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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

26.4 (1985) 

A DOVVKER GROUP 
Klaas Pieter HART, Heikki JUNNILA and Jan van MILL 

Abstract: We construct, in ZFC, a normal topological group, 
whose product with the circle group is not normal. 

Key words and phrases:Topological group, normal, countably 
paracompact. 

Classification: 22A05, 54D15, 54D18, 54G20. 

0. Introduction. The purpose of this note is to give an ex­

ample of a Dowker group: i.e. a normal . topological group whose 

product with the circle group is not normal. We construct our ex­

ample in ZFC alone, applying the B(X ) -const ruc t ion from [HavM] to. 

a minor modification of M.E. Rudin's Dowker space [Ru]. The paper 

is organized as follows: Section 1 contains some definitions and 

preliminaries. In Section 2 we repeat the construction of B(X) 

and give some generalizations of the results from [HavM] in order 

to be able to show that for the modified Dowker space X of Secti­

on 4 B(X) is a topological group. In Section 3 we describe the 

Rudin's Dowker space R and show that under n CH B(R) is not a to­

pological group. 

Our construction shows once more the usefulness of Rudin's ex­

ample: In [DovMl R was used to construct an extremally disconnec­

ted Dowker space. 

- 799 -



1. Definitions and preliminaries. For topology see [En3, for 

set theory see [Ku3. 

1.0.Free Boolean groups. Recall that a Boolean group is a 

group in which every element has order at most 2 . Such groups are 

always Abelian. 

For a set X we define the free Boolean group B(X) of X to be the 

unique (up to isomorphism) Boolean group containing X such that e-

very function from X to a Boolean group extends to a unique homo-

morphism from B(X) to that group. For example B(X) ={xc 2: 

: \ x**(l) \ < G)} as a subgroup of 2. We shall write the elements 

of B(X) as formal Boolean sums of elements of X. For every ncIN de­

fine 9>n:X
n—•* B(X) by 9»n(x) = xx +...+ xp and let Xp = ?n[X

nJ. 

1.1. P^-spaces. Let X be a topological space. We call X a 

P^-space, where x is a cardinal, iff whenever U is a collection 

of fewer than ̂ t open subsets of X,n It is open. 

1.2. k(X). For a space X we let 

k(X) = min ^KZUH Every open cover of X has a subcover of 

cardinality less than x h 

Observe that k(X) = o> iff X is compact. Thus k(X) might be cal­

led the compactness number of X. 

From now on we assume that all spaces are Hausdorff. Observe that 

if X is a Pw -space with k(X) = o then X is simply a compact 

space. 

For regular ae , P\-spaces with compactness number ae behave like 

compact spaces. 

1.3. Proposition. Let X be a P^-space with k(X) = «e t ae re­

gular. Then 

(i) For all neIN Xn is a P^-space and k(X n) = *-• 
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( i i ) If f:X —> Y is continuous where Y is a P -space (and 

Hausdorff) then f is closed. 

( i i i ) X is normal. 

Proof: Imitate the proof for at = <*> . Note that only ( i ) 

needs regularity of •*£* 

2. B(X) revisited. We begin this section by repeating the con­

struction of a topology for B(X) given in lHavM]. 

2.0. Construction. Let X be a topological space. We defiBe 

a topology on B(X) as follows: 

First for each n let X be the quotient topology on X determin­

ed by Xn and <f We then define 

X = i U s B(X): U A Xn & t n for all ni, 

i.e. X is the topology on B(X) determined by the spaces 

< X ,x n > , nclN. Henceforth we will always assume that B(X) car­

ries this topology. 

We now list some properties of B(X), proved in CHavMl. Remem­

ber that all spaces are assumed to be Hausdorff. 

2.1. Properties of B(X). 

(o) Both E and 0 are clopen in B(X). 

( i ) Translations are continuous, hence B(X) is homogeneous. 

( i i ) For each n < X , •£_,> is a closed subspace of 

<X «> ̂ n+2^ » a n d consequently each <X , X > is a closed subspa­

ce of B(X). 

( i i i ) For each n, if Xn is normal then X is normal and con­

sequently if each Xn is normal then B(X) is normal . For in the lat­

ter case B(X) is dominated by a countable collection of closed nor­

mal subspaces and hence normal, 
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( i v ) If X is compact then B(X) is a topological group. 

(v ) If for each nciN Xn is normal and /5(Xn) = ( # X ) n then 

B(X) is a subspace of B(/3X) and hence a topological group. 

