
F = MG — N. By 4.14, there exists a c0-dense embedding e of G into a complete 
lattice 5 such that e\I\ = As, e[i*] = IRS, e[N] e 9ls, e[C] = P s . Then, clearly, 
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e[H] c s - IRS, e[P] = IRS - As, e[F] = As - e[N"], and S is a nonempty 
finite lattice by 1.7(ii). According to 5.1, there exists an 1-representation (r\ (V, £,)) 
of 5 such that (V, L) contains no parasitary elements and r'[e[M]] = M(V, L) for 
M = H, R, P, I, N, F, a If we put r = r'e then the ordered pair (r, (V, L)) is 
a p-representation of G and r[M] = M(V, L) for M = H, R, P, /, N, F, C. 
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