Archivum Mathematicum

Josef Dalík

An embedding problem and its application in linguistics

Archivum Mathematicum, Vol. 14 (1978), No. 3, 123--137
Persistent URL: http://dml.cz/dmlcz/106999

Terms of use:

© Masaryk University, 1978
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

AN EMBEDDING PROBLEM AND ITS APPLICATION IN LINGUISTICS

JOSEF DALÍK, Brno

(Received June 27, 1977)

0. INTRODUCTION

We say that an ordered pair (V, L) is a language if V is a finite set (the alphabet) and L is a subset of the free monoid V^{*} over V.

Let (V, L) be a language. We define for $a \in V$

$$
\sigma_{L}(a)=\left\{(u, v) ;(u, v) \in V^{*} \times V^{*} \text { and } u a v \in L\right\} .
$$

We call $\sigma_{L}(a)$ the set of all contexts accepted by a in (V, L). We

$$
\text { put }\left\{\begin{array}{l}
\mathbf{H}(V, L) \\
\mathbf{R}(V, L) \\
\mathbf{P}(V, L) \\
\mathbf{I}(V, L) \\
\mathbf{N}(V, L) \\
\mathbf{F}(V, L) \\
\mathbf{C}(V, L)
\end{array}\right\}=\left\{\sigma_{L}(a) ; a \text { is a }\left\{\begin{array}{l}
\text { pure homonym } \\
\text { root } \\
\text { partial homonym } \\
\text { initial word-form } \\
\text { nonhomonym } \\
\text { free homonym } \\
\text { complete element }
\end{array}\right\} \text { in }(V, L)\right\} .
$$

The definitions of the above mentioned special types of elements of the alphabet can be found in [6] or in [4]. Let us denote

$$
\mathfrak{A}(V, L)=\left\{\sigma_{L}(a) ; a \in V\right\}
$$

We say that a language (V, L) contains no parasitary elements whenever the empty set \varnothing is not in $\mathfrak{A}(V, L)$. The set $\mathfrak{A}(V, L)$, ordered by inclusion, is a finite poset for each language (V, L).

Let G be a poset. If (V, L) is a language and $r: G \rightarrow \mathfrak{A}(V, L)$ an isomorphism then we call the ordered pair $(r,(V, L))$ a p-representation of G.

In the Main theorem we characterize, for a given finite poset G, all ordered seventuples (H, R, P, I, N, F, C) of elements from 2^{G} (the set of all subsets of G) such that
there exists a p-representation ($r,(V, L)$) of G with the following properties. (V, L) contains no parasitary elements and $\{r(a) ; a \in M\}=M(V, L)$ for $M=H, R, P, I$, N, F, C.

1. FORMULATION OF THE PROBLEM

Let $n>0$ be an integer. We denote by $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ the finite set containing just the elements $a_{1}, a_{2}, \ldots, a_{n}$. In case $n=0$ we define $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}=\emptyset$. Further, we put $\cup \emptyset=\varnothing$.

Let A, D be sets and $e: A \rightarrow D$ a map. We denote $e[B]=\{e(b) ; b \in B\}$ for each $B \subseteq A$. If $e(a)=a$ for all $a \in A$ then we call e an identity map. If, moreover, $D=A$ then we put $e=1_{A}$. We say that e is an embedding (of A into D) if A, D are posets and if $a \leqq b \Leftrightarrow e(a) \leqq e(b)$ for all $a, b \in A$. Obviously, any embedding is an injection.

The definitions of the minimal condition, the closure operator, and the Galois connection can be found in [3].

Let G be a poset. We put $\omega_{G}(a)=\{b ; b \in G$ and $b \leqq a\}$ for each $a \in G$. Each subset of G is considered partially ordered by the restriction of the ordering on G.

We denote by $\vee_{G} A$ the l.u. bound of A in G for each $A \subseteq G$ and write $a \vee b$ instead of $\mathrm{V}_{G}\{a, b\}$. We define $\mathrm{V}_{G} \varnothing$ iff there exists the smallest element o in G; then we put $V_{G} \emptyset=o$.
1.1. Lemma. Let G be a poset, $a \in G, B \subseteq G, C(b) \subseteq G$ for each $b \in B$. If $a=\vee_{G} B$ and $b=\mathrm{V}_{\mathrm{G}} C(b)$ for each $b \in B$ then $a=\mathrm{V}_{G} \bigcup_{b \in B} C(b)$.
1.2. Definition. Let G be a poset. We call $a \in G$ (completely additively) irreducible (in G) if $a=\vee_{G} A \Rightarrow a \in A$ for each $A \subseteq G$.

We denote by $\mathbf{I R}_{G}$ the set of all irreducible elements in G. Further, we put

$$
\boldsymbol{I} \boldsymbol{R}_{\boldsymbol{G}}=\left\langle\begin{array}{l}
\mathbf{I} \mathbf{R}_{G} \cup\{o\} \text { if } o \text { is the smallest element in } G, \\
\mathbf{I R}_{\mathbf{G}} \text { if there is not a smallest element in } G .
\end{array}\right.
$$

1.3. Definition. Let H be a poset and $G \subseteq H$. We call G a σ-dense subset (in H) if there exists $A(a) \subseteq G$ such that $a=\vee_{H} A(a)$ for each $a \in H$.
1.4. Lemma. Let H be a poset and G a σ-dense subset in H. Then $\mathbf{I R}_{H} \subseteq G$.

We now give a sufficient condition under which the converse of 1.4 is true.
1.5. Lemma. Let H be a poset and let there exist a σ-dense subset G, satisfying the minimal condition, in H. Then $\mathbf{I R}_{H}$ is a σ-dense subset in H.

Proof. Let us put $O=\left\{a ; a \in G\right.$ and $a \neq \mathrm{V}_{H} A$ for each $\left.A \subseteq \mathbf{I R}_{H}\right\}$. If $O \neq \varnothing$ then there exists m minimal in O. Since $m \notin \mathbf{I R}_{H}$, we can find $A \subseteq H$ such that $m \notin A, m=\vee_{H} A$. As G is σ-dense in H, there exists $B(a) \subseteq G$ with the property
$a=\vee_{H} B(a)$ for each $a \in A$. If we put $B=\bigcup_{a \in A} B(a)$ then $B \subseteq G$ and $m=\vee_{H} B$ by 1.1. The obvious fact $B \cap O=\emptyset$ implies the existence of $C(b) \subseteq \mathbf{I R}_{H}$ such that $b=$ $=\mathrm{V}_{H} C(b)$ for each $b \in B$. By this and by 1.1, it follows that $m=\mathrm{V}_{H} C$ for $C=$ $=\bigcup_{b \in B} C(b)$. Since $C \subseteq \mathbf{I R}_{H}$, we have a contradiction with $m \in O$. Thus, $O=\varnothing$ and the statement follows by 1.1.
1.6. Definition. Let G be a poset and S a complete lattice with the smallest element o. We call the map $e: G \rightarrow S$ a σ_{0}-dense embedding (of G into S) if e is an embedding, $e[G]$ is a σ-dense subset in $S, o \notin e[G]$.
1.7. Remark. (i) If we omit the requirement $o \notin e[G]$ in 1.6 then we obtain the concept of a σ-dense embedding which was studied in [1], [5], [7] and in many other works.
(ii) Let S be a lattice. Then S is finite and nonempty whenever there exists a σ_{0}-dense embedding of a finite poset into S.
1.8. Definition. Let S be a lattice.
(i) We call $a \in S$ strong (in S) if $b<c, a \| c \Rightarrow a \vee b<a \vee c$ for all $b, c \in S$.
(ii) We call $a \in S$ (completely additively) primitive (in S) if $a \leqq \vee_{S} A \Rightarrow$ there exists $b \in A$ such that $a \leqq b$ for each $A \subseteq S$.

We denote by $\mathbf{S}_{S}, \mathbf{P}_{S}$ the set of all strong, primitive elements in S, respectively.
1.9. Definition. Let S be a lattice and o the smallest element in S.
(i) We call $a \in S$ an atom (in S) if $b<a \Rightarrow b=o$ for each $b \in S$.

We denote by \mathbf{A}_{S} the set of all atoms in S.
(ii) We call $N \subseteq S$ a nonhomonymous set (in S) if N is finite, $N \subseteq \mathbf{S}_{S} \cap \mathbf{P}_{S} \cap \mathbf{A}_{\boldsymbol{S}}$ and if no element from A_{S} is the smallest one in $S-\omega_{S}\left(\vee_{S} N\right)$.

We denote by \Re_{S} the set of all nonhomonymous sets in S.
1.10. Lemma. Let S be a lattice with a smallest element and $N \subseteq \mathbf{S}_{\boldsymbol{S}} \cap \mathbf{P}_{\boldsymbol{S}} \cap \mathbf{A}_{\boldsymbol{S}}$ a finite set. Then $\mathbf{I R}_{S} \cap \omega_{S}\left(\vee_{S} N\right)=N$.

Proof. Clearly, $N \subseteq \mathbf{I R}_{S} \cap \omega_{S}\left(\mathrm{~V}_{S} N\right)$. If $a \in \omega_{S}\left(\mathrm{~V}_{S} N\right)$ then $a=\mathrm{V}_{S} A$ for $A=$ $=\{b ; b \in N$ and $b \leqq a\}$ by [4] II, 1.16. If, moreover, $a \in \mathbf{I R}_{s}$ then $a \in A \subseteq N$. Thus, $\mathbf{I R}_{s} \cap \omega_{s}\left(\mathrm{~V}_{s} N\right) \subseteq N$.

