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All linear and bilinear natural concomitants
of vector valued differential forms

ANDREAS CAP

Abstract. We give an explicit description of all linear and bilinear operators, which map
tangent bundle valued differential forms to themselves and are natural under local diffeo-
morphism.
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Classification: 53A55

The aim of this paper is to determine explicitly all linear and bilinear natural
operators between vector valued differential forms. So for a smooth manifold M we
consider the space of vector valued differential forms, Q(M; TM) = @ Q?(M; TM),
where QP(M;TM) is defined to be the space of sections of the vector bundle
APT*M @ TM, the p-th exterior power of the cotangent bundle tensorized with
the tangent bundle of M. As this is a natural bundle a local diffeomorphism
f : M — N induces a pullback operator f* : QP(N;TN) — QP(M;TM). Now
a k-linear natural concomitant of vector valued differential forms is defined to be
a family of k-linear operators

k
Ay : [[ QP (M;TM) - Q7(M; TM)

i=1

one for each smooth manifold M of dimension m, which satisfies the naturality
condition: For any two manifolds M and N, each local diffeomorphism f: M — N
and all P; € QPi(N;TN) we have:

AM(f*Pyy..., f*Pe) = f*(AN(Py,. .., Pr)).

1. DETERMINATION OF MULTILINEAR NATURAL OPERATORS

In this section we describe a method which can be used to determine all mul-
tilinear natural concomitants of vector valued differential forms, and (with minor
changes) of sections of several other natural vector bundles.

1.1. First of all each operator Ay is easily seen to be local, and thus by a multilinear
version of the Peetre theorem (see e.g. [C—dW-G], [S]] or [K—M-S]) it is of finite
order over each compact subset. Since charts on M are just local diffeomorphisms
from open subsets of R™ to M naturality implies that all operators Aps are uniquely
determined by the operator Arm and that the order of Ay in an arbitrary point
z € M is equal to the order of Agm in 0 € R™. So we may restrict the consideration
to some fixed finite order n.
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1.2. Now an operator Ay : Hf=1 QFi(M; TM) — Q7 (M; TM) of order n is induced
by a vector bundle homomorphism Ay : HLI JYAPT*MQTM) - ATT*MQTM,
where J™ denotes the n-th jet prolongation. In particular the operator Agm induces
a k-linear map Ay : HLI V; — V, where V; denotes the fiber over 0 € R™ of the
bundle J*(AP*T*M ® TM) and V denotes the fiber over zero of A"T*M @ TM. We
identify the fibers over zero with the standard fibers.

Now J*(APiT*M ® TM) is a natural vector bundle, and thus it determines a
representation of the jet group G%! := invJF(R™,R™), the Lie group of invertible
n—jets from R™ to R™ which map 0 to 0, on its standard fiber. Clearly this deter-
mines representations of G™*! on the standard fibers of all lower jet prolongations,
too. This representations are described in detail later on.

Theorem 1.3. There is a bijective correspondence between the set of all k-linear
natural operators Ay : HL] QPi(M;TM) — Q7(M;TM) of order n and the set of
all GpHt —equivariant k-linear maps Ao : [[©, Vi > V.

PROOF : This is a special case of a general theorem which describes the set of
natural operators between natural bundles. A proof of this theorem can be found

in [K-M-S]. n

1.4. The first step to apply this theorem is to determine the possible orders of
multilinear natural operators between vector valued differential forms.

Proposition. If Ay : [[o, Q%(M;TM) — Q"(M;TM) is a k-linear natural
operator, then Ay is a differential operator homogeneous of total order r — Y, pi +
k — 1. In particular there is no nonzero such operator for r < > p; — k.

PROOF : This is an easy generalization of a result of [Mi]. ]
1.5. The standard fiber of the bundle J*(AP*T*M @ TM) is the vector space

H?=O(AP‘RM' ®R™Q® SjR’""), where S’ denotes the j—th symmetric power, and
thus the associated map to a k-linear natural operator of order n is:

k n
Ay H(H(AP;Rmt ®R™® SjR"")) — A"R™ @ R™.

i=1 j=0

From homogeneity of A it follows that not all factors in this large product must be
considered, but Ay splits into a sum Ag = 3 4...4jy=n Aj1...jx» for k-linear maps

' k
Ajg...j. . H(A?-‘Rmt ®R™® SjiR"lt)) — A"R™ Q R™.

=1

1.6. The action of the jet group.

We now describe the representations of the jet group G%t! on the standard fibers
of the bundles J{(APT* M @TM) for £ < n, which come from the naturality of these
bundles. The action of an element of G%t! can be described as follows:
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For X € G™t! pick a representative, i.e. a diffcomorphism ¢ of R™ which maps
0 to 0 and has n 4+ 1-jet X at 0. By naturality of the bundle J*(APT*M @ TM) the
diffeomorphism ¢ induces a vector bundle automorphism of J¢(A?T*R™ @ TR™)
which covers ¢ and thus maps the fiber over 0 to itself. Now since the induced map
on the standard fiber of APT*R™ @ TR™ depends only on the 1-jet of ¢ at 0, the
induced maps on the standard fibers of J¢(APT*R™ ® TR™) depend only on the
2+ 1-jet of ¢ at 0 and are thus independent of the choice of ¢ for £ < n.

One easily verifies that this indeed defines representations of G&*!.

This description of the representations shows two important facts:

(1) The induced representations of the subgroup GL(m,R) are just the usual
ones.

(2) Considering the elements of the standard fibers as partial derivatives at 0 of
the coordinate functions of vector valued differential forms on R™, equivari-
ancy under the actions of G%! is equivalent to equivariancy under the usual
transformation laws for partial derivatives.

1.7. For the actual determination of equivariant maps we use a method which was
developed by I. Kol ([Ko]): Since GL(m,R) is a subgroup of G%}! each G-
equivariant map must in particular be GL(m,R)-equivariant. So we take as an
ansatz all GL(m,R)-equivariant maps and then check which of them are G&F!-
equivariant, too.

For the determination of all GL(m,R)-equivariant maps consider the following
diagram:

Aji iy

®:‘=1(AP|’R"¥* ®R™Q® Sj"R"") ——— ATR™ @R™

®:_ (At ®Id®5ymm,~'.)I TM"@’”

$iy-n

@, (®" R™ ®R™ g @ R™) —*, @ R™ gR™.

