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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
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ON THE EQUATION y' = f(t,y) IN BANACH SPACES
Bogdan RZEPECKI

Abstract: In this note we are interested in the study of
the dI¥ferential equation y = £(t,y), y(0) = x, with applying

the method of Euler polygons whenever f is a bounded continuous
function with values in a Banach space. We prove for our equa-
tion Kneser s type results and theorems on the exisience of ex-
tremal solutions and their continuous dependence on initial data.

Key-words: Differential equations in Banach spaces, Euler
polygons, structure of the set solutions, extremal solutions,
mesasure of noncompactness.

Classification: 34G20

1. Introduction. Throughout this paper I = [0,a],
(E, i+l ) is & Banach space with the zero element &, B =
={xeB:lix-x I£r}, £:IxB—>E is 8 bounded continuous
function, and W f£(t,x) 1< M on Ix B, Moreover, let J = [0,T]
®ith T<min (a,r/M).

Let us consider the differential equation
(rc.) y* = £(t,5), 5(0) = x
where x€ B, In particular, by (PC) we shall denote the problem
(¢ ) with x = x

)
A function y:J—> B is said to be a solution of (PC;) on

Jy, if it is a differentiable function on J, y(0) = x, and
¥ (t) = £(t,y(%)) for ¢ in J.
Many papers related to the problem (PC) have been publish-
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ed, see e,g. {6], Using the method of Euler polygonals we shall
give Kneser s type results for (PC) (the set of solutions of (PC)
is a nonempty continuum in the space of continuous functions from
J to E) provided in particular some regularity Ambrosetti-Szufla
type conditions (cf. [1],[18]) with respect to a measure of non-
compactness defined in an axiomatic way. Employing the partial
orderings induced by cones, existence of extremal solutions of
(PC) and their continuous dependence on initial data are also

proved.

2. Notations and basic definitions. Denote by C(J) the spa~-

ce of all continuous functions from J to E, endowed with the usu-
al supremum norm. Purther, we will use standard notations. The
closure of a subset X of E, its convex hull and its closed con-
vex hull be denoted, respectively, by X, conv (X) and &onv (X).
If X and Y are subsets of E and t, s are real numbers, then tX +
+ 8Y is the set of all tx + sy such that xe€X and ye Y. £[J=~X]
will denote the image of J> X under f, and £(t,X) is the set of
all £(t,x) with xe¢ X,

Ve introduce the following definitions:

Definition 1. Let € > 0, 0 p&T, and let weJ—> E be a
function with w(0) = x and fw(t") - w(t")#l £ MIt" - t*] for

t, t"eJ. Let r, = p +1& for i = 1,2,...,k-1, where k 1s an
integer _>;1 such that T - p = k& (without loss of generality we
assume that p/£ and T/¢ are integers). By an Euler polygonal
line for (PC) on J we mean any function g defined by
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w(t) for O£L+t<4ps

w(p) for p£t£ry;
g(t) = gty 8 ,p,w) =/ &(ry) + (¢t - r)2(ry,8(ry))
for r £ téTy

(L = 1,2,000,k=1),

Definition 2. Let n be a positive integer. A function

uiJ—» B 1 paid to be 1/n-approximate solution of (PC) on J,
1f it satisfies the following conditions:
(1) u(0) = x3
(11) Ru(t’) - u(t™l < Mlt" = | for ¢t ,t"e J;
t
ii1) s u(t) - x_ - f(s,u(s))ds i <1/n.
(111) gup Mu( o‘(,(.)l/

Definition 3. Let H be a subset of B. By Sn(ﬂ) (n =
= 1,2,...) we denote the set of all 1/n-approximate solutions
u of (PC) on J such that for every t€J, u(t)€ H and there ex-
1sts hye [0,t] with u(t)e x, + h,. conv (£[Jx K1),

Definition 4., We say that the function f has the Peano
property with respect to H 1f any sequence (vn) with Yn€ sn(n)

contains a subsequence which converges in C(J).

Definition 5. By S(H) we denote the set of all solutions
of (PC) on J with their values in H.

Moreover, throughout this paper d and ¥ are functions
defined in the following way.