We shall see that our Main theorem is an easy consequence of the main results from [4] II and of the solution of the following
1.11. Problem. Let G be a poset satisfying the minimal condition. What are the necessary and sufficient conditions imposed on an ordered fourtuple (I, R, N, C) of subsets of G for the existence of a complete lattice S and a σ_{0}-dense embedding e of G into S such that $e[I]=\mathbf{A}_{S}, e[R]=\mathbf{I R}_{S}, e[N] \in \mathfrak{N}_{S}, e[C]=\mathbf{P}_{S}$.

2. 0-GENERATING SYSTEMS AND 0-EMBEDDING OPERATORS

2.1. Definition. Let G be a poset. We call $A \subseteq G$ an initial segment (in G) if $\omega_{G}(a) \subseteq$ $\subseteq A$ for each $a \in A$.

We denote by Ω_{G} the set of all initial segments in G.
2.2. Definition. Let G be a poset and $\mathfrak{G} \subseteq 2^{G}$. We call \mathfrak{G} a 0 -generating system (on G) if
(i) $\mathfrak{G} \subseteq \Omega_{G}$,
(ii) $\cap \mathfrak{H} \in \mathfrak{G}$ for each $\mathfrak{A} \subseteq \mathfrak{G}, \mathfrak{H} \neq \emptyset$,
(iii) $\omega_{G}[G] \subseteq \mathfrak{G}$,
(iv) $\{\emptyset, G\} \subseteq \mathfrak{G}$.

We denote by $\mathrm{Gs}(G)$ the set of all 0 -generating systems on G.
2.3. Lemma. Let G be a poset, $\mathfrak{G} \in \mathrm{Gs}(G), \mathfrak{A} \subseteq \mathfrak{G}, \mathfrak{H}=\mathfrak{G}-\mathfrak{Y}$. If
(i) $\mathfrak{H} \cap\left(\omega_{G}[G] \cup\{\emptyset, G\}\right)=\emptyset$ and
(ii) for each $A \in \mathfrak{A}$ there exists $a \in G-A$ such that

$$
A \subseteq B, a \notin B \Rightarrow B \in \mathfrak{A} \quad \text { for all } B \in \mathfrak{G}
$$

then $\mathfrak{H} \in \operatorname{Gs}(G)$.
Proof. Clearly, 2.2 (i), (iii), (iv) hold for \mathfrak{G}. For an arbitrary $\mathfrak{B} \subseteq \mathfrak{H}, \mathfrak{B} \neq \boldsymbol{\emptyset}$ we have $\cap \mathfrak{B} \in \mathscr{F}$ and we can find $A(a) \in \mathfrak{B}$ with the properties $\cap \mathfrak{B} \subseteq A(a), a \notin A(a)$ for each $a \in G-\cap \mathfrak{B}$. This and $\mathfrak{H} \cap \mathfrak{B}=\emptyset$ give $\cap \mathfrak{B} \notin \mathfrak{H}$. It follows that $\cap \mathfrak{B} \in \mathfrak{F}$ and 2.2 (ii) is true.
2.4. Lemma. Let G be a poset and φ a closure operator on 2^{G}. Then the assertions (i) and (ii) hold for all $A, B \subseteq G$.
(i) $B \subseteq A \subseteq \varphi(B) \Rightarrow \varphi(A)=\varphi(B)$.
(ii) $\varphi(\varphi(A) \cup B)=\varphi(A \cup B)$.
2.5. Definition. Let G be a poset and φ a closure operator on 2^{G}. We call φ a 0 -embedding operator (on 2^{G}) if $\varphi(\{a\})=\omega_{G}(a)$ for each $a \in G$ and $\varphi(\varnothing)=\emptyset$.

We denote by $\operatorname{Op}(G)$ the set of all 0 -embedding operators on 2^{G}.
2.6. Remark. If we consider $\mathrm{Gs}(G), \mathrm{Op}(G)$ partially ordered then the ordering on $\operatorname{Gs}(G)$ is the inclusion and that on $\operatorname{Op}(G)$ is the following. For arbitrary $\varphi, \psi \in \operatorname{Op}(G)$ we have $\varphi \leqq \psi$ whenever $\varphi(A) \subseteq \psi(A)$ for each $A \subseteq G$.
2.7. Definition. Let G be a poset. We associate a map $\xi_{G}\left(\mathfrak{E}: 2^{\boldsymbol{G}} \rightarrow 2^{G}\right.$, defined by $\xi_{\mathcal{G}} \mathfrak{G}(A)=\bigcap_{A \subseteq B \in \mathcal{G}} \boldsymbol{B}$ for every $A \subseteq G$, with each $\left(\mathfrak{G} \in \operatorname{Gs}(G)\right.$ and a set $\mathbb{C}_{G} \varphi=\varphi\left[2^{G}\right]$ with each $\varphi \in \operatorname{Op}(G)$.
2.8. Theorem. Let G be a poset. The pair $\xi_{G}, \mathfrak{C}_{G}$ forms a Galois connection between the posets $\operatorname{Gs}(G), \mathrm{Op}(G)$ and it holds

$$
\mathfrak{C}_{G} \xi_{G}=1_{\mathrm{Gs}(G)}, \quad \xi_{G} \mathfrak{C}_{G}=1_{\mathrm{O}_{\mathrm{P}}(G)}
$$

2.9. Lemma. Let G be a poset and $\mathfrak{G} \in \operatorname{Gs}(G)$. Then \mathfrak{G}, ordered by inclusion, is a complete lattice in which meets coincide with intersections and $\bigvee_{G} \mathfrak{A}=\xi_{G}(\mathfrak{5}(\cup \mathfrak{A})$ for each $\mathfrak{A} \subseteq \mathfrak{G}$.

Proof. The first part of the statement follows by 2.2 (ii), (iv) and by theorem 10 from [3]. By 2.8, $\xi_{G}\left(\mathfrak{G}\right.$ is a closure operator on the complete lattice 2^{G}. The second part of the statement is now a consequence of theorem 15 from [3].

The connection between the concept of a 0 -generating system and that of a σ_{0}-dense embedding is formulated in the following fundamental theorem which was proved in [5] for the case of σ-dense embeddings.
2.10. Theorem. Let G be a poset. Then
(i) For each $\mathfrak{G} \in \mathrm{Gs}(G), \omega_{\mathbf{G}}: G \rightarrow \mathfrak{G}$ is $a \sigma_{0}$-dense embedding.
(ii) For each σ_{0}-dense embedding e of G into a complete lattice S there exist $(\mathfrak{5} \in \mathrm{Gs}(G)$ and an isomorphism $\iota: S \rightarrow \mathfrak{G}$ such that $\iota e=\omega_{G}$.
2.11. Corollary. Let G be a poset and $\mathfrak{G} \in \operatorname{Gs}(G)$. Then $\mathbf{I R}_{\mathscr{G}}, \mathbf{P}_{\mathscr{G}}, \mathbf{A}_{\mathscr{G}}$, and all $\mathbf{N} \in \boldsymbol{M}_{\mathfrak{G}}$ are subsets of $\omega_{G}[G]$.

Proof. This assertion is a consequence of 2.10 (i), 1.4, and of the inclusions $\mathbf{P}_{\mathscr{G}} \subseteq \mathbf{I R}_{\mathfrak{G}}, \mathbf{A}_{\mathscr{G}} \subseteq \mathbf{I R}_{\mathscr{G}}, \mathbf{N} \subseteq \mathbf{I R}_{\mathscr{G}}$ for each $\mathbf{N} \in \mathfrak{N}_{\mathscr{G}}$.

3. SPECIAL PROPERTIES OF ELEMENTS
 IN 0-GENERATING SYSTEMS AND THE 0 -EMBEDDING OPERATOR φ_{G}^{R}

3.1. Definition. Let G be a poset and $a \in G$. We put

$$
\begin{gathered}
\omega_{G}^{-}(a)=\omega_{G}(a)-\{a\}, \quad \varepsilon_{G}(a)=\{b ; b \in G \text { and } a \leqq b\}, \\
\bar{\varepsilon}_{G}(a)=G-\varepsilon_{G}(a) .
\end{gathered}
$$

3.2. Lemma. Let G be a poset. Then
(i) $\bar{\varepsilon}_{G}(a) \subseteq \bar{\varepsilon}_{G}(b) \Leftrightarrow a \leqq b$ for all $a, b \in G$.
(ii) $\omega_{G}^{-}(a) \subseteq \bar{\varepsilon}_{G}(b), a \in \varepsilon_{G}(b) \Rightarrow a=b$ for all $a, b \in G$.
(iii) $A \nsubseteq \bar{\varepsilon}_{G}(a) \Leftrightarrow a \in A$ for all $a \in G, A \in \Omega_{G}$.
(iv) $\omega_{G}^{-}(a) \subseteq A \Leftrightarrow A \cup\{a\} \in \Omega_{G}$ for all $a \in G, A \in \Omega_{G}$.
3.3. Lemma. Let G be a poset and $a \in G$. Then $a \notin \mathbf{I R}_{G}$ if and only if $a=\vee_{G} \omega_{G}^{-}(a)$.
3.4. Lemma. Let G be a poset, $G \in G s(G), a \in G$. Then the assertions (i) and (ii) are equivalent.
(i) $\omega_{G}(a) \in \mathbf{I} \mathbf{R}_{\mathscr{G}}$.
(ii) $\omega_{\mathrm{G}}^{-}(a) \in \mathfrak{b}$.