Here Alt and Symm denote the alternator and the symmetrizer, i.e. the canonical
projections from tensor powers to exterior and symmetric powers, respectively.
Since the alternator and the symmetrizer are GL(m,R)-equivariant maps one
easily sees that each GL(m,R)-equivariant map Aj, j, is given by applying a
GL(m,R)-equivariant map ¢j,...;, and taking the alternator of the result.

1.8. By the classical theory of invariant tensors (see e.g. [D—C]) the vector space
of all GL(m,R)-equivariant maps: R HIRm @ ®k R™ - ® R™ @ R™ is
generated by all kinds of permutations of the indices, all contractions and tensorizing
with the identity | € R™* @ R™ =2 L(R™,R™). So by (1.7) a generating system for
all GL(m,R)-equivariant maps Aj, ..., is given by alternating these generators.
But we do not have to consider all these generators since by antisymmetry of
the alternator permutations of the indices give rise to linearly dependent maps.
Moreover if we perform contractions it makes no difference to contract an index
into different indices of one "group” ®P'R™* or ®’R™*, since there the expression
is antisymmetric respectively symmetric. Finally as there is just one factor R™ on
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the right hand side we have just two possibilities for the number of contractions:
Either we perform k — 1 contractions, or we perform k contractions and tensorize
with the identity.

1.9. So we proceed as follows: As an ansatz for Ay we take a linear combination of
all generators for GL(m,R)-equivariant maps A;,. j, as described above. This can
be viewed as the coordinate expression at 0 € R™ of a k-linear operator between
vector valued differential forms. Now we compute the action of a general element
of G} on this expression and get a system of linear equations in the coefficients
of the generators which is equivalent to equivariancy of Ag.

1.10. Using the description of the generators in (1.8) we can now compute an upper
bound for the possible order of k-linear natural operators between vector valued
differential forms. This is simply due to the fact that if in one of the terms S%R™*
at least two indices remain free (i.e. uncontracted), then the whole expression
is symmetric in these two indices and thus becomes zero after application of the
alternator. So to get a nonzero GL(m,R)—equivariant map there may only survive
k indices from these terms (one for each of them). On the other hand we cannot
contract more than k indices and thus the number of indices in all terms S$%R™*
which is equal to the order of the operator must be less or equal to 2k.

2. THE TRANSFORMATION LAWS FOR PARTIAL DERIVATIVES
OF VECTOR VALUED DIFFERENTIAL FORMS

2.1. As we will see later on we will need at most 3—jets of vector valued differ-
ential forms, and thus at most the action of G%,. To get the usual form for this
transformation laws we interpret a diffeomorphism representing an element of G2,
as a change of coordinates from a system {z‘} to a system {z'}. For coordinate
expressions we will always use Einstein sum convention.

An element of G4, has a canonical representative, the Taylor polynomial up to
order 4. In coordinates this is just given by:

3= .
= %_'(0)3: + 21 8:1 8:5 (0).7:".7: + 35 3! a::%:‘azi (o)zlzkzt+
.
+ 35 af‘g';fazm (0)z'z*zta™ =

e AT 1ni 1 ik L 1 k_t m
=: AJ.T + 2!Bjk$"$ + 3!Cjkl$ Tz +4!

;-“mz’z z'z

We will denote this jet by (A;, 2‘, ip: HY% ici HY) 4, J Di,pn). We will also need the inverse

of such a jet, which will be denoted by (A’, 21 Bk 3,0)“, v DJklm)

2.2. First we need the transformation laws for vector valued differential forms.
We write lower case greek letters for groups of free form indices. Then using the
notation introduced above the transformation law reads as:

Pi = P;A;Eg, where A? := /ig'l .. Aﬁ;
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To get the transformation laws for partial derivatives one has to differentiate this
equation partially. For first order partial derivatives this gives:

Pi k= ngA A'Aﬂ +PJA B,,Aﬁ P’A'Aa g Where

ay-1""kay

8_8‘(Aﬂ) = EAﬂl . ABu-1 BB Aﬁuixl jg:

u=1
For second order partial derivatives we get:

Pi .. =P}, A ALASAL + P;,B,",Ajlﬂ + P} ALA;Bi,Af + P} ,EiA}Eg'ﬁ
+Pj ,A;ALBi;Af + P}B},B}; AL + P}ALAiCl; AL + PjALBLAL (+
+P} A}ALAL ,,+P’A,B,,A£,‘+P’A, f ko Wwith

“iz,u = %:(Eﬁ,k) = ngi "'C—'kﬁ;c. ~---’ig:+
u=1
+) A ... Bl ...Bp ... Al
u#v
We do not need the transformation law for third order partial derivatives in full
generality, but only in the special case when B}, = B, = 0. In this case we get:
i kem =P} A ALALAL AL + P} Clom ALAD + P} ALALAT, c;',,.j"+
+P} ALAJAS . + P} A} ALALCLAS + Py AT ALAGCE AL
P’/i‘ LAJAT D'",_,Aﬂ + P;,A,A' Aa m Tt P,;‘,A:,,A;Az'“+

+PJASAL ., where
I _
Aa,ktm = a kl) E A . klma t Az; .

u=1

2.3. Next we have to express the inverse jet (4,B,C,D) in terms of the jet
(A,B,C,D). Clearly A is the inverse matrix to A and thus A;A} = 6}, the Kro-
necker delta. Iterated partial differentiation of this equation gives

0= Bj, A} + AjA} B},
0= Ci, A% + Bj, A}B!; + B, A} B!; + A{B},B}; + AiA}A[C},;.