Definition 6. Let L be the space of all bounded sequen-
ces of E with the usual supremum norm 1-1 . We denote by
$: U— [0,0) a function with the following properties:
1© @ (X) = 0 for a convergent sequence X ¢ U ;
2% 12 $(X) = O then X is a compaot sequence of E;
319 (X)) - JEIenlT, - L1 for X, X6 U
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4 PUxIvI) = J(X) and P(x + X) = P(X) for x¢E and
IaU. '

Definition 7. Let U be the family of all nonempty bound-
ed subsets of E. We denote by ¥: ¥"—[0,00) & funciion with
the following properties:

1° Y@ +§{x:mz1)<2¥(X) for X € 7 and eny conver-
gent sequence (x,) of Ej

2° ¥ @ = ¥(X), ¥(oonv X) = Y(X) and ¥({OIUX) =
=Y(X) tor X e V;

3° Y (tX)£t. ¥(X) for 20 and X ¢ 7V,

4° Y (X;) & ¥(X,) whenever X,C X,

5° 4f ¥ (X) = 0 then X is compact,

4. Compactness type conditions. Here we shall employ mea~-

sures of noncompactness to impose conditions on f,

The notion of a measure of noncompactness was defined in
many ways (see e.g. [2],[51,[15]). At first, Kuratowski [9] has
introduced the function o which is .a. kind of a measure of non-
compactness. (The measure o¢(X) of a nonempty bounded subset X
of E is defined as the infimum of all & > O such that there
exists a finite covering of X by sets of diameter =< € .) Ambro-
getti [17 proved the existence theorem for the problem (PC) un-
der the assumption of uniform continuity of £ with o« (£(t,X))=
£k - (X) for all tel and any XCB. A similar result, but
without the assumption of the uniform continuity, has been pro-
ved by Szufla [18] under the condition ot (£[I>X])&k-ac(X)
for any XC B. Further extension of Ambrosetti theorem, for uni-
formly continuous f, has been proved by Goebel and Rzymowski
171, and others (see [2],131.(61).
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Fext we puppose that g1Ix [0,0) --» [ 0,00) 18 & continuous
function such thet w(t)= 0 is the unique golution of the diffe-

rential equation
u’ = g(t,u), u(0) =0
on the interval I.

Let @ and ¥ be the functions defined in Sec. 3. We in-
troduce the following conditions: N

(1) gm tnr 0D (X + he(£,X) - B (X< e(t, D (X))
for any sequence X of B and all te I, and assume in addition
that £ is uniformly continuous on Ix B.

(II)e ¥(LLIxIX))2k +« ¥(X) for any subset X of B, where
k is a nonnegative constant,

Let us note that the Kuratowski's measure of noncompse t-
ness o, is an example of § and ¥ with the properties listed
in definitions of Sec. 3. Other examples of such § , ¥ may be
found in [2],[51,[15].

Lemma 1. Assume that the condition (I) is satisfied. Let
Vyd —B (n = 1,2,...) be functions such that:

(1) (v,(0)) is a convergent sequence;

) |l vn(t') - v (el & clt’- t"| for each n and t°, t"
in J;

(3) N ovy(e") = v (t°) - j;'t“ 2(syv,(8))as | €K/n for each
n and t', t" in J,

Then, {vn=n213 is a conditionally compact subset of C(J).

Proof. Define for te€J the function p(t) = § (V(%)), whe-
re V(t) = {vn(t):an}. Evidently p(0) = 0, p is continuous on
J, and

D,p(t) (= lim inf k™' (p(t + ) = p(+))) &

>Y
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411._'151 B LH(V(E + B) - PV(E) + ne(t,V(£)))]+
+ g(t,p(t))

for ted,

Let € > O, Since £ is uniformly continuous, there exists
"« J(e)>0 such that l2£(t°,x") - £(t",x") |l < € /4L when-
over It" = t"l< ¢’ and x° = x*ll <& . By assumption (2),
“vn(s) - (i <d (n=1,2,...) i |8 - t|<I7/C with
t,scJ. Thus, for sufficiently small h, O<h<min (d’, J7/C) and
n>n = 8KL/Eh and t&J we obtain

vy (¥ + h) = v, (t) = he(E,v (1)) B & Hwy(t +h) = v (%) -

- [tt“f(u,vn(s))dllh- f:”"llr(-,vn(s)) - 2(t,v (t)) | a8 <
< % + i% < E% + "ilr‘ < % s

hence
PVt + n)) = H(V(L) + ne(t,V(t))) = v (t + h):
in>n}) - @({vn(t) + hf(t,vn(t)):nz’no})elung%“vn(t +h) -
= V(%) = ne(t,v ()l = eh/2
and therefore

m BV LG (V(t + B) = §(V(E) + ne(t,V(t)))]= O,
Consequently, D p(t)< g(t,p(%)) for 0=t <72,

