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SHORT BRANCHES IN RUDIN-FROLIK ORDER

Eve Butkovilovd (M SAV, Jesennd 5, 04154 Kodice,leskoslovenske),
oblatum 27.4. 1984,

Rudin-Frolik order of types of ultrafilters in (3! has the
following propertiies: £
(21 (1) each type of ultrafilters has at most 2 Y predecessors,
2 L3

! (2) the cardinality of each btranch is at least 2 °.
Thus, Rudin-groh’.k order the cardinality of branches ocan be
only 2 ° or (27 °)*, It wae shown in [1] that there exists a
chain order - igomorphic to (25°)*. Hence, the existence of a

branch of cardinality (2 °)* is proved.

The following result solves the problem of the existemce of
a branch having smaller cardinality,

Theorem. In Rudin-Prolik order there exists an unbounded chain
order-isomorphic to Dqe

By the properties _&1) and (2) the branch containing this
chain has cardinality 2 °,

References: [1) E., Butkovifovd: Long chains in Rudin-Frolik ox-
gg;',s(_},gmment. Math, Univ, Carolinae 24(1983),
[21 Z. Prolik: Sums of ultrafilters, Bull. Amer.
Math. Soc. 73(1967), 87-91.

BESULTS ON_DISJOINT COVERING SYSIEMS ON IHE RING OF INTEGERS

Ivan Korec, Department of Algebra, Faculty of Mathematics and
Physics of Comenius University, 84215 Bratislava, Czechoslovakia
oblatum 12.4. 1984.

A syszem of congruence classes
(1) &,(mod n,), ay(mod ny), «ev, & (mod n))

will be called a disjoint covering system (DCS) if for every
integer x there is exactly one i € {1, 2, ..., ki such that
x = ay(mod ny). The integers nj, ny, ..., o, will be called

moduli of (1) and their least common multiple will be called the
common modulus of (1).

If kx> 1 then no two moduli of (1) are relatively prime.
This condition can be expressed in the form

k k
(2) i/-\1 :j/-\ ®(ny, nJ)
where ¥ (x, y) is the formula

FzJudv (z ¥ 1 Azeu = x AZev = )
Consider more generally the formulae of the form
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k k x
(3) /\ XX (n eos
G G A R e )
wiieh are true fer all DCS (1) with k> 1, where Y(x;, ..., 1)

is s first-order formula with the only nen-legical symbel "." fer
multiplying. The main result eof [1] is that every such fermuls

(3) is a consequence eof (2). Hence the sendition (2) is the dtreng-
est nonﬁcall cenditions of the form (3) which held fer all ties-
trivial DCS (i. e., DCS different from {Z}). The preef uses pre-
duct-invariant relations, i. s. the relatiems which are iavariaxt
with respect te all autemerphism of the semégreup (¥, .).

For every prime p the DCS
(4) . llow:f.-“ P, ; mod p), ooy p~ 1 (med p)
has the following preperty:

The union of n.ry l\ylbl.t I of (4), 1< card(X)< k

is net a co ence class (by any medulus).
All DCS (except {Z}) with this prosgty will be called irreducible
DCS, abbreviation IDCS, There are I which are met of the ferm
(4). For example, the congruence classes
0, 4 (mod 6), 1, 3, 5 9 (mod 10), 2 (med 15), 7, 8 11, 20,
25, 27 (yod 30) “form an IDCS with’ the common modulus J0 (it 1a
Porubsky s example of a nonnatural DCS in essential). In [2] many
IDCS are constructed and it is proved that an IDCS with the cemmon
modulus n exists if and only if n is a prime (then enly (4)
can be obtained) er n is divisible by at least three different
primes. Further, an operation of aplitt%gg is defined which allews
to obtain all DS from the degenerated {2 = ?0 (mod 1)} and
the IDCS, If only IDCS of the form (4) are used then so called na-
tural DCS are exactly obtained.

For every prime p denote F(p) = p ~ 1, w.d extend the
functien ¥ to ge set N by the formula F(x.y) = F(x) + #(y).

The Mycielski's conjecture stated k21 + Flny)

for every DCS (1) and every 1 € {1, 2, ..., k}. The main result
of 3 is that for 811 DCS which are not natural (kence e. g. for
all IDCS which are net of the form (4)) it holds

(5) kx26+ Fln).

The proof is rather complicated but elementary. The constamt 6 in
(5) is the best possible. We stated the hypothesis that the modulus
n; 4n (5) can be replaced by the common modulus of (1).

The IDCS with the common modul pqr (where p, q, r are
distinct primes) are completely described, and the number ef them
is determined, in [4].
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g%u?‘k1;§:11k (¥1tnd 25, 11567 Praha 1, Seskoslevensko), oblatum

The aim of this, and ihe subsequent note, is to snnounce a
selection of results gruntod at the Colloguium on Topology held
in Xger in August 1983, and at the Semester of Topology in Banach
Center in April 1984. i feel that it is time to prove deeper re-
sulis about Suslin sets derived from Borel sets in compact spa-
oes.