Proof. Let us put $\mathfrak{A}=\omega_{\mathscr{G}}^{-}\left(\omega_{G}(a)\right)$. If $b \in \omega_{G}^{-}(a)$ then $b \in \omega_{G}(b) \in \mathfrak{A}$ by 2.10 (i) and we have $\omega_{G}^{-}(a) \subseteq U \mathfrak{A}$. This inclusion and the obvious validity of its converse imply $\omega_{G}^{-}(a)=U \mathfrak{A l}$. By 2.9, it follows that $\vee_{\mathfrak{G}} \mathfrak{H}=\xi_{G} \mathfrak{G}(\cup \mathfrak{A})=\xi_{G}\left(\mathfrak{G}\left(\omega_{G}^{-}(a)\right)\right.$. Since either $\xi_{G}\left(\mathfrak{F}\left(\omega_{G}^{-}(a)\right)=\omega_{G}^{-}(a)\right.$ or $\xi_{G} \mathfrak{E}\left(\omega_{G}^{-}(a)\right)=\omega_{G}(a)$, it holds $\vee_{G \mathscr{G}} \mathfrak{H}=\omega_{G}(a)$ iff $\omega_{G}^{-}(a) \notin \mathfrak{G}$. Now, the statement follows by 3.3.
3.5. Lemma. Let G be a poset, $\mathfrak{G} \in \mathrm{Gs}(G), a \in G$. Then the assertions (i), (ii), (iii) are equivalent.
(i) $\omega_{G}(a) \in \mathbf{P}_{G G}$.
(ii) $\bar{\varepsilon}_{\boldsymbol{G}}(a) \in \mathfrak{G}$.
(iii) $a \notin \xi_{G}\left(\mathfrak{G}(A)\right.$ for each $A \in \Omega_{G}$ such that $a \notin A$.

Proof. Let us assume $\omega_{G}(a) \in \mathbf{P}_{\mathfrak{G}}$. Then $\omega_{G}(a) \nsubseteq \vee_{\mathfrak{G}} \mathfrak{H}$ for each $\mathfrak{A} \subseteq \mathfrak{G}$ such that $\omega_{G}(a) \nsubseteq \cup \mathfrak{U}$. We have $\cup \mathfrak{B}=\bar{\varepsilon}_{G}(a)$ for $\mathfrak{B}=\omega_{G}\left[\bar{\varepsilon}_{G}(a)\right]$. By $\omega_{G}(a) \nsubseteq \cup \mathfrak{B}$ and by 2.9, it follows that $\omega_{G}(a) \notin \vee_{G G} \mathfrak{B}=\xi_{G}\left(\mathfrak{F}\left(\varepsilon_{G}(a)\right)\right.$. Hence, $a \notin \xi_{G}\left(\mathfrak{F}\left(\bar{\varepsilon}_{G}(a)\right) \in \mathfrak{G}\right.$ and, consequently, $\xi_{G}\left(\mathfrak{G}\left(\bar{\varepsilon}_{G}(a)\right) \subseteq \varepsilon_{G}(a)\right.$ by 3.2 (iii). Since the inverse inclusion is obvious, we obtain $\xi_{G}\left(\mathscr{G}\left(\varepsilon_{G}(a)\right)=\varepsilon_{G}(a)\right.$ and, consequently, $\bar{\varepsilon}_{G}(a) \in \mathfrak{G}$. We have proved (i) \Rightarrow (ii).

If $\varepsilon_{G}(a) \in \mathfrak{G}$ then for $A \in \Omega_{G}$ satisfying $a \notin A$ it holds $A \subseteq \bar{\varepsilon}_{G}(a), \xi_{G}(\mathfrak{F}(A) \subseteq$ $\subseteq \xi_{G}\left(\mathfrak{G}\left(\bar{\varepsilon}_{G}(a)\right)=\bar{\varepsilon}_{G}(a)\right.$ and $a \notin \xi_{G}(\mathfrak{G}(A)$. Thus, (ii) \Rightarrow (iii).

Suppose $a \notin \xi_{G} \mathfrak{G}(A)$ for each $A \in \Omega_{G}$ with the property $a \notin A$. If $\omega_{G}(a) \subseteq V_{G} \mathfrak{H}$ for $\mathfrak{H} \subseteq \mathfrak{G}$ then $a \in \xi_{G}(\mathfrak{F}(\cup \mathfrak{H})$ by 2.9. This gives $a \in \cup \mathfrak{H}$ and there exists $A \in \mathfrak{H}$ such that $a \in A$; we have $\omega_{G}(a) \subseteq A$ and, therefore, $\omega_{G}(a) \in \mathbf{P}_{(G)}$. Hence (iii) \Rightarrow (i).
3.6. Definition. Let G be a poset, $\mathfrak{G} \in \mathrm{Gs}(G), a \in G$. We denote by $\mathscr{V}(\mathfrak{G}, a)$ the following assertion.

$$
A \vee \omega_{G}(a) \subseteq A \cup \omega_{G}(a) \cup \varepsilon_{G}(a) \quad \text { for each } A \in \mathfrak{F}
$$

3.7. Lemma. Let G be a poset, $(\mathfrak{G} \in \operatorname{Gs}(G), a \in G$. Then
(i) $\omega_{G}(a) \in \mathbf{S}_{\mathscr{G}} \cap \mathbf{P}_{G \mathscr{G}} \Rightarrow \mathscr{V}(\mathfrak{G}, a)$.
(ii) $\omega_{G}(a) \in \mathbf{A}_{G G}, \mathscr{V}(\mathfrak{G}, a) \Rightarrow \omega_{G}(a) \in \mathbf{S}_{\mathfrak{G}}$.

Proof. Suppose $\omega_{G}(a) \in \mathbf{S}_{\mathscr{G}} \cap \mathbf{P}_{G}$. Let us admit that there exists $A \in \mathbb{G}$ such that $A \vee \omega_{G}(a) \nsubseteq A \cup \omega_{G}(a) \cup \varepsilon_{G}(a)$. Then, clearly, $A \| \omega_{G}(a)$ and we can find $b \in A \vee$ $\vee \omega_{G}(a)$ with the properties $\omega_{G}(b) \notin A, \omega_{G}(b) \| \omega_{G}(a)$. If we put $B=A \vee \omega_{G}(b)$ then $A \subset \boldsymbol{B}$. Further, $B \subseteq \omega_{G}(a)$ would imply $A \subseteq \omega_{G}(a)$ which is a contradiction. Similarly, $\omega_{G}(a) \subseteq B=A \vee \omega_{G}(b)$ would imply either $\omega_{G}(a) \subseteq A$ or $\omega_{G}(a) \subseteq \omega_{G}(b)$ because $\omega_{G}(a) \in \mathbf{P}_{G}$; both cases are impossible. Thus, $\boldsymbol{B} \| \omega_{G}(a)$. Simultaneously,
$A \vee \omega_{G}(a)=\left(A \vee \omega_{G}(a)\right) \vee \omega_{G}(b)=B \vee \omega_{G}(a)$ which contradicts $\omega_{G}(a) \in \mathbf{S}_{\mathfrak{G}}$. Thus, $\mathscr{V}(\mathfrak{G}, a)$ is true.

Suppose $\omega_{\mathfrak{G}}(a) \in \mathbf{A}_{(G)}, \mathscr{V}(\mathfrak{G}, a)$. Let us take $A, B \in \mathfrak{G}$ such that $A \subset B, B \| \omega_{G}(a)$. Then $a \notin \boldsymbol{B}, a \notin A$ and there exists $b \in B-A$. The facts $\omega_{G}(a) \in \mathbf{A}_{\mathscr{G}}, \boldsymbol{B} \cap \omega_{G}(a) \subset$ $\subset \omega_{G}(a)$ give $B \cap \omega_{G}(a)=\emptyset$. For this reason $b \neq a$. As, at the same time, $a \notin B$, we obtain $a \not \leq b$. Hence, $b \| a$ and it follows that $b \notin A \vee \omega_{G}(a)$ according to $\mathscr{V}(\mathscr{G}, a)$. Since $A \subseteq B$ and $b \in B \vee \omega_{G}(a)$, it holds $A \vee \omega_{G}(a) \subset B \vee \omega_{G}(a)$. We have proved $\omega_{G}(a) \in \mathbf{S}_{G}$.
3.8. Corollary. Let G be a poset. Let us take $\mathfrak{G} \in \operatorname{Gs}(G)$ and $a \in G$ in such a way that $\omega_{G}(a) \in \mathbf{P}_{(5)} \cap \mathbf{A}_{G}$. Then the assertions (i) and (ii) are equivalent.
(i) $\omega_{G}(a) \in \mathbf{S}_{\mathscr{G}}$.
(ii) $\mathscr{V}(\mathscr{G}, a)$.

We shall now deal with a 0 -embedding operator of a special kind which will often appear in our considerations.
3.9. Definition. Let G be a poset. We call R an irreducible set (in G) if $\boldsymbol{R}_{G} \subseteq R \subseteq G$.
3.10. Definition. Let G be a poset and R an irreducible set in G. We put

$$
\mathfrak{S}_{\mathrm{G}}^{R}=\left\{A ; A \in \Omega_{G} \text { and } \omega_{G}^{-}(a) \subseteq A \Rightarrow a \in A \text { for each } a \in G-R\right\} .
$$

3.11. Lemma. Let G be a poset and R an irreducible set in G. Then $\mathfrak{H}_{G}^{R} \in \operatorname{Gs}(G)$.

Proof. The condition 2.2 (i) is satisfied trivially. Let $\mathfrak{A} \subseteq \mathfrak{S}_{G}^{R}$ be nonempty. Then, clearly, $\cap \mathfrak{H} \in \Omega_{G}$. If $\omega_{G}^{-}(a) \subseteq \cap \mathfrak{X}$ for $a \in G-R$ then $\omega_{G}^{-}(a) \subseteq A$ and $a \in A$ for each $A \in \mathfrak{A}$. It follows that $a \in \cap \mathfrak{Y}$. We have $\cap \mathfrak{A} \in \mathfrak{Y}_{G}^{R}$ which proves 2.2 (ii). If $\omega_{G}^{-}(a) \subseteq \omega_{G}(b)$ for $a \in G-R, b \in G$ then b is an upper bound of $\omega_{G}^{-}(a)$. Since $a=\vee_{G} \omega_{G}^{-}(a)$ by 3.3, we obtain $a \in \omega_{G}(b)$. For this reason $\omega_{G}(b) \in \mathfrak{S}_{G}^{R}$ and 2.2 (iii) is true. If $\omega_{G}^{-}(a) \subseteq \emptyset$ for $a \in G$ then a is minimal in G. Clearly, $a \in \boldsymbol{I} \boldsymbol{R}_{G}$ and, consequently, $a \notin G-R$. Thus, $\emptyset \in \mathfrak{S}_{G}^{R}$. As $G \in \mathfrak{G}_{G}^{R}$ in an obvious way, 2.2 (iv) holds.
3.12. Lemma. Let G be a poset and R an irreducible set in G. Then $\mathbf{I}_{\boldsymbol{\Phi}_{G}^{R}}=\omega_{G}[R]=$ $=\mathbf{P}_{\mathfrak{Q}_{G}^{R}}$.