We shall need some slight generalizations of 2.1 ( i v ) , ( v ) , in 

order to be able to show that for the space X from Section 4, B(X) 

is a topological group. The proofs are almost identical to the ones 

in CHavM], but for the readers' convenience we shall give rough 

sketches. First we generalize 2.1 ( i v ) . 

2-2- Theorem. Let X be a P^-space with k(X) = ne , ae a regu­

lar cardinal. Then B(X) is a topological group-

Proof. The case «e = co is covered by 2.1 ( i v ) , also B(X) is 

Boolean, so it suffices to show that the addition is continuous. 

We assume that ac > <*> . 

As a quotient of a P^-space each X is a f^-space. 

From this it follows that B(X) - and hence B(X)xB(X) - is a 

P^-space, too. 

Because *t > eo , the sequence \X x Xnln€iN dominates the space 

B ( X ) x B ( X ) . 

Thus, it suffices to show that for every n*IN +:XnxXn--> X2n is 

continuous. 

By 1 . 3 ( i i i ) and 2 . 1 ( i i i ) Xn and Xn are norma l , in pa r t icu lar X 

is Hausdorff .So by 1 . 3 ( i i ) <pn x (f n - X n * Xn — > X R H XR is c losed. 

But now i f F * X 2 n is c losed then +*~[F] = ( y n x y n ) [ h * * ^ ^ [ F ] J 

is closed,where h:Xnx Xn f X2n is the obvious homomorphism. 

Next we generalize 2 .1 (v ) . 

2.3. Lemma. Let Y be a dense subspace of X and nejN . Assume 

that Y is completely regular and Yn is C*-embedded in Xn. 
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Then Y is a C*-embedded subspace of X . 

Proof. Consider the following diagram: 

v
n _ -t- .

 v
n 

ГĹ 1 . K 
ү cJL-.v x„ 
n n 

where i and j are the inclusion maps. 

X X Y Y 

(j oi is continuous, 9 «i = j ° 9
n

 ar,
d 9

n

 i s
 quotient, so 

j is continuous. 

Let f:Yn—->£0,1] be continuous. We shall find a continuous 

g:Xn—>- £0,1] with g o j = f. Let f = f • 9 n and let f :Xn —->-£ 0,1J 

be the (unique) extension of ?. 
— Y 

From the fact that f is constant on the fibers of 9 n it is easy 
— X — 

to deduce that g is constant on the fibers of 9 . Thus, g induces 
a function g:Xn~>ro,ll with g * 9 * = g and g is continuous be-

— X 

cause g is continuous and 9" is quo t i en t . 

These two facts plus the complete regularity of Y establish that 

Y„ is a C*-embedded subspace of X^. 
n r n 

2-*- Theorem. Let Y be a dense subspace of X such that B(Y) 

is completely regular and Yn is C*-embedded in Xn for all n€|N. 

Then B(Y) is a C*-embedried subspace of B(X). 
Proof. 

If UsB(X) is open then for each n c.N UA B(Y)n Yn = U/> YR= 

= n 0 X n n Y n is open in Yn> so Un B(Y) is open in B(Y). 

If f:B(Y)~* 10,11 is continuous, then for each ncIN we obtain 

a (unique) extension g -X —* £0,1 of f^Yn. It is easy to 

check that the g 's are compatible and that g * HLcW ^n i s a 

continuous extension of f. 
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2-5- Corollary. If X and Y are as in 2.4, then B(Y) is a to­

pological group if B(X) is. 

3. Oowker spaces. We describe Rudin's Dowker space and give 

some variations. 

3.0.Construction. Let ac_ be a cardinal and for n&IN let aen 

be the n successor of * . Let P = D ^ aen +1 i.e. the box 

product (see e.g.[WU) of the ordinal spaces ae, + 1, JCo + 1, • • • . 

Let X' = *f 6 P: V n£lN cf (f(n)) > aeQ$ and 

X = *feX': 3i6iN VnfilN cf(f(n)) £ ae^. 

Then X is always a Oowker space. We shall briefly indicate why and 

refer to £Ru3 for full proofs. 

3.1. X is not countably paracompact £Ru,IIJ. For nelN let 

D n = \feX: _3i>n f(i) = ae,}. Then iD n:nelN J witnesses that 

X is not countably paracompact. 

3.2. X is dense in X'. 

3.3. If A and B are closed and disjoint in X then their clo­

sures are disjoint in X' (tRu) Lemmas 5 and 6). Lemma 5 says that 

X' is a P -space and Lemma 6 establishes that ^ n ^ B = 0 for all 

n where AR = <fc A: ViclN cf(f(i)) £ aep] (closures in X'). 