The formula for D is again only interesting for us in the special case B;: = B-;'-k =0.
In this case we get: . L

0= D:lkmA; + A; :A A‘ D;ruu
2.4. In (1.9) we saw that we need the transformation laws to decide whether a
GL(m,R)-equivariant map is G4,—equivariant, too. So without loss of generality we
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may always assume that A is the identity matrix. This simplifies the transformation
laws. We will simplify the situation more by checking equivariancy for certain
subsets of G4, separately. Therefore we define the following subsets of G%,:

G :={(A,B,C,D)€ G, : A} = 6},Ciry = Dippn =0 Vi, j,k,€,m}

G2, :={(A4,B,C,D) € G4, : A} =6}, B}} = Digp =0 Vi,j,k,€,m}

Gt :={(A,B,C,D)€ G4, : A} =6}, Bi, =Cjpy =0 Vi, j,k,¢}.
Easy computations show that for elements of these subsets the transformation laws
are given as follows:

Proposition 2.5. For (6},B};,0,0) € G2, we have Bi, = —Bi, and Ci}, =
B},Bi‘ + B{,B}, + B;'tB;,‘, and the transformation laws are:

(1) Pi = Pi
- . . . p -
) Piy=Pi,+PiBiy =Y Pi . itausiapBlad
u=1

Pi 4 =Pi — Pi Bl + P. B, + Pl ,Biy — P}B}Bf,—

P P
—- § : i t - § ] t
Pal Oyt pr...ap ,kBla. Pﬂl...u._x tay41...0p ,lBka.

u=1 u=1
P 14
- J i pt J i pt
(3) ZPal...a._ﬂa...;.,...a, BjkBla. ZPou..,a.,_1ta..+1...a,leBka.,+
u=1 u=1
P P
i t ns i t ns
+ Z Pag...au..lta..“...a, BkaBla. + z: Pa;...a.,_,!a.,“...a, BlaBka.. +
u=1 u=1
P
§ t 8 i t s
+ Z Pa;...u..-;ta...._;...a, Boa.. Bkl + Z Pal...!...a...a, Bka.. Ela.,'
u=1 u#v

I_,l‘.opositiOn 2.68. For (6;a 07 C;:kbo) € é?n we have B;k = 0, C;:kl = —-C":kl and
Ditem ~ 0, and the transformation laws are:

[

(1) Pi=Pi
() Piy=Pi,
P
®3) ‘ P;,kc = ;,u + ch_:‘kt - 2:1 P;;...a._lta.+l...a, Cita.
"=
I_"';‘“m = oix,ktm - P;,:Citm + Pgr,kc;:lm + Pz{,lC;’km + Pgr,mC;:kI_
P
(4) = il P;;...a.-lta.+1...a,,kczma.. - Zl Ptil...a.‘_;tau+1...a,,lcimau -
u= u=

P
\E : i t
Pzn...a.._lta..“...a,,mckla.‘ .

u=1
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Proposition 2.7. For (6},0,0,D},,,.) € G%, we have Bi, =0, Ciyy = 0 and

Ditom = —Djjiem, and the transformation laws are:
(1) P, =P}
2 Pl,=Pi,
(3) Py = Pl ke
P
(4) Pci,klm = Pri,ktm + PgD;‘klm - EP;I...au_lta..q.;...a, D'klma.'
u=1

2.8. Until now we neither used the fact, that the terms we consider have antisym-
metric as well as symmetric indices, nor that we will apply the alternator, which
acts on all free lower indices. In several situations these facts simplify the trans-
formation laws again. As an example take formula (2.7)(4): From antisymmetry
of the alternator and symmetry in the lower indices of D one easily concludes that
all terms in the sum for which a, is free become equal and if moreover one of the
derivation indices k, £, m is free they all vanish.
We will use all simplifications later on without reference.

3. LINEAR AND BILINEAR NATURAL CONCOMITANTS
OF VECTOR VALUED DIFFERENTIAL FORMS

3.1. To formulate our results we have to define several operators which act on vector
valued differential forms. Since all operators we are going to use are local and each
form P € QP(M;TM) can be written locally as a finite sum of decomposable forms
¢ ® X where ¢ € QP(M) is an ordinary p—form and X € X(M) is a vector field we
define all operators only on decomposable forms and require that they are linearly
respectively bilinearly extended.

Definition 3.2.
(1) The Frolicher-Nijenhuis bracket:
[, ]:Q2(M;TM) x QI(M; TM) — QP*9(M; TM).
For o € QP(M), ¢ € Q(M) and X,Y € X(M) it is given by:

X,y Y] =AY R [X, Y]+ ALX))BY — LY )p)A Y@ X+
+(—~1P(dp A i(X)(¥) ® Y +i(Y)(p) A dip ® X).

For a more algebraic definition and the properties of this bracket see [Mi].
(2) The insertion operator:
i: QP(M;TM) x QI(M; TM) — QP (M;TM) defined by
(le®X) Y QRY)=pAi(X)(¥)®Y. Here i(X) denotes the usual insertion
operator for vector fields. Note that this definition makes also sense with an
arbitrary vector bundle valued differential form in the second position.
(3) The contraction C : QP(M;TM) — QP~Y(M), defined by C(y ® X) =
i(X)(p)
(4) The symmetric contraction S : QP(M;TM) x QI(M;TM) — QPtI-2(M)
defined by S(p ® X, % ®Y) = i(¥)(p) A i(X)(¥).
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3.3. All these operators are natural under local diffeomorphisms. For the Frolicher—
Nijenhuis bracket this is shown in [Mi] and for the other operators it is easily
verified.

Moreover we use that Q(M; TM) is a graded module over the graded commutative
algebra (M) under the action ¢ A (¥ ® X) = (¢ A ¥) ® X, linearly extended.

By | we denote the identity Idrs, viewed as an element of Q!(M; TM), and by
d we denote the exterior derivative of differential forms.

3.4. Let us now start with the determination of all linear natural concomitants
of vector valued differential forms. So we are looking for natural operators Ays :
Q' (M;TM) — Q"(M;TM). By (1.4) and (1.10) these operators have to be of order
0, 1 or 2 and this corresponds to the cases r = p, p+ 1 and p + 2, respectively. Let
us start with the algebraic case r = p.

Theorem 3.5.

(1) Ifdim(M) =0 or m := dim(M) < p, then there is no nonzero natural linear
operator A : QP(M; TM) — QP(M; TM).

(2) If p=0 and hence QP(M;TM)=X(M) andm>1orifp>1and m=p,
then each linear natural operator on QP(M;TM) is a scalar multiple of the
tdentity.

(3) If p > 1 and dim(M) > p, then the natural linear operators on QP(M;TM)
form a two dimensional vector space, linearly generated by the identity and

C(P)AL

PROOF : (1) is clear, since Q?(M;TM) = 0 in this case.