Prom the Theorem 1.4.1 of [10) the following result may be
deduced:

Let p, L be nonnegative continuous functions defined on I
and I ~[0,00), respectively, Denote by ¢ the maximal solution
of the differontial equation u’ = L(t,u), u(0) = O on the inter-
val J. Assume that p(C) = 0, L(t,0)=0 on J, and the inequality
D+p(t) «L(t,p(t)) is satisfied on [0,T). Then, p(t) Y(t) for
tcl,

Now, by the above result, we get p(t) = 0 on J, This imp-
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lies that {v,(t):n Z1} (04t £T) 1s conditionally compact and
the Ascoli Theorem completes the proof.

Lemma 2, Assume that the condition (II) is satisfied ang
T€min (a,r,/(b, + M)) with kP <1, where 0<r £r and v, = 0.
Let (ﬁ). (zn) be convergent subsequences of B with
lx, - x,l&r - r and "’n" £b . Then there exist subsets.

Hey,g) (10 3 = 1,2,000) of B such that

H(i,j) =x;, + U{t-conv (’1 + t&xn(i'd):})xo.ét.s!}

and
[\"~) <D
By = i%s 344 B(a,9)
is a conditionally compact subset of B.

Proof. Applying arguments analogous to [4] (cf. [18], p.
797), we oconclude that there exist our subsets K(i’J)CB. Let
us put: X ={x :nz1%, Z = {2 1n>13. Using properties of'¥
we get

Y¥(m) £ YX + U Lt-conv (2 + tLIx<E )10 4t £77) &

&Y(U{tconv (2 + foﬂol):Oétéﬂ') <

% Y(conv (10} U T-conv (Z + £[I=H,1))) =

= Y¥(T.comv (2 + tI<H)))LP-¥(Z + =B ) <
€ T Y(IIx<B))£LLT - ¥(H).

Hence ¥(H ) = O and therefore 'H-o is compact.

5. Kneger s type result. In the Proposition and Theorea 1

below, we assume in addition that the following condition is sa-

tisfied:
(4). There exists a closed subset H of B such that rhm

is uniformly contimuous and x, + t.conv (£[I»H])C H for each .
t in J.
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The proof of our result is similar to that of the Theorem
in N14].

Proposition. The sets sn(E) (n =1,2,,,.) are nonempiy
and connected in C(J).

Proof. Let g(:) = g(+, &,p,w) be an Euler polygonal line
for (PC) on J. Obviously, 8 ]cB. Por r; <t £r; (here vy =
=p+1€, 1 =1,2,,..,k-1, and k is an integer =1 such that
T ~-p = £k) we have:

<=1

g(t) = w(p) + mzﬂ (tp41 = T f(ry,e(xy)) +

+ (t - 1‘1)1(1‘1-8(’1))

t
le(t) - x, - J-o f(s,g(s))daui"“w(p) -x, -
- [Feewanasl + L, Uete,aten]las +

24 M
+ m2=4 fm;w N 2(ry,e(ry) - 2(s,e(s)) |l a8 +
S Velrgaez)) - ts,e(a))l ge

Denote by ue(j) the Fuler polygonal line g( -, £,pP,w) with
p = 0. Evidently, uﬁ(t)axo for 04t < €& and since ue(t)e X, +
+ (t - & )econv (£EIxH]) for t = € , we infer by (+) thet
ua[J]c H. \

Pix an index n. FProceeding similarly as in [14], by uniform
continuity of f|j.gs» We conclude that there exists €(n)>0 such
that

gxépi l\ug(t) -x, - f: f(s,u(s))asll<1/n
for each ¢ < & (n). Consequently, u &S (H) whenever g€ < ¢ (n).