In Section 4 we shall reprove that X' is paracompact, thereby 

establishing (collectionwise) normality of X. 

For the rest of this section we let ac = cj so that n* = o>± 

for ie.N. Moreover we shall call this Dowker space R. 

We shall show that if 2*>.t o« then B(R) is not a topological 

group. 

3.4. Let H be a topological group which is also a P -space 

°1 
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then H has a local base at the identity consisting of open subgroups. 

For let U 3 e be open. Inductively find open U a e for nelN such 
-1 2 that always U„ = U„ and U„ ,SU n. Then IN * C\ klU„ is an open sub-n n n+l n n€jjt n ^ 

group contained in U . 

3.5. Let G be an open subgroup of B(R). For x€R let G = 

= {y:x + yeG?, then -{G :xeR{ is an open partition of R. Note 

that G is the intersection of R and the coset x + G. 

3.6. Let fcP be such that for all nclN 0< f (n)-i 6>n and 

f(n)-cf(n+l) and sup j^f(n) = coM • 

For A € CINl** let CA = 4 h 6 R:n c A-*-* h(n)-5f{n)J. Then € = •( CA: 

:A « ClN..a>$ is a clopen partition of R of size 2**• 

For each A find x., , ,x. 2* C» such that 

- for some n € IN cf (x. ,(n)) = co. and x. ,(n) is not isolated 

in icC e aep: cf(«5) >- oQ} 

- for some nfelN cf(xA 2(n)) = co~. 

Now using 2 Z o^ we extract from *€ a clopen partition "Cv^ : 

: ot> c co^lof R together with points i x^ : oC e O 2 I such that 

(i) x^ £ V^ for each cc . 

(ii) If oc € &> then there is a decreasing sequence iCjp : 

: fte 0 01 of clopen sets with x - s CL, ̂ % C^ . but 
• / 06 (14 Ct)^ t£ (I 

x ^ ^ i n t c n ^ c , , , , ) 

( i i i ) i f «c s « 2 S « j , a similar sequence <C : (i e « ,? o f length 

3.7 . For oc c <*>9 de f ine 3 ^ as fo l lows: 
i f ^ í ^ Э^-r «C V :ß 6 o A fl Ц-oCÌ U 

^ W ^ V w i 5 * < V <W ar * «Л *И 
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if <t c 6>2\ c^ , 0 ^ * -C V^: (h c o ) a \ CJ, A /**<<,} u 

For each ate a) ^ u { V J is a clopen partition of R. 

3.8. We define an open set OffX as follows: 

(S. acts on X in the obvious way €f (x, , . . . ,x.) = % (* - . ( i \,..., # ( A \ ) • 

Then 0 a ĉ ^r" Ctj £o.)J so that <pA--n-l is a neighborhood of 0 in 

X. (the verification is s t r a i g h t f o r w a r d ) . 

3 . 9 . Now suppose that G is an open subgroup of B(R) such tat 

GnX* S- <y tOU; we shall show that this gives a contradiction. 

The partition <G :xeR} has the following property: 

if $a,b,c,d1rnG has 0, 2 or 4 elements for each xcR then 

a + b + c + deG. 

Any partition refining {G :xfiRl also has this property, so W , 

the common refinement of $G :x m Rf and -iV^ :oce c^2J also has this 

property. 

Fix for each cc € o>2 ^ i 1iT with x^ c W^, then W^ fi V^ of 

course. 

For each oC * c->2 let 

P** min^:W^* C^J. 

Find t 0 * S ^ WP ^1 C 01 a n d S B ^2 X °1 u n D O u n d e d s u c n 

that 

for « . i ^ t ftt< 1T© and 

for «t • & (3^ » tfi • 

Now pick , y 2
€ S *2 > * o a n d p i c k y l f t W a ; X C£,**a a n d 

y 2 € W r 2 N . C r 2 r r 

Consider F « t x ^ , y l t x ^ ,y 2? • 

Then x^ + y;t • *f • y 2 * G because I Fr. W^ I = I F^ W^l = 2 and 
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FnW = 0 / W + Wy^ ,W^. On the other hand >y + ŷ^ + x̂ t + y2 ^ 

4- <y4l0] because (x = < Xy. >vi>x3* >Y2^ : 

- for no oo Ffi V^ so x 4 t-i€a> V£ 

- if x 6 £tv£ x V2J for some V € 2)^ then F a V^-* 0 so <sC = T\ or 

<_c = ^2- If ot = y then, since f x̂ , , y« ) £ V-* , either V = 

= C^ Y or V = Vy \ Cy y ; but both are impossible since 

xtf 6 ^Y a* ^ v2' Likewise oc = *y2 is impossible. 