Clearly the identity and P — C(P) A | are indeed natural, and inserting special
forms one immediately sees that for p > 1, m > p they are linearly independent,
while for p > 1, m = p one has C(P) Al = (-1)*"1P.

Thus we only have to show that there cannot be more linear natural operators.
According to (1.3) and (1.5) we can do this by determining all GL(m, R)—equivariant
maps A : APR™ ®@R™ — APR™* @R™. By (1.8) all these maps are linear combina-
tions of the identity and of maps obtained by performing one contraction, tensorizing
with | and then alternating the result. Thus Ag must be of the form:

(AO(P)):-!\...GP = aP;;...u, + bPﬂ":al...ap..laz,,

(Alternation is not explicitly indicated.) But these are (up to a sign) the coordinate
expressions of P and C(P) A l. Moreover it is clear, that for p = 0 only the first
term makes sense. ]

Remark. In the sequel we will write expressions like Py, ., _, 6:',’ as P 6%, since

it is always clear what the values of a and £ must be.
3.6. Next we consider the case r = p + 1 and hence A homogeneous of order 1.

Theorem.

(1) If p = 0 or m := dim(M) < p, then there is no nonzero linear natural
operator A : QP(M; TM) — QP (M; TM).



All linear and bilinear natural concomitants of vector valued differential forms

(2) Ifp>1and m > p+1, then each natural linear operator A : QP(M;TM) —
QPHY(M; TM) is a scalar multiple of dC(P) AL

PROOF : From (3.3) it is clear that P + dC(P) A | is indeed natural and it is
easily seen not to be identically zeroif p>1and m > p+1.

To prove that there are not more linear natural operators we determine all G2,
equivariant maps Ao : APR™ @ R™ @ R™* — APHIR™* @ R™. According to (1.9) we
start with GL(m, R)-equivariant maps, and then check, which linear combinations
of them are G%,~equivariant, too. By (1.8) these maps can be obtained either
by simply alternating, or by performing one contraction, tensorizing with | and
then alternating. There are two possibilities to perform one contraction: We may
contract the upper index either into a form index (without loss of generality into
the first one), or into the derivation index. Thus we must have:

(*) A(P)y = aPy  + bPro 16t + Pl

(Alternation is not explicitly indicated.) 3
Now we check, which values of a, b and ¢ give rise to G2, equivariant maps. Thus
we need the transformation laws (1) and (2) of Proposition (2.5). From these we

see immediately that the left hand side of () is G2, invariant, i.e. A(P), = A(P),
and thus equivariancy is equivalent to A(P) = A(P):. Now we have:

A(P)i =a(P} , + PiB}y) + bPm, 167+
+ e(PT.6; + PiBm6; — pPP3i Bina 67)

and thus equivariancy is equivalent to:

(%%) 0 = aP}Bjy + cP}B},6; — cpP3; B}y, 6}
while the parameter b remains free. The right hand side of this equation represents
a bilinear map:

APR™ @R™ x S’R™ @ R™ — AP*IR™ @ R™.

Now one has to discuss equation (*x) for the different values of p and m:

First for p = 0 the term corresponding to b in (*) as well as the last term in (**)
does not occur. For m > 1 equation (**) immediately implies a = ¢ = 0, while for
m =1 it only gives ¢ = —a. But in this case the maps corresponding to a and c are
linearly dependent and ¢ = —a gives the zero map. So the first part of the theorem
is proved.

Next for p > 1, m > p+ 1 and for p = 1, m > 2 equation (**) again leads to
a = ¢ = 0, while for p =1, m = 2 one has to show that the maps in the ansatz ()
become linearly dependent and then deduces that there is only one free parameter.

So for p > 1, m 2 p+ 1 we have in any case exactly one free parameter b, and
thus the dimension of the vector space of natural operators is at most one, and the
proof is complete. =
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Theorem 3.7. There is no nonzero natural linear operator:
A:QP(M;TM) — QP (M;TM).
PROOF : We show, that there is no nonzero G3, equivariant linear map
Ao : APR™ @ R™ ® S?R™ — APYZR™ @ R™.

In this case P has two derivation indices, and from (1.10) we know that due to
symmetry at most one of them may be free if the resulting map is nonzero. Thus
there is only one possibility to get a nonzero GL(m,R) equivariant map, namely to
contract the upper index of P into one of the derivation indices, tensorize with |
and then alternate the result. So we must have:

() A(P)., = aPP ;.

Now we check, whether this is G2, equivariant. Thus we need the transformation
laws (1) and (3) of Proposition (2.6). The left hand side of (*) is G3, invariant, and
the first term of (2.6)(3) reproduces the original map. So equivariancy is equivalent
to0 = anCJ'-“ and thus clearly to a = 0. ]

km)

3.8. Let us now turn to the bilinear case. We are looking for bilinear natural
operators

Ay : QP(M; TM) x QI(M; TM) — Q"(M; TM).

By (1.10) Ap must be homogeneous of total order between 0 and 4, corresponding
tor=p+q—1,...,p+ g+ 3. Again we start with the case of algebraic operators,
ie.r=p+q-1.
Theorem 3.9.
(1) Ifp=q=0 or m:=dim(M) < p+ q— 1, then there is no nonzero bilinear
natural operator QP(M; TM) x QI(M;TM) — QP+1-Y(M;TM)
(2) For all other values of p, ¢ and m these operators form a vector space linearly
generated by the following eight operators:
S(P,Q) A1, C(P)AC(Q) AL i(P)C(Q) AL {Q)C(P) AL, C(P)AQ,
C(Q) AP, i(P)Q) and i(Q)(P).
Moreover if p,q > 2 and m > p+gq, then these operators form a basis, i.e.
are linearly independent.

PROOF : (1) is trivial.

(2): From (3.3) it follows that the operators under consideration are indeed natural,
and inserting special forms one shows that they are linearly independent if p, g > 2
andm >p+q.