Assume that weS (H). An argument similar to that in 114)
implies that there is a positive ¢ £ €(n) such that for

€ <eg, and 0£p4&Ts
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t
%uep;. lle(ts €Pow) = x - ]; £(s,e(ss €,p,m))as |l <1/n.

Purthermores for 0<t<4p there exists h; e [0,t] and
g(ty €+P»W) = w(t)e x, + hyoconv (£IIxH)).
If ry&t<7y,q9, then

gty ©Pw) € w(p) + é eflixB]+ (v - r)flnEl C
€ x, * B -Conv (f[JxHJ) + E € « conv (£1IxH]) +
+ (t - x;)econv (£[I=H]) =
=x, + (hp +%t-p-g)-conv (£[I=H])
and hp + %t~ P~ ¢ <t, Prom this we deduce that Fuler polygo-
nal line g(°, e,p,w)esn(ﬂ) for each ¢ < €, and 04p<£7T.
Let us put:
U=fu3:0 < € <g(n)i,
v, =4i8(-, M,,p,W):0<p£2}
with weS (H) and 7, < €,. Modifying the proof from [14] (of.
(21], p. 664) we prove that the sets U, V, are comnected in C(J).
Now, we get
v Udivuvwes (D1,
Since w(-) = g(+, 7,,7,w) 6V for weS (H), we get S5 (H)CW.
Ap UcS (H) end V c 8 (H), WCS, (H). Further, we observe that
g(e, n',o,v) = un'(-)sunv'. Therefore UuV, 1is oconnected in
€(J). Consequently, S, (H) = W is a conneoted subset of C(J).

Now, we are in position to prove

Theorem 1. If the function £ has the Peano property with
respect to H, then the set S(H) is nonempty, compact and conneo-

ted in the space C(J).

Proof. The integral mean-value theorem may be stated as
followss j;)tw(s)dsevconv ({w(8):0=8<t}). Hence

S(H) c 04811(5)’ and consequently S(H) = f,\q sn(n).
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Assume that £ has the Peano property with respect to H.
Then (see Lemma 1 in [141) S(H) is nonempty and compact. By
Lemma 2 of [14) with X, = S, (H) end the facis above, nfz\" 8, (H)
is a oconnected subset of C(J). This completes the proof.

Example 1. Suppose that the condition (I) is satisfied.

Let T = min (a,r/M). We have: x, + t-conv (fLIJ=<Bl)cB
for t¢cJ. It is obvious that Lemma 1 is applicable to any se-
quence (v, ) with v & Q_n—(i-)'. Therefore f has the Peano property
with respect to B. Thus all assumptions of Theorem 1 are satis-
fied, S(B) (the set of all solutions of (PC) defined on J) is
a continuum in C(J).

Let T = min (a,roll) with 0£r <r. Let Q be a nonempty
subset of the closed ball of E with the center in x  and of ra-
dius r - r,. Denote by S(x) the set of all solutions of (ch)
on J. We shall prove below that if the set Q is connected then

8 = U{8(x):xsQ}
is a connected subset of C(J).

In fact, let us assume that S is not commected. Thus there
are nonempty s;ts 84, S, such that S = S,uU8,, 3,NS, = $ and
Sy = Sns‘i' (1 = 1,2), Define the sets Q; (1 = 1,2) by

Q; ={xGQ: for some y&S; we aave y(0) = xt
Note Q; +# and Q = Qqu Qy. We show that Q,;NQ, = § and Q; =
- Qr\a;.

Suppose on the contrary that Q,nQ,+#. Let x£Q;nQ,. Put
Y, = S(x)nS; (1 = 1,2), Evidently Y, +§, Y,uY, = S(x) and YN
NY, = §. Purthermore,

Y;_c S(x)ns_i = S(x)n .s;.u'.' Sn8jcs,,
hence S(x)n!]c!i. Therefore S(x) is disconnected, in contra-

diction with the c- mectedness of S(x).
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To show that Q; = QNQy let x&Qn Q;. Then xeQ and the-
re exist X, €Q, y,65; (n = 1,2,...) such that y (0) = x and
{x, - x0— 0 as n — 0 . By Lemma 1 we conclude that
fnk?4 S(x,) is a conditionally compact subset of C(J). Hence
(y,) contains a subsequence which converges uniformly on J to
seme function y, and y,eS(x). Since y e ﬁz and Sr\s_;'c S, it
follows that Vo €8y This implies X€Q, and the preof is com-
plete,

By the facts above,Q is disconnected and contradicting
our assumption. This proves that the set S is comnected in C(J).