Thus, combining 3.6 and 3.9, we find that B(R) is not a topologi­

cal group, assume 2 > Ct>2. This leaves open what will happen if 

2fl>» car 

3.10. Question. Is B(R) a topological group under CH ? 

4.A good Dowker space. In this section we let 3CL = 2 and 

we let X be the Dowker space constructed in 3.0. We shall show 

that B(X) is a topological group, and in fact a Dowker group. 

To begin we quote from [Ha] the following fact 

4.0. For each n&lN X' is homeomorphic with (X') n and the 

homeomorphism can be chosen to map X onto Xn. 

Furthermore we need the following 

4.1. X' is paracompact and k(X') = 9€, 

Proof, We fix some notation: for f ,g«P we say f < g iff 

f(n)««:g(n) for all n and f^g iff f(n)*zg(n) for all n. For f,g € 

€ P with f< g we put 

Uf,g = X' * T^c||(f(n),o(n)3 = <h e X ' :f-* h *g | . 

For U = Uf put ta(n) = sup < h(nhh c U \ (neW) . Then. Uf n X = 

= Uf . r\ X' and t.(n) is always a limit ordinal. 
* u 

Let (f be an open cover of X'. We find a disjoint open refi­

nement ^ of y of size 4* 2** = it . We define a sequence 
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^11^5,^^ of disjoint basic open covers of X' such that 

( i ) oc, e ft e cJi, — • 11* refines 21^ 

( i i ) oG € a)., - ^ I ^ l * ^ 

( i i i ) *G eo> tAU 6 U ^ —> *V c 0*^ . , :V S U l M U $ i f f U £ O f o r 

some 0 € cT. 

Let UQ = 4X'? -

For x c X ' and <£ e o> u i s always the unique element of il^ 

conta in ing x . I f oC i s a l i m i t , put Uv . = H<U W : ft e ac 5 and 
x ,«, x ,p • 

^dL= *uv *'* 6X'?. If #._, is found make <#, . as follows. 

Let U * It^ if U £ some 0 6 <X f put S(U) = -CU*. Otherwise consi­

der two cases. 

a) For some n (U = cf ( t l l ( n ) ) ^ 2 c J (i.e. t u + X ' ) . Let 

< A . : t fi (U,> be a strictly increasing, continuous and cofinal se­

quence in t y^n ) with A = o and cf ( A e ) < 2 ̂  for all £ • 

Put Up = if € U: Ap < f ( n ) £\ x\ ( | e ̂  ) and let S(U) = 

= 4uV : £ C <«,* • 

b) For all n cf ( t | X ( n ) ) > 2 < ^ (i.e. t^e X ' ) ; p i c k 0 e C7 

with t^C 0 and f < t^ such that Uf t s O . For A £ IN let 

UA = < h € U : n€ A ~» h(n)*S f ( n ) , n^A -> h ( n ) > f(n)i , 

and set S(U) = 4UA: A .£ IN?. 

Now let /UoC4.i = U-IS (U ) : U e U ^ i .It follows that always 

l S ( U ) l - £ 2 ° > and hence inductively that 116J £ 2 ^ for oC € ̂  . 

Let U = *U c i-Jc*^ ^ S(U) = 4 U H . Then, as in [Rul, % is 

a disjoint open refinement of (f and by construction 111) £ 2 W. 

The above argument is from CRu] but we included it because 

we need to know that the refinement is not too big. 

We now collect everything together in. 

*•*• Theorem. 8(X) is a Dowker group. 
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Proof, (i) X = X, is a closed subspace of B(X), so B(X) is 

not countably paracompact. 

(ii) From 3.3, 4.0 and 4.1 it follows that for all n Xn 

is normal and C* -embedded in (X')n hence B(X) is normal by 2.1 

(iii) and a C* - embedded subspace of B(X') by 2.4. 

(iii) X' is a P^ -space and k(X') = at, hence B(X') is a 

topological group. 

(iv) By 2.5 B(X) is a topological group. 

4.3. Remark. Actually, the method of Section 3 and this section 

yield the following result: 

If X is the space constructed in 3.0 then 

(i) if 2 ^ 9L then B(X) is a topological group, 

(ii) if 2°* > M^ then B(X) is not a topological group. 

This leaves open a generalization of the question 3.10: 

Is B(X) a topological group if 2** = at, ? 

If we specialize by setting atn = o>. then we obtain a space X for 

which B(X) is a topological group if 2 = co^, not a topological 

group if 2°° £ 6>, and maybe (not) a topological group if 2 = d>2. 
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