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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
28,3 (1987) 

AN ENCLOSURE GENERATING MODIFICATION 
OF THE METHOD OF DISCRETIZATION IN TINE 

6. KOEPPE, H.-G. ROOS, L. TOBISKA 

Abstract: A modification of the method of discretization in time is pro-
posed to generate upper and lower bounds for the solution of the original li­
near parabolic boundary value problem. It is proved that the modified Rothe 
function converges to the exact solution of the first order in the maximum 
norm if the step size tends to zero. 

Key words: Parabolic boundary value problem, discretization in time, 
maximum principle, enclosure. 

Classification: 65N59 

1- Introduction. In the numerical solution of boundary value problems 

it is not only interesting to obtain a numerical approximation of the solu­

tion within a certain accuracy but it is also of practical importance to con­

struct upper and lower bounds for the solution itself. Such inclusions ge­

nerating discretizations for parabolic boundary value problems have been pro­

posed in Lll,t2],t7],tl0]. 

The aim of the present paper consists in deriving a modification of the 

Rothe method (or the method of discretization in time) to generate upper and 

lower bounds for the solution of the original parabolic boundary value pro­

blem. In contrast to 19] we use maximum principles to prove the enclosing 

property in the n-dimensional case. Our technique allows us to consider more 

general boundary value problems in comparison to 19] and to omit any rest­

riction with respect to the step size in time. 

As in t9l, it is possible in a second step to combine the modified Rot­

he method with the monotone discretization techniques proposed t4l,t5l, at 

least for the one-dimensional case. 

2. The modified method of discretization in time. Let us consider the 

parabolic boundary value problem 

l l+Lu-tf inAuBT 

(1) u-0 on S T 
Bø 
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in frame of the theory of classical solutions. In ( 1 ) il denotes a bounded 
domain of Rn with C2""*boundary, Q=JI* (0,T), ST= AHxtOfT3f BT=-^xiT? and 

B0=X!x-tO*. Let L be a linear, uniformly elliptic differential operator of 

second order 

L\ jt aij(x) 35^- • Ji bi™ £: -C(K) 

wi*th coefficients in C ^ G L ) , further we assume x'=f(x) in C^JL) and 

(2) (i) uQ satisfies the compatibility conditions 

u =0, Lu =f on 3-0. 
0 * 0 

(ii) c(x)scQ>0 on li­

lt is well known that the problem (1) admits exactly one classical solu-

ticn in C (-0.) (see for instance £3]) and that the elliptic operator L and 

the parabolic operator J| +L satisfy a classical maximum principle, respecti­

vely. 

flow we choose some N e N and divide the t-interval into N subintervals 
l ti-l»V ( i = 1 ( 1 ) N) bV tne definition t ^ * ^ with *=T/N. Let us set 

f (t-t^p/tr for t €[ti<_1,ti3 

9>i(t)=J (ti4l-t)/c for tett.,..^.} 

*» 0 otherwise. 

The discretization in time is realized by means of the representation 

(3) \-J-0h9iW 
for an approximate solution u (x,t) of problem (1). The usual method of dis­

cretization in time consists in determining the functions *«(*) as solutions 

of 

2i"2i-l + Lz,=f in XI (i£l) 

^ zi=0 on dSl 

starting with z =u. In our modified method we choose a constant p and a func­

tion q of x and determine the functions z,(x) as solutions of 

z,-z_ 
(4) (i) J ^ £ • Lz0=f+*q in H 

zo=0 on Әíl 

2
Г

2
І-1 ( ü ) * ^ + Lz^f+tp in Í1(І=1(1)N 

ЬSí . 
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In the sequel we will show that it is possible to choose p, q in such 

a way that, for instance, u^ is an upper solution of our original problem 

(1) that means u<t(x,t)iu(x ,t) in U. Finally we will show that the functi­

on ut(x,t) converges to u(x,t) of the first order in the maximum norm if x 
tends to zero. 

3. Analysis of the modified method of discretization in time. We denote 

by C * the set of functions being k-times and /-times continuously differen-

tiable with respect to x and t, respectively. Furthermore, let Q.= Xb*-(t* , t.) 

and B . = - G L ^ U J , j=l(l)N. Our analysis is based on a weak maximum principle 

of the following type: 

satisfy 

1; Let the functions v and w be in C ( 5 ) n A C2,1(Q.uB.) 

(i) | | + L v ^ t - Lw on QjUBj, j=l,...,N 

(ii) v*w on S TuB 0. 

Then, it follows v£w on Q. 

The validity of Lemma 1 follows from the successive application of the 

classical maximum principle. 

Now we discuss the solvability of the problems (4),(i),(ii). Subtracting (4), 

(i) and (4),(ii) for i=l we obtain 

(5) L(zrz0)=(p-q)r in XI 

z,-zo=0 on 3X1 • 

Hence, the function y,=(Zj-z0)/r is uniquely determined and zQ satisfies 

(6) Lz^f+tfq-z^ in XI 
zQ=0 on 3X1. 

Introducing the operator L^ by L=tfL+I (I represents the identity), 

the functions zt(x) for iSI fulfil 

(7) L ^ f - ^ f - t + P * in SI 
zi=0 on dil. 

Therefore, in the representation (3) all coefficients of our approximate so­

lution are uniquely determined provided that p, q are known. 

Now we proceed to choose the parameters p, q in a suitable way to gene­

rate an upper solution. According to Lemma 1 we compute the defect of the 

approximate solution u_ on Q.uB.. One obtains 

- 443 -



&H* zl*zo 

sr+ L u* - -AjS+ y 0
L v *iLzi ™ hu h 

and 
du z,-2z, ,+z, 9 
^S+Lu^rf+tp+^.^t) — W W on Q ^ B i (i=2(l)N). 