Proof. Clearly, $\omega_{G}^{-}(a) \notin \mathfrak{G}_{G}^{R}$ for each $a \in G-R$. By this, 3.4, and 2.11, $\mathbf{I R}_{\mathcal{G}_{G}^{R}} \subseteq$ $\subseteq \omega_{G}[R]$. Suppose $\omega_{G}^{-}(b) \subseteq \bar{\varepsilon}_{G}(a)$ for arbitrary $a \in R, b \in G-R$. If $b \notin \varepsilon_{G}(a)$ then $b \in \varepsilon_{G}(a)$ and $b=a$ according to 3.2 (ii). This is a contradiction. Hence, we have $b \in \varepsilon_{G}(a)$ and, therefore, $\varepsilon_{G}(a) \in \mathfrak{S}_{G}^{R}$. Since $\omega_{G}(a) \in \mathbf{P}_{\mathfrak{S}_{G}^{R}}$ by 3.5 , we obtain $\omega_{G}[R] \subseteq$

3.13. Lemma. Let G be a poset, R an irreducible set in $G,(\mathcal{F} \in G s(G)$. Then

$$
\mathbf{I R}_{\mathscr{G}} \subseteq \omega_{G}[R] \text { if and only if } \mathfrak{G} \subseteq \mathfrak{S}_{G}^{R}
$$

Proof. Suppose $\mathbf{I R}_{\mathscr{G}} \subseteq \omega_{G}[R]$. Take an $A \in \mathfrak{G}$ arbitrarily. If $\omega_{G}^{-}(a) \subseteq A, a \notin A$ for some $a \in G-R$ then $\omega_{G}^{-}(a)=A \cap \omega_{G}(a) \in \mathfrak{G}$. Since $\omega_{G}(a) \in \mathbf{I R}_{G S}$ by 3.4, we have $\omega_{G}(a) \in \omega_{G}[R]$. This result and 2.10 (i) give $a \in R$ which is a contradiction. Hence, $a \in A, A \in \mathfrak{S}_{G}^{R}$, and $\mathfrak{G} \subseteq \mathfrak{S}_{G}^{R}$.

Let us now assume $\mathfrak{G} \subseteq \mathfrak{V}_{G}^{R}$. If $A \in \mathbf{I R}_{\text {(g }}$ then $A=\omega_{G}(a)$ for some $a \in G$ by 2.11. According to $3.4, \omega_{G}^{-}(a) \in \mathfrak{F} \subseteq \mathfrak{Y}_{G}^{R}$ and $A=\omega_{G}(a) \in \mathbf{I R}_{\mathfrak{G}_{G}^{R}}=\omega_{G}[R]$ by 3.4, 3.12. Thus, $\mathbf{I R}_{\mathfrak{G}} \subseteq \omega_{G}[R]$.
3.14. Definition. Let G be a poset and R an irreducible set in G. We put $\varphi_{G}^{R}=\xi_{G} \mathfrak{H}_{G}^{R}$.
3.15. Remark. From the definition of \mathfrak{G}_{G}^{R} it follows that $\mathfrak{G}_{G}^{G}=\Omega_{G}$ for any poset G. Then, clearly, $\varphi_{G}^{G}(A)=A$ for each $A \in \Omega_{G}$.

The following implication is of a great importance.
3.16. Lemma. Let G be a poset, $(\mathfrak{F} \in \operatorname{Gs}(G), R$ an irreducible set in G with the property $\omega_{G}[R]=\mathbf{I R}_{\mathscr{G}}, N \subseteq G$ a finite set such that $\omega_{G}[N] \subseteq \mathbf{S}_{G} \cap \mathbf{P}_{G G} \cap \mathbf{A}_{G}$. Then for arbitrary $a \in G, A \in \mathbb{G}$

$$
\omega_{G}^{-}(a) \subseteq A, \quad \varphi_{G}^{R}(A \cup N)=\tilde{\varepsilon}_{G}(a) \Rightarrow \omega_{G}(a) \in \mathbf{P}_{G} .
$$

Proof. Let us put $\varphi=\xi_{G}\left(\mathfrak{F}\right.$. Then $\varphi \in \operatorname{Op}(G), \mathfrak{C}_{G} \varphi=\left(\mathfrak{b}\right.$ by 2.8. Suppose $\omega_{G}^{-}(a) \subseteq$ $\subseteq A, \varphi_{G}^{R}(A \cup N)=\varepsilon_{G}(a)$ for $a \in G, A \in \mathbb{G}$. As $a \notin \varphi_{G}^{R}(A \cup N)$, it holds $a \notin A=\varphi(A)$.

Let us denote $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}=N-A$. From $a_{i} \in \tilde{\varepsilon}_{G}(a)$ it follows that $a \neq a_{i}$; $\omega_{G}^{-}(a) \subseteq A$ gives $a_{i} \notin \omega_{G}^{-}(a)$ which is equivalent to $a_{i} \nless a$. Thus $a \| a_{i}$ and we have $a \notin \omega_{G}\left(a_{i}\right) \cup \varepsilon_{G}\left(a_{i}\right)$ for $i=1,2, \ldots, n$.

Suppose $a \notin \varphi\left(A \cup\left\{a_{1}, a_{2}, \ldots, a_{j}\right\}\right)$ for some $j \in\{0,1, \ldots, n-1\}$. Then, according to $a \notin \omega_{G}\left(a_{j+1}\right) \cup \varepsilon_{G}\left(a_{j+1}\right)$ and 3.8, we obtain $a \notin \varphi\left(A \cup\left\{a_{1}, a_{2}, \ldots, a_{j}\right\}\right) \vee \omega_{G}\left(a_{j+1}\right)$. By 2.9, 2.4 (ii), it holds $\varphi\left(A \cup\left\{a_{1}, a_{2}, \ldots, a_{j}\right\}\right) \vee \varphi\left(\left\{a_{j+1}\right\}\right)=\varphi\left(\varphi\left(A \cup\left\{a_{1}, a_{2}, \ldots\right.\right.\right.$, $\left.\left.\left.a_{j}\right\}\right) \cup \varphi\left(\left\{a_{j+1}\right\}\right)\right)=\varphi\left(A \cup\left\{a_{1}, a_{2}, \ldots, a_{j}\right\} \cup \varphi\left(\left\{a_{j+1}\right\}\right)\right)=\varphi\left(A \cup\left\{a_{1}, a_{2}, \ldots\right.\right.$, $\left.\left.a_{j+1}\right\}\right)$. Since $\varphi\left(\left\{a_{j+1}\right\}\right)=\omega_{G}\left(a_{j+1}\right)$, we have $a \notin \varphi\left(A \cup\left\{a_{1}, a_{2}, \ldots, a_{j+1}\right\}\right)$.

By induction, we obtain $a \notin \varphi(A \cup N)$ which is equivalent to $\varphi(A \cup N) \subseteq \bar{\varepsilon}_{G}(a)$. With respect to 3.13 , it holds $\mathfrak{G} \subseteq \mathfrak{H}_{G}^{R}$ which gives $\varphi_{G}^{R} \leqq \varphi$ by 2.8. Now, $\varepsilon_{G}(a)=$ $=\varphi_{G}^{R}(A \cup N) \subseteq \varphi(A \cup N) \subseteq \bar{\varepsilon}_{G}(a)$ and, clearly, $\varphi(A \cup N)=\bar{\varepsilon}_{G}(a)$. Then $\bar{\varepsilon}_{G}(a) \in \mathbb{G}$ and $\omega_{G}(a) \in \mathbf{P}_{G}$ by 3.5.

4. SOLUTION OF THE PROBLEM

4.1. Definition. Let G be a poset. We denote by \mathbf{M}_{G} the set of all minimal elements in G.
4.2. Theorem. Let G be a poset and $\mathfrak{G} \in \operatorname{Gs}(G)$. Then

$$
\mathbf{A}_{\mathfrak{G}}=\omega_{G}\left[\mathbf{M}_{G}\right] .
$$

Proof. For $a \in \mathbf{M}_{G}$ we have $\omega_{G}(a)=\{a\}$ and, clearly, $\omega_{G}(a) \in \mathbf{A}_{\mathscr{G}}$. If $a \notin \mathbf{M}_{G}$ then there exists $b<a$ in G. We obtain $\emptyset \subset \omega_{G}(b) \subset \omega_{G}(a)$ by 2.10 (i) and $\omega_{G}(a) \notin$ $\notin \mathbf{A}_{G}$. The statement now follows by 2.11.
4.3. Definition. Let G be a poset and R an irreducible set in G. We say that N is an R-nonhomonymous set (in G) if N is finite, $N \subseteq \mathbf{M}_{G}$, and if no element from $\mathbf{M}_{\boldsymbol{G}}$ is the smallest one in $R-N$.
4.4. Definition. Let G be a poset, R an irreducible set in G, N an R-nonhomonymous set in G. Then
(i) We denote by $\mathbf{P}_{G}(R, N)$ the set of all $a \in R$ such that either $\varphi_{G}^{R}\left(\omega_{G}^{-}(a) \cup N\right)=$ $=\bar{\varepsilon}_{G}(a)$ or there exists $b \in G$ satisfying $\omega_{G}^{-}(a) \subset \omega_{G}(b), \varphi_{G}^{R}\left(\omega_{G}(b) \cup N\right)=\bar{\varepsilon}_{G}(a)$.
(ii) We say that C is an R, N-primitive set (in G) if $\mathbf{P}_{G}(R, N) \cup N \subseteq C \subseteq R$.
4.5. Definition. Let G be a poset. We call an ordered triple (R, N, C) suitable (in G) if R is an irreducible, N an R-nonhomonymous, C an R, N-primitive set in G.