To show that these operators form a generating system we determine all GL(m, R)-
equivariant linear maps

AO : APR™ @ R™ ® AIR™ ®R™ — AI""G"lRm-l ®Rm
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From (1.8) we know, that these maps are generated by maps obtained by performing
one contraction and then alternating the result, or by performing two contractions,
tensorizing with | and then alternating the result. Clearly we have four possibilities
to perform one contraction (P into P, P into @, @ into P and @ into Q), and four
possibilities to perform two contractions (both into P, both into @, each into itself
and P into @ and @ into P). So we have eight generators, and they are immediately
seen to be (up to signs) the coordinate expressions of the operators listed in the
theorem. n

3.10. Now we turn to the (probably most interesting) case r = p + ¢ and hence
operators homogeneous of total order one. In this case several results were already
known: For p = ¢ = r = 0 and hence 4 : X(M) x X(M) — X (M) unicity of the Lie
bracket was proved by D. Krupka and V. Mikolsova ([Kr-M]), S. van Strien ([vS])
and in a stronger (infinitesimal) sense by M. de Wilde and P. Lecomte ([dW-L]).
The general result for p,q > 2 and dim(M) > p+ q + 2 was proved by 1. Kolaf and
P. Michor ([K-M]).

Theorem.

(1) If m :=dim(M) =0 or m < p+ q then there is no nonzero bilinear natural
operator QP(M; TM) x QI(M;TM) — Qrty(M; TM)

(2) If m > p+ q then the these operators form a vector space linearly generated
by the following ten operators:

[P,Q], dC(P) A Q, dC(Q) A P, dC(P) A C(Q) A ), C(P) A dC(Q) A,
i(PXAC(Q)) AL, {(Q)AC(PY) AL, dG(P)(C(@) AL, dG(Q)(C(P)) Al and
dS(P,Q)A L.

These operators form a basis if p.g>2and m>p+q+1.

(3) For all values of p and q, if m > p+ q+ 1, then a basis is given by those
operators from the list above, that make sense for a p-form P and a g-form

(4) If m = p+q, then a basis for each value of p and q is given in the list below:

basis
(P Q]
22 [PQdC(QAP
1 [P,Q],dC(P) A Q,dC(Q) A P,dC(P)AC(Q) A,
C(P)AdC(Q) AL
1 >2 [P,Q],dC(P) A Q,dC(Q) A P,dC(P)AC(Q) AL,
C(P)AdC(Q) AL AG(P)C(Q))) AL
>2 22 [P,Q],dC(P)AQ,dC(Q) A P,dC(P)AC(Q) A,
C(P) AdC(Q) AL, d(i(P)(C(Q))) AL, d(EQ)(C(P))) AL

- o o
—

PROOF : (1) is trivial.
All linear independence results can be proved by inserting special elements.
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For the rest we only consider the case p,¢ > 2 and indicate how to prove the
remaining cases. This case was treated with the method we use in [K-M]. It is
shown there that the ansatz is:

Ao(P, Q) =aPp. QR 6} + bPLmQnsbs + cPayQampbit
+dena 1Q36; + eP mQ38; + P x Qi+
P 2 Qa8i + hPT.Qn b0+

+'Pmu +Q5 +JP¢;”mQﬂ + kPT Qi st

(%) +OPL Qs + mPi, 1 Qf + nPa QR+
+APmaQ ,‘6‘ + BPy, Qp ,.6, + CP,,"“,Qﬂ k6¢+
+DPI QR s bt + EPJ Qg a8t + FPQms 16+
+GPI QR bt + HPoQp it
+IP,; ngk + JP'Qﬁ’ + KP,'me rt
+LP, ank +MP'"Q k+NPa Qﬁ,m'

(Alternation is not explicitly indicated, &} is the coordinate expression of | and lower
case greek letters represent different groups of free form indices, whose actual values
in each term are clear from the context.)

It is then shown there, that for m > p+g¢+1 G2,-equivariancy of A is equivalent
to: b=e=h=j=¢=m=B=E=H=J=L=M=0.
a,c, f,g9,i,n,A,C,G, I are ten free parameters, which determine all other parame-
ters uniquely by the following equations:

d=(-1"'(p-1)g+(-1)'C, k=—¢n
D=(-1)c+(-1)*"Y(¢~-1)G, F=(-1)""f, K=(-1"*"""pn, N=-n.

A detailed analysis of the equations derived in [K—M] shows that this continues to
hold form=p+q+1.

Thus the dimension of the vector space of bilinear natural operators is at most
ten, and the theorem holds in this case.

Moreover the free parameters listed above correspond (up to signs) directly to
the operators listed in the theorem as follows:

@ e dO(P)ACQAL, ¢ s di(PYC@NAL, f s dS(RQAL

g = i(QNdC(P)Al , i dC(P)AQ, n e [P,Q],
A C(P)AC(Q) AL, C & diEQ)C(P))AL, G o i(P)dC(Q)) AL,
I dC(Q)AP.

This is easily verified by calculating the coordinate expressions of the operators. ®
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Remark. In [K—M] the generator dS(P,Q) A | was replaced by dC(i(P)(Q)) A .
A short computation shows that these two operators are related as:

dC(i(P)(Q)) A1 = dS(P,Q) Al + (-1 d((P)(C(Q)) AL.

I chose dS(P, Q) A | here since it corresponds directly to the parameter f.
3.11. Let us next discuss the case p,g =22, m=p+gq.

Lemma. In this case the following equations hold:

(1) P, Q"p‘% =(- 1)"—1 mo k@ngdt + PaiQumpbe + (-1)7=1P; ,Qns

(2) Qﬂ = ( l)P- a I:Qﬂ + Pa kap .

(3) P, na ngél = ( 1)"‘1 mQn a0 +( 1p+e=1pn Qp

(4) P, ma nQH‘Sz_ =Pg, kQ:p5¢ +(-1)PPR Q36 + (-1)*P1, Q%

(5) a,n Q" ﬂa; = ( l)p— ma,nQ;sl +( l)q—lP;,nQﬂ

(6) P k@mpi = (1P P1.Qnp8; + (- 1)”'1 ek Qnmp®s + (— 1)’“"1’"’ "
(1) ProxQp = (-1)Pg 1 Qns + (1771 P Q5.