Taking into account (4)(i),(ii) one gets 

-jl& +Lur =f+ <r(p Cfx+q 9>0) on Qxu Bj. 

Let us introduce the notation 

z, ,-2z,+z, , 
(8) s,= «-iii—i—±-A (i=l)(N-l). 

Applying Lemma 1, our considerations with respect to the defect on eve­

ry subinterval result in 

Lemma 2: Let us suppose 

(9) (i) p,qfiO, 

(ii) p+s^O, (i=l(l)N-l) 

(iii) z0*u0. 

Then, u (x,t) is an upper solution of our original problem, that means 

u<r(x,t)iu(x,t) for all (x,t)eQ. 

In the next step we analyze the validity of condition (9),(ii). From 

the identities 
Z1~Zn zi~zn z7-z~ 

-k?2- +Lz0=f+tq, -i^
0- •Lz-^f+trp, A ^ +Lz2=f+rp, 

i t follows immediately 
•2z,+zn 
- ^ i - ^ +L(z2-2Zl+z0)-: * (q-p ) , 

thus 

(10) ( i ) L^-q-p 

Adding the identities 
z i ~ z i - l z 4 . ! -Z.| 
A g M ^.Zft+X p , -2 ~^|~-A - 2Lzi+1- -2f-2<tp, 

zi+2~zi+l , ., ^ 
"3 • LzU2«f+t?p-

one obtains similarly 

(10) (ii) L^si+1-Si (i£l). 
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Remembering p being a constant we conclude 

(11) L., t(s1+p)=q+<rc(x)p, LnJ(si+1+p)=si+p+tc(x)p (i&l). 

We want to derive advantage from the inverse-monotonicity of the operator 

A/t=(LT,R) where R denotes the restriction of functions on 3-0. . Because of 

(9),(i) s ^ (i=l(l)N-l) is normegative on dil such that with (2),(ii) it 

follows Si+p«0 successively and condition (9),(ii) is automatically fulfil­

led. 

To generate an upper solution u^ it is only necessary to guarantee the 

conditions p,q£0 and z > u w . However, the function zn is defined in a not 
O 0 0 

so simple way - one has to solve (5),(6) - therefore it is essential to find 

a practical criterion for the parameters p, q in order to safeguard the inequ­

ality z 0£u Q. 

Taking into consideration the inverse-monotonicity of the operator A=* 

=(L,R), the inequality z Q5u 0 is fulfilled provided that Lz0£LuQ. The ine­

quality 
% -fcf-Lu 
1 o 

is sufficient for Lz £Lu and valid on d & because of the compability con­

dition for uQ^ Consequently, the inequality z Q&u is fulfilled if 

p-q*L(f-Lu0) 

and we have the following result: 

r% 

Theorem 1: Let us additionally assume that f-Lu belongs to C ( 2 ) and 

p,qi.O are chosen such that the inequality 

(12) q*p-L(f-Lu0) 

holds. Then, the modified method of discretization in time (3),(4) generates 

an upper solution for the original problem for all %> 0. 
Now we are going to prove the convergence of our modified method or discreti­

zation in time in the maximum norm. For this we choose 

(13) p=max(0, max L(f-Lu )) 
X£JX O 

(14) q=p-L(f-LuQ) 

such that the assumptions of Theorem 1 are fulfilled. 

Because of (5) and f-Lu =0 on dSL we have 

that means we start with the solution z of 
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Lz0=Lu0+nsq in D-

zQ=0 on BSt. 

From the barrier function technique it follows 

(15) max |zn(x)-un(x)|4M*. 

For the difference of the exact solution u(x,t) and the approximate solution 

we obtain 

(•^•fL)(iitt-a)=tr(p91+q90) on Q-^uBj 

($• +L)(ur-u)= ̂ P ^ ^ s ^ ) on Q%u B. (i=2(l)N). 

The terms in brackets on the right hand sides of (16) are uniformly bounded 

on S because (10),(i) and (10),(ii) imply 

mjx |si4>1(x)|*max |si(x)|.imjax |q(x)-p|. 

Thus, applying Lemma 1 we summarize 

Theorem 2: Let f-LuQ belong to (T(J5L) and p,q(x) satisfy (13),(14). 

Then, the modified method of discretization in time (3),(4) generates an up­

per solution u^ for the original problem. Moreover, there exists a constant 

M=M(p,q) such that the error estimate 

max |u(x,t)-uJC(x,t)|6Mr 

holds. 

Remark: We considered classical solutions of our parabolic boundary 

value problem (1). It is possible to extend Theorem 1 to weak solutions; to 
1 1 2 be more precise, to W2( lO,Tl ,H^( .a ) ,L (il)) - type solutions. Of course, it 

is necessary to specify some order relations and to use generalized maximum 

principles for parabolic and elliptic problems, for instance, instead Lemma 

1. It is possible to choose for p, q appropriate elements from the dual space 

(H::(i>.))* . But in practice one will use simple functions to simplify the re­

alization of the method - therefore we restricted ourselves to choose p as a 

constant parameter in our classical framework. 

In general, for weak solutions an error estimation in the maximum norm 

does not hold. But, similarly as in C8l one can prove the 0(t) convergence 
2 1/2 1 

in the L -norm and the 0(t ) convergence in the H -norm (compare 191). 

Details on the modified method of discretization in time for weak solutions 

are due to 6. Koeppe and can be found in t6X 
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