Figure 1
4.6. Example. Let G be the poset from Fig. 1. We construct a suitable triple (R, N, C) in \boldsymbol{G}. As $\boldsymbol{I} \boldsymbol{R}_{G}=G$, there is only one irreducible set R in G, namely $R=\{a, b, c, d\}$. We can easily check that N is $\{a, b, c, d\}$-nonhomonymous in G iff $N \in\{\emptyset,\{a\},\{b\}$, $\{c\},\{a, b\},\{a, c\},\{a, b, c\}\}$. Let us put $N=\{c\}$. According to $3.15, \mathbf{P}_{G}(\{a, b, c, d\}$, $\{c\})=\left\{x ; x \in\{a, b, c, d\}\right.$ and either $\omega_{G}^{-}(x) \cup\{c\}=\bar{\varepsilon}_{G}(x)$ or there exists $y \in G$ such that $\omega_{G}^{-}(x) \subset \omega_{G}(y)$ and $\left.\omega_{G}(y) \cup\{c\}=\bar{\varepsilon}_{G}(x)\right\}$. We see $\emptyset=\omega_{G}^{-}(a) \subset \omega_{G}(b)=\{b\}$ and $\omega_{G}(b) \cup\{c\}=\{b, c\}=\bar{\varepsilon}_{G}(a)$. That is why $a \in \mathbf{P}_{G}(\{a, b, c, d\},\{c\})$. Similarly, we verify $b \in \mathbf{P}_{G}(\{a, b, c, d\},\{c\}), c \notin \mathbf{P}_{G}(\{a, b, c, d\},\{c\}), d \notin \mathbf{P}_{G}(\{a, b, c, d\},\{c\})$, so that $\mathbf{P}_{G}(\{a, b, c, d\},\{c\})=\{a, b\}$. Now, C is $\{a, b, c, d\},\{c\}$-primitive iff $\{a, b, c\} \subseteq$ $\subseteq C \subseteq\{a, b, c, d\}$. We put $C=\{a, b, c\}$; then $(R, N, C)=(\{a, b, c, d\},\{c\},\{a, b, c\})$ is a suitable triple in G.
4.7. Theorem. Let G be a poset satisfying the minimal condition, $\mathfrak{G} \in G s(G), N \in \mathfrak{N}_{(6)}$. If $\omega_{G}[R]=\mathbf{I} \mathbf{R}_{G}, \omega_{G}[N]=\mathbf{N}, \omega_{G}[C]=\mathbf{P}_{G}$ then (R, N, C) is a suitable triple in G.

Proof. R is an irreducible set in G : Suppose $a \in \boldsymbol{I R}_{G}$. If a is not a smallest element in G then $a \in \mathbf{I R}_{G}$ and a is not the 1. u. bound of $\omega_{G}^{-}(a)$ in G by 3.3. Thus, there exists an upper bound b of $\omega_{G}^{-}(a)$ in G such that $a \not \equiv b$. We obtain $\omega_{G}^{-}(a) \subseteq \omega_{G}(a) \cap \omega_{G}(b)$.

Since $a \notin \omega_{G}(b)$, it holds also the inverse inclusion and $\omega_{G}^{-}(a)=\omega_{G}(a) \cap \omega_{G}(b) \in \mathfrak{G}$. If a is the smallest element in G then $\omega_{G}^{-}(a)=\emptyset \in \mathbb{G}$. In both cases we obtain $\omega_{G}(a) \in$ $\in \mathbf{I} \mathbf{R}_{\mathscr{G}}$ by 3.4. As ω_{G} is an injection by $2.10(\mathrm{i})$, we have $a \in R$ and $\boldsymbol{I} \boldsymbol{R}_{\boldsymbol{G}} \subseteq R$; this gives the statement.
N is an R-nonhomonymous set in $G: N$ is finite by $2.10(\mathrm{i})$ and $N \subseteq \mathbf{M}_{G}$ by 4.2. Suppose that there exists $a \in \mathbf{M}_{G}$ which is the smallest element in $R-N$. Let $A \in$ $\in \mathscr{G}-\omega_{\mathfrak{G}}\left(\mathrm{V}_{\mathscr{G}} \mathbf{N}\right)$ be arbitrary. Obviously, $\omega_{G}[G]$ satisfies the minimal condition. It is a σ-dense subset in $\left(5\right.$ by $2.10(\mathrm{i})$. It follows by 1.5 that $\mathbf{I} \mathbf{R}_{\mathscr{G}}$ is a σ-dense subset in \mathfrak{G}. Thus, there exists $\mathfrak{M} \subseteq \mathbf{I R}_{\mathscr{G}}=\omega_{G}[R]$ such that $A=\mathrm{V}_{\mathfrak{G}} \mathfrak{H}$. Since $A \notin \omega_{\mathfrak{G}}\left(\mathrm{V}_{\mathfrak{G}} \mathbf{N}\right)$, it holds $\mathfrak{A} \not \ddagger \mathbf{N}$. As $\omega_{G}[R-N] \supseteq \mathfrak{A}-\mathbf{N} \neq \emptyset$, we can find $b \in R-N$ with the property $\omega_{G}(b) \in \mathfrak{A}$. But then $a \leqq b$ and $\omega_{G}(a) \subseteq \omega_{G}(b) \subseteq A$. We have proved that $\omega_{G}(a)$ is the smallest element in $\mathfrak{G}-\omega_{\mathscr{G}}\left(V_{G} \mathbf{N}\right)$. As, at the same time, $\omega_{G}(a) \in \mathbf{A}_{G}$ by 4.2, we have a contradiction with $\mathbf{N} \in \mathfrak{\Re}_{\mathscr{C}}$.
C is an R, N-primitive set in G : Suppose $a \in \mathbf{P}_{G}(R, N)$. Then $a \in R, \omega_{G}(a) \in \mathbf{I R}_{G}$ and, by $3.4, \omega_{G}^{-}(a) \in \mathfrak{F}$. Further, $\varphi_{G}^{R}(A \cup N)=\bar{\varepsilon}_{G}(a)$ for some $A \in \omega_{G}[G] \cup\left\{\omega_{G}^{-}(a)\right\}$ such that $\omega_{G}^{-}(a) \subseteq A$. As $\omega_{G}[G] \cup\left\{\omega_{G}^{-}(a)\right\} \subseteq \mathfrak{G}$, it holds $A \in \mathfrak{G}$. By 3.16, we obtain $\omega_{G}(a) \in \mathbf{P}_{G}=\omega_{G}[C]$. Then $a \in C$ according to $2.10(\mathrm{i})$ and we have proved $\mathbf{P}_{G}(R, N) \subseteq$ $\subseteq C$. The remaining inclusions $N \subseteq C, C \subseteq R$ hold trivially.

In the following, we find a O-generating system \mathfrak{G} on G satisfying $\omega_{G}[R]=\mathbf{I R}_{\mathscr{G}}$, $\omega_{G}[N] \in \mathfrak{R}_{\mathscr{G}}, \omega_{G}[C]=\mathbf{P}_{\mathscr{G}}$ for a given suitable triple (R, N, C) in a given poset G. According to 3.13, $\mathfrak{G} \subseteq \mathfrak{G}_{G}^{R}$. By 3.16, each $A \in \mathfrak{S}_{G}^{R}$, such that there exists $a \in R-C$ with the properties $\omega_{G}^{-}(a) \subseteq A, \varphi_{G}^{R}(A \cup N)=\bar{\varepsilon}_{G}(a)$, is necessarily in $\mathfrak{Y}_{G}^{R}-\mathfrak{G}$. This leads to the

Figure 2
4.8. Definition. Let G be a poset and (R, N, C) a suitable triple in G. We put
$\mathfrak{D}_{G}(R, N, C)=\left\{A ; A \in \mathfrak{H}_{G}^{R}\right.$ and there exists $\quad a_{A} \in R-C$ such that
$\left.\omega_{G}^{-}\left(a_{A}\right) \subseteq A, \varphi_{G}^{R}(A \cup N)=\bar{\varepsilon}_{G}\left(a_{A}\right)\right\}$ and

$$
\mathfrak{I}_{G}(R, N, C)=\mathfrak{G}_{G}^{R}-\mathfrak{D}_{G}(R, N, C)
$$

We shall often write $\mathfrak{D}, \mathfrak{I}$ instead of $\mathfrak{D}_{G}(R, N, C), \mathfrak{I}_{G}(R, N, C)$, respectively.
4.9. Example. Let us take the suitable triple $(R, N, C)=(\{a, b, c, d\},\{c\},\{a, b, c\})$ in the poset G from 4.6. Then $\mathfrak{D}_{G}(\{a, b, c, d\},\{c\},\{a, b, c\})=\left\{A ; A \in \mathfrak{H}_{G}^{G}\right.$ and $\left.\omega_{G}^{-}(d) \subseteq A, \varphi_{G}^{G}(A \cup\{c\})=\bar{\varepsilon}_{G}(d)\right\}=\left\{A ; A \in \Omega_{G}\right.$ and $\{a\} \subseteq A, A \cup\{c\}=\{a$, $b, c\}\}$ according to 3.15. It is clear that $\mathfrak{D}_{\mathbf{G}}(\{a, b, c, d\},\{c\},\{a, b, c\})=\{\{a, b\}$, $\{a, b, c\}\}$ and $\mathfrak{I}=\mathfrak{I}_{G}(\{a, b, c, d\},\{c\},\{a, b, c\})=\Omega_{G}-\mathfrak{D}_{G}(\{a, b, c, d\},\{c\},\{a$, $b, c\})=\{\emptyset,\{a\},\{b\},\{c\},\{a, c\},\{a, d\},\{b, c\},\{a, b, d\},\{a, c, d\},\{a, b, c, d\}\}$. We can easily verify $\mathfrak{I} \in \operatorname{Gs}(G)$. In Fig. 2 we can see that $\omega_{G}[\{a, b, c, d\}]=\mathbf{I R}_{\mathfrak{J}}$, $\omega_{G}[\{c\}] \in \mathfrak{N}_{\mathfrak{y}}, \omega_{G}[\{a, b, c\}]=\mathbf{P}_{\mathfrak{F}}$.