PROOF : All these equations can be proved by inserting basis elements for P. For
@ :=dz'A---Adz? € QP(R™) it suffices to consider the basis elements <p®§gy®da:l,

PR32 ®dr!, p® 52 @dr!, p® 52 ®dz?t!, p® 52 ®dzP+! and Y@ 505 @dz?+!
for P, since any other basis element can be brought to one of these forms by simply
renumbering the coordinates. Inserting each of these elements into the equations
one then computes directly that they hold for arbitrary basis elements inserted
for Q. |

3.12. Looking at the ansatz (*) in (3.10) we see that Lemma (3.11) implies that all
maps in it, which correspond to lower case letters are linearly generated by those
which correspond to the parameters a, ¢, d, ¢, k, ! and n. Clearly similar equations
hold for the maps in which @ is differentiated, and thus we may reduce the ansatz
to:

AU(P, Q)-y "‘aPma kQ 5; + chkQ mﬁsl + dP, nu k056l+

+iPp, Qb + kP, kQ g+ P, Qg +nP: Q5+
+AP,,Qns, 18 + CPm: mna @3, k05 + DPanmﬁ,k6;+
+IP, nak + KP:.an,k +L man,k + NP:‘Q;,m'

But now repeating the computations of [K—M] it is quite easy to show that for

m = p+ q G%,—equivariancy of Ay is equivalent to: £ =L =0,

a, ¢, i, n, A, C and I are seven free parameters, which determine all other parameters

uniquely by the equations:

d=(-1)C, k=-gn, D=(-1)¢, K=(-1’*"1pn, N=-n.

Thus Theorem (3.10) continues to hold in this case.
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3.13. To finish the discussion of Theorem (3.10) we indicate how to prove the
remaining cases:

First one takes those maps from (3.10)(x), that make sense for p- and g—forms.
Then if m > p+q+ 2 the proof is like for p,g > 2, m > p+q+1. Hm=p+q+1,
then one shows, that two maps in Ay can be expressed as a linear combination
of the other ones. Eliminating these maps the proof works as before. Finally for
m = p+q one shows, that one may eliminate several maps from (3.10)(), and then
again the proof works.

3.14. Next we consider second order bilinear operators, i.e. the case r = p+ ¢+ 1.
From now on all results seem to be new.

Theorem.
(1) Ifp=qg=0orm:=dim(M) <p+q+1, then there is no nonzero bilinear
natural operator A : QP(M; TM) x QI(M;TM) — QP+ (M; TM).
(2) For all other values of p, q and m these operators form a vector space, linearly
generated by the operators

dC(P) AdC(Q) A, d(i(P)(dC(Q)) Al and d(i(Q)(dC(P))) Al

and these three operators form a basis if p,g>1 (and m>p+q+1).
(3) Ifp=0,g>1 and m > q+ 1, then each bilinear natural operator

A: X(M) x QI(M;TM) - QI (M; TM)
is @ scalar multiple of d(i(P)(dC(Q))) A ).

PROOF : Naturality of the operators occurring in the theorem follows from (3.3),
and they are easily seen to be linearly independent for p,¢g >land m>p+q+1
by inserting special elements for P and Q.

To show that there are not more bilinear natural operators we determine all G3,
equivariant maps A = Ayg + A;; + Aoz, where

A20 . ApRmv ®Rm ® S2Rmt ® Aqut ® Rm — Ap+q+lRma ® Rm
All . ApRm- ® Rm ® Rm- ® Aqu— ® Rm ® Rm: —_ Ap+q+lRm- ® Rm
Aog . APR™* ® R™ ® AIR™* ® Rm ® S2Rm' - Ap+q+lRmt ® R™

are linear. We do this only for the case p,q > 2 and indicate how to treat the
remaining cases. As before we take all GL(m,R) equivariant maps as an ansatz,
and these are generated by all maps obtained by performing one contraction and
alternating the result, or by performing two contractions, tensorizing with | and
then alternating.

Let us first consider Azp: Here the first form has two (symmetric) derivation
indices, and to get a nonzero map at least one of them must be contracted (c.f.
(1.10)). Thus we have only two possibilities to perform one contraction and five
possibilities to perform two contractions. This gives a seven parameter family for
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Az (lower case letters in the list below). Similarly we get a seven parameter family
for Aoz (upper case letters in the list below).

Now consider A;;: Since there are four groups of lower indices, we clearly have
eight possibilities to perform one contraction (upper case letters with tildes in the
list below). If we want to perform two contractions, the situation is as follows:
We have four possibilities to contract the first upper index. If it is contracted into
a form index, we have four possibilities to contract the second upper index (since
P,q = 2), but if it is contracted into a derivation index, there remain only three
possibilities for the second upper index. Thus we have 14 possibilities to perform
two contractions (lower case letters with tildes in the list below). So we get the
ansatz:

A(P,Q),, =aPp 1mQ36; + bPT . Q368; + cP) 0 @upbit
+dPp, 1nQ56% + ePT1aQmabi + fPTum @b + 9PS 4 Q3+
+&Pp ok Q5 8% + BPm, .QF 85 + P Qs .84 + dPI, 1 Qf 63t
+EPT, Q5,.6; + FPTmQng 6t + GPomQp a6t
+hP] 4 Qs o8t + 1P Qmp o6t + IPTL Q8¢ + EPTL Qg 26t
(*) +EPD, Q5 05+ MPT Q3 8} + AP QR Sit
+APR, Q5+ BPP, Qb+ CPIQls, + DPTQS o+
+EPi, Q5+ FP. Q3 +GP. Qus, + AP Q1+
+APD Qg nrbi + BPTQ} nnbi + CPro Q5 o/ 6it
+DP}Qng mebt + EPQp 1y 6; + FPiQp o + GPT Q) oy

As before alternation is not explicitly indicated. =

3.15. We start checking equivariancy with G3,. Thus we need the transformation
laws (1), (2) and (3) of Proposition (2.6).

From these one immediately sees that the right hand side of (3.14)(*) as well
as the whole map A;; is G3 ~invariant. Then one computes that equivariancy is
equivalent to:

0 =a(Pr’;a ;'l'em - P::C:mn)Qsaz'*’
+Y(P}Cjun — PPatCrna, )56+
+cPICRm@ngbi + ePICT, Qmabi+
+fPiChimQ} + 9PiC}in Q5+
+AP:‘(Q’mpC;.nr - Q;.ﬁCr‘nnr)J;'*‘
+BPN(Q4C mn — 9Q5:Crmnp, )i+
+CPr,@5Ch 8% + EP@QCln, 63+
+FP.Q4Ch,, + GPIQ)Ci ..
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The right hand side of this equation represents a trilinear map:
APR™ ® R™ x S°R™* @ R™ x AR™ ® R™ — APH7HIR™ @ R™.