1. By a space we mean a completely regular T, topological

space, We denote by (M) the colleotion of Suslin sets derived
from the collection of sets 7 . Recall that S(¥ (7M)) =S(M)>
23Mg uMye Ve denote by sd('m) the sets in ¢ (71l) with dis-

Joint Suslin representation. Denote by X the space @? with
product topology where <« has the discrete topology.
Lemna 1, Let ¥ be a subset of a space X. Then

‘o !a) Y ¢ ¥ (closed(X)) iff some closed set in X x = projects
on .

. §b) Y € ¥ (open(X)) iff some open met in X » = projects
onto Y.

(e) Ye ¥ (open(X)u closed(X)) (= & (Borel(X)) iff the in-

tersection of a closed set and a G, set in X~ = projects onto

°  Note that (a) is olassioal, and (c) is essentially due %o
Premlin [Prel.

2. Theorem 1, The following conditions on a space X are e-
quivalent:
1a) Some Jech ocomplete subspace of X x = proiects onto X.
1b) If X is a subspace of Z then X e ¥ (Borel(2)).
1¢) X is obtained by Suslin operation from locally compact
sets in some ZoO X,

(1d) There exists a completie smequence of & -relatively open
ocovers of X,

A space X satisfying the squivalent conditions in Theorem 1
will be called Cech-analytic (following [Frel). To be sure note
that a cover U of X is called & -relatively open if U=
- U-i'u.n\n 6 wt such that each 'an is an open cover of U 'un. It

was proved in [ ¥] that if X ¢ ¥ (Borel(K)) for some compactifica~-
tion of X, then it holds for any compactification of X. Premlin
%rrol,tqtrcduood implicitly (1a) and showed the equivalence with
olkov 8 definition. If the space X is hereditarily Lindelof themn
(1d) implies that X has a complete sequence of countable govers,
and hence it is w -analytic (= K-analytic in Choquet and Sneider
terminology) by [FPJ. The following result is a solution of & pro-
blem of FPremlin. .
Theorem 2, A space X is w-analytic iff it is Cech analytic and
ere exists an usco-compact correspondence from a separable me-
tric space onto X.
The proof is based on the following
Lemma 2, Let £ be a perfect mapping ot X onto a metrizable space
Y, and let {2, % be & sequence of families of open sets in X.

There exists a factorization £ = ho g such that g: X — S, h:S —
—> Y are perfect, S is metrizadble, and for each n
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3., Theorem 3. The following conditions on a space X are equi-

valent: .

(2a) Some Cech complete subspace of Xx = injectively
projects onto X.

Ezb) If X is a subspace of Z then X e ,(Borel(Z)).

2¢) X is obtained by the disjoint Su-lﬁ operation from
locelly compact subseis in some Z>oX, N

(2d) There exists a complete sequence {U {’m’ls e % lnewt

of covers such that each Tl is an open cover of N, = U M,
M, = U{M_|1 € @} for each s, and if 6 € =, M, € Mg, then

N{N{Miigéniine m}eﬂﬂsmtne w3.

A mpace saiisfying the equjvalent condition in Theorem 3
will be called Cech~Luzin., Any Cech-Luzin space X is absolutely
bi-Suslin (Borel), and I do not know whether or not the converse
holds.

The basic stability results follow easily from (ia) and the
fact that any countable (% 0) power of = is homeomorphic to = .

References: [Frel D.H, Fremlin: éeoh—analytic spaces.Unpublished.
[P Z, Prolik: A survey of meparable descriptive

theor¥ of sets and spaoces. Czech., Math, J. 20
(95)( 370). 406-467.,
{Z} s.Jdu. Zolkov: O Radonovych prostranstvach, Dokl,

Akad. Neuk SSSR, 262(1982), T87-790.

DISTINGUISHED SUBCLASSES OF SECH-ANALYTIC SPACES

g%egékéalﬁ (Z1tné 25,11567, Praha 1, Geskoslovenako), oblatum

This is a free continuation of [!3]. Recall that if F 1is
a set of families of subsets of X then'a family -{'Xat aeAt in X

is celled § & -decomposable 1f there exist families {X_ lac i}
in ¥ , ne w , such that X, =U{X,_ Inc w} for each a So it

i8 clear what is meant by discretely € -decomposable, We shall
call a family {xak in a topological space uniformly discrete if

it is discrete in the finest uniformity inducing the topology.
A family {X % is called imolated if it is discrete in (W] X5

Following [!—H1] , 12 % 1is an infinite cardinal then & spa-

oe X is called % -analytic (or topologically ot -analytic, abb,
T 2 -analytic) if there exists an usco-compact correspondence
from the metric space 2% onto X such that the image of each
discrete family (equivalently, discretely decomposable family)
is uniformly discretely (or disoretely, resp.) ¢ -decomposable.
If the values are disjoint, then the space is called »¢-Luzin
(or topologically 2¢ -Luzin, resp.), and if the values are sing-
letons or empty then we speek about point-st-analytic ete. spe-
ces, Analytic means o¢c~analytic for some s¢ , and similarly Lu-
zin etc. The theory of amalytic and Luzin spaces was developed
in [P-H, 2 3.1. A discussion of topologically analytic spaces ap-

peared in (B-J-R).
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