We prove that the conclusions of 4.9 , namely $\mathfrak{I}=\mathfrak{I}_{G}(R, N, C) \in \operatorname{Gs}(G), \omega_{G}[R]=$ $\underset{\sim}{ } \mathbf{I R}_{\mathfrak{J}}, \omega_{G}[N] \in \mathfrak{N}_{\mathfrak{y}}, \omega_{G}[C]=\mathbf{P}_{\mathfrak{J}}$, are true for any suitable triple (R, N, C) in any poset G.
4.10. Lemma. Let G be a poset and (R, N, C) a suitable triple in G. Then $\mathfrak{I}_{G}(R, N, C) \in$ $\in \operatorname{Gs}(G)$.

Proof. We verify the validity of $2.3(\mathrm{i})$, (ii) for \mathfrak{D}.
If there exists $A=\omega_{G}(a)$ in \mathfrak{D} then $\varphi_{G}^{R}\left(\omega_{G}(a) \cup N\right)=\bar{\varepsilon}_{G}\left(a_{A}\right)$ and $\omega_{G}^{-}\left(a_{A}\right) \subseteq \omega_{G}(a)$. Each of the cases $\omega_{G}^{-}\left(a_{A}\right)=\omega_{G}(a), \omega_{G}^{-}\left(a_{A}\right) \subset \omega_{G}(a)$ implies $a_{A} \in \mathbf{P}_{G}(R, N) \subseteq C$ which contradicts $a_{A} \in R-C$. Thus, $\omega_{G}[G] \cap \mathfrak{D}=\emptyset$. If $\emptyset \in \mathfrak{D}$ then $\omega_{G}^{-}\left(a_{\emptyset}\right)=\emptyset, \varphi_{G}^{R}(N)=$ $=\bar{\varepsilon}_{G}\left(a_{\emptyset}\right)$. It is clear that $a_{\emptyset} \in \mathbf{M}_{G}$. For an arbitrary $a \in R-N, \omega_{G}(a) \in \mathbf{P}_{\mathfrak{S}_{G}^{R}}$ by 3.12. This, the obvious fact $N \in \Omega_{G}$, and 3.5 give $a \notin \varphi_{G}^{R}(N)$. Since $\varphi_{G}^{R}(N)=\varepsilon_{G}\left(a_{\emptyset}\right)$, we have $a \notin \bar{\varepsilon}_{G}\left(a_{\emptyset}\right)$. Then $a \in \varepsilon_{G}\left(a_{\emptyset}\right)$ and, consequently, $R-N \subseteq \varepsilon_{G}\left(a_{\emptyset}\right)$. By this and by $a_{\emptyset} \in R-N$, it follows that a is the smallest element in $R-N$. But then N is not an \boldsymbol{R}-nonhomonymous set which is a contradiction. We have proved $\emptyset \notin \mathfrak{D}$. Since $G \notin \mathfrak{D}$ in a trivial way, 2.3(i) is satisfied.

Clearly, $a_{A} \notin A$ for each $A \in \mathfrak{D}$. Let us assume $B \in \mathfrak{S}_{G}^{R}, A \subseteq B, a_{A} \notin B$. Then $\omega_{G}^{-}\left(a_{A}\right) \subseteq B$ and, as $B \subseteq \bar{\varepsilon}_{G}\left(a_{A}\right)$ by 3.2 (iii), it follows $A \cup N \subseteq B \cup N \subseteq \varepsilon_{G}\left(a_{A}\right)=$ $=\varphi_{G}^{R}(A \cup N)$. This and 2.4(i) imply $\varphi_{G}^{R}(B \cup N)=\bar{\varepsilon}_{G}\left(a_{A}\right)$. Thus, $B \in \mathfrak{D}$ and we have proved 2.3(ii).

The statement follows by 3.11 and 2.3.
The following lemma formulates an interesting property of the operator φ_{G}^{R}.
4.11. Lemma. Let G be a poset, R an irreducible set in $G, A \in \mathfrak{S}_{G}^{R}, a \in G$. If $\omega_{G}^{-}(a) \subseteq A$ and $B \subseteq A \cup \varepsilon_{G}(a)$ for some $B \in \Omega_{G}$ then $\varphi_{G}^{R}(B) \subseteq A \cup \varepsilon_{G}(a)$.

Proof. Let us admit that there exists $b_{0} \in \varphi_{G}^{R}(B)-\left[A \cup \varepsilon_{G}(a)\right]$. Since $b_{0} \in \varphi_{G}^{R}(B)-$ $-B$, we obtain $\omega_{G}\left(b_{0}\right) \notin \mathbf{P}_{\mathfrak{G}_{G}^{R}}$ by 3.5 and $b_{0} \in G-R$ by 3.12 .

Let there exist an integer $i \geqq 0$ and elements $b_{0}, b_{1}, \ldots, b_{i}$ such that $b_{0}>b_{1}>$ $>\ldots>b_{i}$ and $b_{j} \in \varphi_{G}^{R}(B)-\left[A \cup \varepsilon_{G}(a)\right], b_{j} \in G-R$ for $j=0,1, \ldots, i$. Then, clearly, $\omega_{G}^{-}\left(b_{i}\right) \cap \varepsilon_{G}(a)=\emptyset$ and we also have $\omega_{G}^{-}\left(b_{i}\right) \nsubseteq A$. Indeed, $\omega_{G}^{-}\left(b_{i}\right) \subseteq A$, $b_{i} \in G-R, A \in \mathfrak{G}_{G}^{R}$ give $b_{i} \in A$ which is not true. Thus, there exists $b_{i+1}<b_{i}$ such that $b_{i+1} \notin A \cup \varepsilon_{G}(a)$. Since $b_{i+1} \in \varphi_{G}^{R}(B)-B$, we obtain $b_{i+1} \in G-R$ by 3.5, 3.12.

By induction, we construct an infinite descending chain $b_{0}>b_{1}>\ldots$ which is a subset of $\varphi_{G}^{R}(B)-\left[A \cup \varepsilon_{G}(a)\right]$. Let us put $C=\varphi_{G}^{R}(B)-\bigcup_{i \geqq 0} \varepsilon_{G}\left(b_{i}\right)$. It is clear that $C \in \Omega_{G}$. If $\omega_{G}^{-}(b) \subseteq C$ for $b \in G-R$ then $\omega_{G}^{-}(b) \subseteq \varphi_{G}^{R}(B)$ and $b \in \varphi_{G}^{R}(B)$. If $b \in$ $\in \bigcup_{i \geqq 0} \varepsilon_{G}\left(b_{i}\right)$ then there exists $j \in\{0,1, \ldots\}$ such that $b \in \varepsilon_{G}\left(b_{j}\right)$. It follows that $b_{j+1} \in$ $\in \omega_{G}^{-}(b) \subseteq C$ and we have a contradiction. Thus, $b \in C$ and $C \in \mathfrak{S}_{G}^{R}$. Since $B \subseteq C$, we have $\varphi_{G}^{R}(B) \subseteq \varphi_{G}^{R}(C)=C$; this contradicts $C \subseteq \varphi_{G}^{R}(B)$.
4.12. Lemma. Let G be a poset, (R, N, C) a suitable triple in G. If $a \in N$ then $\mathscr{V}\left(\mathfrak{J}_{G}(R, N, C), a\right)$.