Now one uses antisymmetry in the free lower indices to bring all terms into a
standard form and gets the following maps and coefficients:

Pl,CRnQ3: a

PCimnQp6;: —a+(-1)pb+(-1)'E
PiCP..Q38;: b+ B

aijmn
PgCJ'-',‘mQ:ﬂS;' e

(*) PiClia@mpbi:e+(-1)'A~¢B
Py Cl@ngle (-1)77'4

PvrrznaC;nerQ&; : ("1)qc

PiCiimQp: f

PiCinQp: 9+ (-1)'G

P;C)nnrQJﬂ : (”l)qF
Next inserting special elements for P, @ and C one proves that for p,¢ > 1 and
m 2> p+q+ 2 the maps listed above are linearly independent as trilinear maps, and
thus G3,—equivariancy is equivalent to all coefficients listed in (*) being zero and
thus to:
a=c=f=A=C=F=0,¢e=—gb B= b E = (-1)P*?+!ph and
G = (—1)7"1g, while the parameters b, g, d and D and all parameters corresponding
to maps from A;; remain free.

3.16. Now we check, which G3 —equivariant maps are G2,—equivariant, too. Thus
we need the transformation laws (1), (2) and (3) of Proposition (2.5). Using these
we get:
A(PQ), =
=W(Py'mn + P} nBjim — PiB}i By — PP3i mBra, — PPat nBa, ~
— pPi,B}Bra, — PPA B} B, + PPLBL, B, + PPoiBr.Bra, +
+ pPiBra, Brn + p(p — VPat, Braa, _, Bha, )Q56t+
+d(Pr kn = Pt Bin — (0 = 1Pk Brop ) Q561+
+e(Pyn = PIBlo + Pi4Bfa + PLuBR, — PiBR Bl — pPI4Bhe, -
— pPJ B}y B, + PPT Bk, By, + pPoi By Bh,)Qmsbit
+9(Papn ~ PaBin + PLaBin + PiBjy — PiBjiBl, — PPeysBra,~
— pPi,BiyBL,, +pPiBL,BL,, +pPiB, Bl Q5+
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+a(Ponck — PriaBin) Q- + QJ B}.)6p+

+8(Prra,n = (P = DPrat B, )@, + Q5B] )80+

+ePr kQns, S+

+dPp, x(Qpn+ Q’ 'IQp:Bnﬂ, )83+

+&(Pra,m + PiaBjm - P"'B' —(p—1)Py Bl Q5. + @3BJ)6i+
+f(P + PiBJ, — PmB:na, )Qns, b5+

+§(P&m + PiBf, — P'"Bf..a,)(Q,s, Q% B} — Q3. Bl )oit
+h(Pla,x + PlaBJi — PiaBia)(@ng,r + Qi,., - Qs Bn, )b+
+i(Pg, + P3BJ, - PmB:la,)(Qmﬂ, B}, — Qs Br., )6i+
+7(PTy + PiBR)(@nmp,r — ntﬂB:nr)6l+

+k(Pm "+ + PiB] l:)(Qmﬂ, +Q ;B r 8B — QisBrn — (9 — 1)@ np,)5t+
+U(PR , + P B} Bkn)(Qﬂ,m QJij QQﬂthﬁ, )85+

+ii( Py, + PiBT, — PmB:oa, )(QF,m + Q5Bfm — 9Q5Blag, )oi+

+A(P2y + PLBR)(Qnp.m — (¢ — 1)@ Bt mB, )85+
+APp, k(Qp rt QJ r)+
+B(Py,, + PiBf, - PmBrtna, )(Qp, +Q;Bi )+
+é(P;"k + PjBﬂ)(Qmp, Q - Q:pB O+
+D(PJy + PiB}; )(Qp, + Q’B qQﬂthﬂ.)+
+E(Pr'm,k + P B} — Blm)(Qﬂ, + Qj B} )+
+F (P + PiBj, — PisBro, (@5, + @3BJ)+
+G(Pi, + PiBi)Qns +
+H(Pix + PiBji)(Q}n + Q3 BF, - qu.B;p,)+
+BP Q% mn + @5 mBin Q’ B} Brn — 4Qp¢mBrs, — 9QpenBrmgs,—
- 4@, B}Bls, — Q% B}, B,..p, +9QpBr,Brg, +
+9Q5.B.,Br mp, + QQmB.ﬁ, Br.. +4(q—1)QBesBrg, _, f.p,)5f+
+DP (Qngmr — Qnp,eBmr — (4 — I)Qnﬂt - mp,)5¢+
+EPn(Qp mr — Q5,4 Brr + Qp mB} + @ Bl — @3B} BL, —
- Qth r :nB' QQJ B" mﬁ, + QQ;tB:a :nﬁ'+
+ QszB.p,B:m)&z‘i'
+GPI(Qp.mr = QpBrr + QpmBjr + @5, Bim — @ B5iB,
- quﬂt,rB:nﬂ' - 9Q B' Bmﬂ' + QQmBnB:n,s, + QQ:HB:B'B:M')‘
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Since the left hand side of the ansatz () of (3.14) is G2, invariant, G2, equivariancy
is equivalent to A(P,Q)f, = A(P, Q)!, Moreover the first terms (respectively the
products of the first terms of each bracket) reproduce the original map (3.14)(x),
and thus equivariancy is equivalent to the rest being zero. This is again a linear
combination of maps, but this time there are three essentially different types of
maps: First there are trilinear maps:

APR™ @ R™ @ R™ x SZR™ @ R™ x ATR™* @ R™ — APHItIR™ @ R™
(those in which P has a derivation index). Second there are trilinear maps:
APR™ ® R™ x SZR™ ® R™ x AJR™ ® R™ ® R™ — APH7+IR™* @ R™
(those in which @ has a derivation index), and finally there are maps:
APR™ ® R™ x SZR™ ® R™ x AJR™* @ R™ — APHIHIR™* @ R™

which are linear in the first and third factor and quadratic in the second factor.
Since the value of a vector valued differential form at zero and the values of its
partial derivatives at zero can be chosen independently, we may split the equation
into three parts, corresponding to these three types of maps.