Proof. Let us take an $A \in \mathfrak{I}$ arbitrarily. We prove $A \vee \omega_{G}(a) \subseteq A \cup \varepsilon_{G}(a)$ by transfinite induction.
(1) We put $B^{0}=\varphi_{G}^{R}(A \cup\{a\})$. Since $A \in \mathfrak{H}_{G}^{R}, \omega_{G}^{-}(a)=\emptyset$, it holds $A \cup\{a\} \in \Omega_{G}$ and $B^{0} \subseteq A \cup \varepsilon_{G}(a)$ by 4.11. In case $B^{0} \in \mathfrak{D}$ we have $\varphi_{G}^{R}\left(B^{0} \cup N\right)=\bar{\varepsilon}_{G}\left(a_{B^{0}}\right)$ and $\omega_{G}^{-}\left(a_{B^{0}}\right) \subseteq B^{0}$. If $\omega_{G}^{-}\left(a_{B^{0}}\right) \subseteq A$ then $A \in \mathcal{D}$. Indeed, $\bar{\varepsilon}_{G}\left(a_{B^{0}}\right)=\varphi_{G}^{R}\left(B^{0} \cup N\right)=$ $=\varphi_{G}^{R}\left(\varphi_{G}^{R}(A \cup\{a\}) \cup N\right)=\varphi_{G}^{R}(A \cup N)$ by 2.4 (ii) because $a \in N$. It is a contradiction. Thus, there exists $b \in \omega_{G}^{-}\left(a_{B^{0}}\right)-A$. As $b \in B^{0}-A$ and $B^{0} \subseteq A \cup \varepsilon_{G}(a)$, we have $b \in \varepsilon_{G}(a)$ and $a_{B^{0}} \in \varepsilon_{G}(a)$, too.
(2) Let $\lambda \neq 0$ be an ordinal number. Suppose $B^{\mu} \in \mathfrak{D}, B^{\mu} \subseteq A \cup \varepsilon_{G}(a), a_{B^{\mu}} \in \varepsilon_{G}(a)$ for each $\mu<\lambda$ and $B^{\mu} \subset B^{v}$ for all $\mu<v<\lambda$.
(a) If λ is a successor ordinal then we put $B^{\lambda}=\varphi_{G}^{R}\left(B^{\lambda-1} \cup\left\{a_{B^{\lambda-1}}\right\}\right)$. Since $a_{B^{\lambda-1}} \in$ $\in B^{\lambda}-B^{\lambda-1}$, we have $B^{\lambda-1} \subset B^{\lambda}$ and $B^{\mu} \subset B^{v}$ for all $\mu<v<\lambda+1$. Clearly, $B^{\lambda-1} \cup\left\{a_{B^{\lambda-1}}\right\} \subseteq A \cup \varepsilon_{G}(a)$ and it holds $B^{\lambda-1} \cup\left\{a_{B^{\lambda-1}}\right\} \in \Omega_{G}$ by 3.2(iv) because $B^{\lambda-1} \in \Omega_{G}$ and $\omega_{G}^{-}\left(a_{B^{\lambda-1}}\right) \subseteq B^{\lambda-1}$.
(b) If λ is a limit ordinal then we put $B^{\lambda}=\varphi_{G}^{R}\left(\bigcup_{\mu<\lambda} B^{\mu}\right)$. For each $\mu<\lambda$ there exists v such that $\mu<v<\lambda$ and we have $B^{\mu} \subset B^{v} \subseteq B^{\lambda}$. It follows that $B^{\mu} \subset B^{\nu}$ for all $\mu<v<\lambda+1$. Simultaneously, $\bigcup_{\mu<\lambda} B^{\mu} \in \Omega_{G}$ and $\bigcup_{\mu<\lambda} B^{\mu} \subseteq A \cup \varepsilon_{G}(a)$.
(c) Both in (a) and in (b) we obtain $B^{\lambda} \subseteq A \cup \varepsilon_{G}(a)$ by 4.11. If $B^{\lambda} \in \mathfrak{D}$ then $B^{0} \subset B^{\lambda}$ gives $\bar{\varepsilon}_{G}\left(a_{B^{0}}\right)=\varphi_{G}^{R}\left(B^{0} \cup N\right) \subseteq \varphi_{G}^{R}\left(B^{\lambda} \cup N\right)=\bar{\varepsilon}_{G}\left(a_{B^{\lambda}}\right)$. Thus, $a_{B^{0}} \leqq a_{B^{\lambda}}$ according to 3.2(i); by this and by $a_{B^{0}} \in \varepsilon_{G}(a)$, it follows that $a_{B^{\lambda}} \in \varepsilon_{G}(a)$.
(3) If \boldsymbol{B}^{λ} is defined then $B^{0} \subset B^{1} \subset \ldots \subset B^{\lambda}, B^{\mu} \subseteq G$ for each $\mu \leqq \lambda$, and $B^{\mu} \in \mathfrak{D}$ for each $\mu<\lambda$. This and the connections between cardinals and ordinals (see [2]) give the existence of an ordinal μ such that B^{μ} is not defined. Then, necessarily, there
exists an ordinal $v<\mu$ satisfying $B^{v} \in \mathfrak{I}$. As $A \subseteq B^{0}, \omega_{G}(a) \subseteq B^{0}$, we have $A \subseteq B^{v}$, $\omega_{G}(a) \subseteq B^{v}$ and $A \vee \omega_{G}(a) \subseteq B^{v}$. On the other hand, by (2)(c), $B^{\nu} \subseteq A \cup \varepsilon_{G}(a)$ and we have $A \vee \omega_{G}(a) \subseteq A \cup \varepsilon_{G}(a)$.
4.13. Theorem. Let G be a poset and (R, N, C) a suitable triple in G. Then $\omega_{G}[R] \approx$ $=\mathbf{I R}_{\mathfrak{J} G(R, N, C)}, \omega_{G}[N] \in \mathfrak{N}_{\mathfrak{Y} G(R, N, C)}, \omega_{G}[C]=\mathbf{P}_{\mathfrak{X} G(R, N, C)}$.

Proof. (1) $\omega_{G}[R]=\mathbf{I} \mathbf{R}_{\mathfrak{F}}$: As $\mathfrak{J} \subseteq \mathfrak{S}_{G}^{R}$, we obtain $\mathbf{I R}_{\mathfrak{J}} \subseteq \omega_{G}[R]$ by 3.13. By 4.10, $\emptyset \in \mathfrak{I}=\mathfrak{S}_{G}^{R}-\mathfrak{D}$. By this and by $N \subseteq \mathbf{M}_{G}$, it follows that $\omega_{G}^{-}(a)=\emptyset \notin \mathfrak{D}$ for each $a \in N$. Let $a \in R-N$ be arbitrary. According to $3.12, \omega_{G}(a) \in \mathbf{P}_{\dot{G}}{ }_{G}^{R}$. This, $a \notin$ $\notin \omega_{G}^{-}(a) \cup N, 3.5$, give $a \notin \varphi_{G}^{R}\left(\omega_{G}^{-}(a) \cup N\right)$. If $\omega_{G}^{-}(a) \in \mathfrak{D}$ then $\varphi_{G}^{R}\left(\omega_{G}^{-}(a) \cup N\right)=\varepsilon_{G}(b)$ for $b=a_{\omega \bar{G}(a)}$. That means $\omega_{G}^{-}(a) \subseteq \bar{\varepsilon}_{G}(b), a \in \varepsilon_{G}(b)$; by 3.2 (ii) we obtain $b=a$. But then $b \in \mathbf{P}_{G}(R, N) \subseteq C$ and we have a contradiction with $b \in R-C$. We have proved $\omega_{G}^{-}(a) \notin \mathfrak{D}$ for each $a \in R$. Since $\mathfrak{J}=\mathfrak{G}_{G}^{R}-\mathfrak{D}$ and $\omega_{G}^{-}(a) \in \mathfrak{S}_{G}^{R}$ by 3.12, 3.4, we obtain $\omega_{G}^{-}(a) \in \mathfrak{I}$ for each $a \in R$. Then $\omega_{G}[R] \subseteq \mathbf{I R}_{\mathfrak{J}}$ by 3.4.
(2) $\omega_{G}[C]=\mathbf{P}_{\mathfrak{F}}$: It followis from (1) that $\mathbf{P}_{\mathfrak{F}} \subseteq \omega_{G}[R]$. Let us take $a \in R-C$. It holds $\tilde{\varepsilon}_{G}(a) \in \mathfrak{S}_{G}^{R}$ by $3.12,3.5$. As $a \notin C, N \subseteq C$, we have $a \in N$. If $b \notin \bar{\varepsilon}_{G}(a)$ for some $b \in N$ then $a<b$ and $b \notin \mathbf{M}_{G}$ which is not true. For this reason $\bar{\varepsilon}_{G}(a) \cup N=$ $=\bar{\varepsilon}_{G}(a)$ and $\varphi_{G}^{R}\left(\bar{\varepsilon}_{G}(a) \cup N\right)=\bar{\varepsilon}_{G}(a)$; this and $\omega_{G}^{-}(a) \subseteq \bar{\varepsilon}_{G}(a)$ give $\bar{\varepsilon}_{G}(a) \in \mathfrak{D}$. Then, clearly, $\varepsilon_{G}(a) \notin \mathfrak{J}$ and $\omega_{G}(a) \notin \mathbf{P}_{\mathfrak{F}}$ according to 3.5 . We conclude $\mathbf{P}_{\mathfrak{F}} \subseteq \omega_{G}[C]$.