3.17. Let us first consider the maps, in which P has a derivation index. Using
antisymmetry in the free lower indices we bring all terms into a standard form and
use the fact that the free lower indices must be the same in each term. Then we
get the equation

0=bP] . B}Q36; + -+ (-1)7¢HP; . Brs Qp
with the following maps and coefficients:

Pi BQasi: b
P Q45— pb+ (P12
P:t',nB:nu,QEIS; : —pb

Pr Bi.Q36;: —d+(-1)%

Pt kBha, @58 :(p — 1)d + (=19 (+)
P;’:tB;mQ;pQ' . —e+ (_l)q—l‘;
Pi,kB;’:uQ:,ptS: s e—Fk

P} BRQnrsbi: e+ (~1)% — g
P:;.kB:m, Q’,:.,,&;' :pe + (._1)}’-1—41;'l

PR iBLQ36: d

Py, +Bhs Qb :(~1)%qd
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Pr.BlL.Qi6}:
Pt;ntnﬁ' th‘St : 1)%¢g
Pna kerQtﬂal : l)qh qe

g

(-

(-
P B, Qrigby: (-1)77 — (¢ — 1)

P BLQL 01 k

(-

]

P::kB:tﬂ.Q?nﬂtél 1)97 (g - 1)k
BT Q6

Pr, B" Qi85 @

Pi Bi.Q5:  —g+(-1)IF

) Bi.Q3:  g+D

P’ nBik Q5 g

at ana,Qs : pg+ (_1)p+q—1E
eré : ("']')q“‘i
PI.Bi Qi . (-1)9B

"'kB rE (-1
k merﬂ : (—l)qé - qf)
BLQ,: H

a anﬂ' Qﬂl : (—l)qu

The signs in the term marked with (*) are due to the fact, that in d the expression
P, kB,'m’ corresponds to the form dz®Adz®» Adz* and not to dz*Adz*Adz*» . This
argument applies to several other terms containing factors from Ajy or Agz, too.

Inserting special forms for P, Q and B one then shows that for m > p+ ¢+ 2
this implies that all coefficients in the above list have to be zero.

Similar computations show that considering the terms in which @ has a derivation
index one gets the equations:

f=G=a+(-1(p-Db=j~(¢-1)D=7i+(-1)'D=0
and from the last kind of maps one gets:
i+ (-)P(p-1b=7+(-1)(g—1)i=

3.18. Thusfor p,¢ > 2, m > p+g+1 equivariancy under G2 déG
to: a=b—c—e—f—g—d-—e—f—g— =i=k=0l=m=
D=E=F=G=H=A=B=C=E=F=G=0,
d, D and ¢ are three independent free parameters,which determine all other param-
eters uniquely by the equations:
&= (1)1~ (p— 1)d, b= (~1)%d, j = (¢ — 1)D and = (171D,

Thus there can be at most three linearly independent bilinear natural operators
in this case and Theorem (3.14) holds.

?,, is equlva.lent
A=B=C=
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3.19. To finish the discussion of Theorem (3.14) we indicate how to prove the
theorem in the remaining cases:

For p,q > 2 and m = p+ ¢+ 1 one shows that the maps in the ansatz (%) of
(3.14) become linearly dependent and that one may eliminate ten of them and still
has a generating system. Then it is easy to see that the.proof works as before.

The whole proof works as before if p > 2 or ¢ > 2 0or m > p+ ¢ + 3 simply
taking as an ansatz those maps from (3.14)(*) that make sense for a p—form P and
a g—form @, while for p,q < 2 and m < p+ ¢+2 one has to prove that several maps
in the ansatz may be omitted and then the proof works as before.

3.20. Our final task is to show that there are no other bilinear natural operators.
Theorem. There is no nonzero bilinear natural operator:
QF(M; TM) x QY(M; TM) — QP M; TM).

PROOF : One shows that there is no nonzero G%, equivariant map 4 = As +
A21 + Aj2 + Aps, where

Az : APR™ @ R™ @ S®R™* ® APR™ ® R™ — APTITZR™* @ R™
Az : APR™ @ R™ ® SZR™* @ A'R™ ® R™ ® R™ — APTI+2R™* @ R™
Az : APR™ @ R™ @ R™ @ A‘R™ @ R™ @ S2R™ — APHITIR™* g R™
Aoz : APR™ @ R™ ® AR™ @ R™ @ SR™* — APHIHIR™* @ R™
are linear.
First one shows that in this case the ansatz is:

A(P, Q) =aPTnnQ36} + BPT Qp mnrbit
+aPl 1m Q5 01 + bP,;”,,,,,Q;,&;‘ + Pl Qs B2t
+dPy @5, w6t +ePmy anﬂ,réi + fPknQms, Sot
PoaQp, mbe + th,‘kap,, +iP: an@p
+AP:'kaﬂ nrbe + BPTLQB mn5t +CP,, kQﬁ,nr5z+
+DP,, p,nr5t + EP Qgm0 ; + FPT, k@8, mr0r -+
+GPI.Q% et + HPL 4 Q5 oo + IPTQ% .,

Then one shows that equivariancy under G%,, G3, and G2, implies that all coeffi-
cients have to be zero. ]

Theorem 3.21. There is no nonzero bilinear natural operator:
QP (M;TM) x QU(M; TM) — QPY9t3(M; TM).

PROOF : This is similar to the proof of (3.20) but much easier since in this case
the ansatz reduces to:

A(P’ Q)’y =a'P:,.kan§,r6:
+bP¢;’:ka;,nr5[ + CPmanp,mr6t+
+dp¢;':kQ;,mnr6l'
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Remark 3.22. It is shown in [Ca) that each of the bilinear natural concomitants
of vector valued differential forms except the Frolicher-Nijenhuis bracket can be
written as a linear combination of compositions of linear concomitants and insertion
operators. There it is also shown how the results obtained here can be used to
determine all linear and bilinear operators between ordinary differential forms which
are natural under local diffeomorphisms and do not involve top degree forms.
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