Let us take an $a \in C$ arbitrarily. Then $\varepsilon_{G}(a) \in \mathfrak{G}_{G}^{R}$ by $C \subseteq R, 3.12$, 3.5. If $\omega_{G}^{-}(b) \subseteq$ $\subseteq \bar{\varepsilon}_{G}(a)$ for $b \in R-C$ then $b \in \bar{\varepsilon}_{G}(a)$. Indeed, by $b \in \varepsilon_{G}(a)$ and 3.2(ii), it follows that $a=b$ which is a contradiction. Now, $\bar{\varepsilon}_{G}(a) \notin \mathfrak{D}$ in an obvious way and $\varepsilon_{G}(a) \in \mathfrak{J}=$ $=\mathfrak{G}_{\mathfrak{G}}^{R}-\mathfrak{D}$. Then $\omega_{G}(a) \in \mathbf{P}_{\mathfrak{J}}$ according to 3.5. We have proved $\omega_{G}[C] \subseteq \mathbf{P}_{\mathfrak{F}}$.
(3) $\omega_{G}[N] \in \mathfrak{N}_{\mathfrak{y}}$: By (2) and by 4.2 we obtain $\omega_{G}[N] \subseteq \mathbf{P}_{\mathfrak{3}} \cap \mathbf{A}_{\mathfrak{y}}$. This inclusion, 4.12, and 3.8 give $\omega_{G}[N] \subseteq \mathbf{S}_{\mathfrak{x}}$. Thus $\omega_{G}[N] \subseteq \mathbf{S}_{\mathfrak{F}} \cap \mathbf{P}_{\mathfrak{F}} \cap \mathbf{A}_{\mathfrak{y}}$ and, clearly, $\omega_{G}[N]$ is a finite set. Let us assume that there exists $A \in \mathbf{A}_{\mathfrak{F}}$ which is the smallest element in $\mathfrak{I}-\omega_{\mathfrak{F}}\left(\mathrm{V}_{\mathfrak{F}} \omega_{G}[N]\right)$. Regarding 1.10 we have $\mathbf{I R}_{\mathfrak{J}} \cap \omega_{\mathfrak{Y}}\left(\mathrm{V}_{\mathfrak{Y}} \omega_{G}[N]\right)=\omega_{G}[N]$. Then $\left(\mathbf{I R}_{\mathfrak{F}}-\omega_{G}[N]\right) \cap \omega_{\mathfrak{F}}\left(\vee_{\mathfrak{F}} \omega_{G}[N]\right)=\emptyset$ and, consequently, $\mathbf{I R}_{\mathfrak{F}}-\omega_{G}[N] \subseteq \mathfrak{I}-$ $-\omega_{\mathfrak{Y}}\left(\mathrm{V}_{\mathfrak{Y}} \omega_{G}[N]\right)$. By this and by the properties of A we obtain that A is the smallest element in $\mathbf{I R}_{\mathfrak{y}}-\omega_{G}[N]$. As $A \in \mathbf{A}_{\mathfrak{y}}$, there exists $a \in \mathbf{M}_{G}$ such that $A=\omega_{G}(a)$ according to 4.2. By these results and by (1) it follows that a is the smallest element in $R-N$. We have a contradiction with the fact that N is an R-nonhomonymous set in G.
4.14. Corollary. Let G be a poset satisfying the minimal condition and (I, R,N,C) an ordered fourtuple of subsets of G. Then there exists a σ_{0}-dense embedding e of G into a complete lattice S such that $e[I]=\mathbf{A}_{S}, e[R]=\mathbf{I R}_{S}, e[N] \in \mathfrak{N}_{S}, e[C]=\mathbf{P}_{S}$ if and only if $I=\mathbf{M}_{G}$ and (R, N, C) is a suitable triple in G.

Proof. Let there exist a σ_{0}-dense embedding e of G into a complete lattice S such that $e[I]=\mathbf{A}_{S}, e[R]=\mathbf{I R}_{S}, e[N] \in \mathfrak{R}_{s}, e[C]=\mathbf{P}_{s}$. By 2.10 (ii), there exist $\mathfrak{G} \in \operatorname{Gs}(G)$ and an isomorphism $\iota: S \rightarrow\left(\mathfrak{G}\right.$ such that $\iota e=\omega_{G}$. Then $\omega_{G}[I]=\iota e[I]=$
$=\iota\left[\mathbf{A}_{S}\right]=\mathbf{A}_{\mathscr{G}}$ and, similarly, $\omega_{G}[R]=\mathbf{I R}_{\mathscr{G}}, \omega_{G}[N] \in \mathfrak{M}_{\mathscr{G}}, \omega_{G}[C]=\mathbf{P}_{G}$. By this and by 4.2, 4.7, $I=\mathbf{M}_{G}$ and (R, N, C) is a suitable triple in G.

Suppose that $I=\mathbf{M}_{G}$ and (R, N, C) is a suitable triple in G. If we put $S=$ $=\mathfrak{I}_{G}(R, N, C)$ and $e=\omega_{G}: G \rightarrow S$ then $e[I]=\mathbf{A}_{S}$ by 4.2 and $e[R]=\mathbf{I R}_{S}, e[N] \epsilon$ $\in \mathfrak{M}_{s}, e[C]=\mathbf{P}_{S}$ by 4.13.

5. MAIN THEOREM

Let (V, L) be a language. We put

$$
\Sigma \mathfrak{A}(V, L)=\left\{U \sigma_{L}[A] ; A \subseteq V\right\} .
$$

For each language (V, L), $\Sigma \mathfrak{A}(V, L)$ is a finite lattice with \varnothing as the smallest element and with union as the operation of join. If a language (V, L) contains no parasitary elements then the identical map from $\mathfrak{A}(V, L)$ into $\Sigma \mathfrak{A}(V, L)$ is a σ_{0}-dense embedding.

Let S be a lattice. We call an ordered pair $(r,(V, L)$) an 1 -representation of S if (V, L) is a language and $r: S \rightarrow \Sigma \mathfrak{Z}(V, L)$ an isomorphism.
Using the statements [4] II, 3.1 and [4] II, 3.3, we can easily prove
5.1. Theorem. Let S be a nonempty finite lattice and (H, R, P, I, N, F, C) an ordered seventuple of subsets of S. Then there exists an 1-representation $(r,(V, L)$) of S such that (V, L) contains no parasitary elements and $r[M]=\mathbf{M}(V, L)$ for $M=H, R, P, I$, N, F, C if and only if $H \subseteq S-\mathbf{I R}_{s}, R=\mathbf{I R}_{s}, P=\mathbf{I R}_{s}-\mathbf{A}_{s}, I=\mathbf{A}_{s}, N \in \mathfrak{N}_{s}$, $\boldsymbol{F}=\mathbf{A}_{\boldsymbol{s}}-N, C=\mathbf{P}_{\boldsymbol{s}}$.
5.2. Main theorem. Let G be a finite poset and (H, R, P, I, N, F, C) an ordered seventuple of subsets of G. Then there exists a p-representation $(r,(V, L))$ of G such that (V, L) contains no parasitary elements and $r[M]=\mathbf{M}(V, L)$ for $M=H, R, P, I$, N, F, C if and only if $I=\mathbf{M}_{G},(R, N, C)$ is a suitable triple in $G, H=G-R, P=$ $=R-\mathbf{M}_{G}, F=\mathbf{M}_{G}-N$.

Proof. Let there exist a p-representation $(r,(V, L)$) of G such that (V, L) contains no parasitary elements and $r[M]=\mathbf{M}(V, L)$ for $M=H, R, P, I, N, F, C$. The ordered pair $\left(1_{\Sigma \mathfrak{2}(V, L)},(V, L)\right)$ is an 1-representation of $\Sigma \mathfrak{A}(V, L)$ and $\mathbf{H}(V, L) \subseteq \Sigma \mathfrak{A}(V, L)-$ $-\boldsymbol{I R}_{\Sigma थ(V, L)}, \mathbf{R}(V, L)=\mathbf{I R}_{\Sigma \mathcal{L}(V, L)}, \mathbf{P}(V, L)=\mathbf{I R}_{\Sigma \mathcal{U}(V, L)}-\mathbf{A}_{\Sigma थ(V, L)}, \mathbf{I}(V, L)=$ $=\mathbf{A}_{\Sigma w(V, L)}, \mathbf{N}(V, L) \in \mathfrak{R}_{\Sigma थ(V, L)}, \mathbf{F}(V, L)=\mathbf{A}_{\Sigma थ(V, L)}-\mathbf{N}(V, L), \mathbf{C}(V, L)=\mathbf{P}_{\Sigma थ(V, L)}$ according to 5.1. By these results, by the fact that $r: G \rightarrow \Sigma \mathfrak{A}(V, L)$ is a σ_{0}-dense embedding, by 4.14, it follows that $I=\mathbf{M}_{G}$ and (R, N, C) is a suitable triple in G. By the definition of a pure homonym we have $H=G-R$. The assertions $P=R-$ $-\mathbf{M}_{G}, F=\mathbf{M}_{G}-N$ hold trivially.
Let now $I=\mathbf{M}_{G},(R, N, C)$ be a suitable triple in $G, H=G-R, P=R-\mathbf{M}_{G}$, $\boldsymbol{F}=\mathbf{M}_{G}-N$. By 4.14, there exists a σ_{0}-dense embedding e of G into a complete lattice S such that $e[I]=\mathbf{A}_{S}, e[R]=\mathbf{I R}_{S}, e[N] \in \mathfrak{M}_{s}, e[C]=\mathbf{P}_{s}$. Then, clearly,
$e[H] \subseteq S-\boldsymbol{I} \boldsymbol{R}_{S}, e[P]=\mathbf{I R}_{s}-\mathbf{A}_{S}, e[F]=\mathbf{A}_{S}-e[N]$, and S is a nonempty finite lattice by 1.7 (ii). According to 5.1 , there exists an 1 -representation ($r^{\prime},(V, L)$) of S such that (V, L) contains no parasitary elements and $r^{\prime}[e[M]]=\mathbf{M}(V, L)$ for $M=H, R, P, I, N, F, C$. If we put $r=r^{\prime} e$ then the ordered pair $(r,(V, L))$ is a p-representation of G and $r[M]=\mathbf{M}(V, L)$ for $M=H, R, P, I, N, F, C$.

REFERENCES

[1] L. Beran: Grupy a svazy (Zúplněni svazů), SNTL, 1974.
[2] F. Hausdorff: Mengenlehre, Leipzig, 1927, 55-71.
[3] G. Szász: Einführung in die Verbandstheorie, Verlag der Ungarischen Akademie der Wissenschaften, Budapest, 1962.
[4] J. Dalík: Verbandstheoretische Eigenschaften von Sprachen I, II, Arch. Math. Fasc. 1, Tom XII, 1976; Fasc. 1, Tom XIII, 1977.
[5] N. Funayama: Imbedding partly ordered sets into infinitely distributive complete lattices, Tohoku Math. Journal 8, N1 (1956), 54-62.
[6] J. Kunze: Versuch eines objektivierten Grammatikmodells I, II, Z. Phonetik Sprachwiss. Komunikat. 20 (1967), 21 (1968).
[7] G. B. Robison and E. S. Wolk: The imbedding operators on a partially ordered set, Proc. Amer. Math. Soc. 8 (1957), 551-559.
J. Dalik

61300 Brno, nám. SNP 18
Czechoslovakia