Moreover, notice that using Lemma 1 we obtain: S is com-
pact in C(J) whenever Q is a compact subset of E,

Example 2, Let the condition (II) be satisfied and
P<min (a,r/M) with kT <1,

By Lemma 2 there exists a compact subset Bo of B such that

B, = x, + U{t-conv (f[JxBol):Oé.tﬁTL

Since f‘IxBO is uniformly continuous and
x, + t-conv (f[JxBol)Cxo + U {t.conv (£13xB.)):
:0£t<2CB ,

the condition (+) is satisfied for H = B . Let X = (v,) be a
sequence with v, ¢ é;?i;s . The set X is a closed equicontimuous
subset of C(J). Since B is compact, Ascoli’s Theorem proves
that X is compact in C(J). Thus f has the Peano property with
respect to Bo' Therefore all assumptions of Theorem 1 are sa-
tisfied, and we are done.

Por more resulis of Kneser type we refer to Szufla, e.g.

(191, i20].
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6. Extremal solutions. Throughout this section it will be
assumed that X is a s0l11d cone in E (i.e., K i3 a closed subsget
of B with nonvoid interior such that x, y, z, -ze¢K and t, 820
imply tx + sy €K and z = &), The partial orderings on E induced
by K are x4y 12 y - x¢K and x<y if y - x€Int K (the interior
of K).

We say that a function £:J<B—>E is nondecreasing if
x,€x, implies £(%,x,) 4 £(%,x;) for each t in J. '

The following theorem (I17], Th, 70.1, p. 224) on "strong
differential inequalities™ will be needed for later use:

Let £:J%B—> E be a nondecreasing function. Suppose that
u, v are continuous functions from [0,T) into B satisfying the
following conditions:

(1) u(0)<£v(0) (or, u(0)<v(0))s

(2) u/(t)42(t,u(t)) for 04t <Ty

(3) f(t,v(t))<v_;(t) (or, resp. f(t,v(t))év;(t)) for
0£t<T,

Under our assumptions u(t)< v(t) for 0<t<T,

A solution yJ of the problem (PC.) on the interval J is
called a maximal solution, if for every solution y of (ch)
existing on J, the relation y(t)4yj(t) holds on J.

Theorem 2, Suppose that the function f is nondecreasing
and the condition (I) (resp. (II)) (see Sec. 4) is satisfied.
Let 0&r 4r, b >0 and b = rol(bo + M), Let J = [0,T ], where
T,<T = min (a,b) (resp. T<min (a,b) with kT <1),

Then, for every Xx&E such that |ix - x N £r -, (B,)
has a unique maximal solution y; ond o° Moreover, the mapping

x —> y;
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trom ¥ = {xcE: lix - xllcr - Toe X< x$# into C(J) 1is conti-

mwous at the point X,

Proof. Consider the differential equations
() ¥ =3y + 2(t,3), 3(0) = x (m = 1,2,...)
where Il x - x, W&r- r, and (z)) is a sequence of E such that
< z, and I zm“ < 1/m,

Denote by B(x,ro) the closed ball of E with the center in
x and of radius r,. The functions f (t,x) = z, + £(¢,x) (m =
= 1,2,...) are bounded on IxB(x,r,) by b, + M,
$(x + nt (+,X)) < (X + he(t,X)) end ¥(f [IxX]) £ ¥(LIxX),
Therefore, by the examples of Sec. 5 and our lemmas, if the con-
dition (I) (resp., (II) with XT<1) is satisfied, then (rcm)
has a solution y, defined on J and {ym:-.’:ﬂ is a conditionally
compact subset of C(J).

Assume that (yi(m)) is a subsequence of (y_ ) which conver-
ges uniformly to the limit y°. Evidently, y° is a solution of
(PC;) on J. Let y be any solution of (PC.). We have:

y(0) = x = 3’1(,“)(0):
7)) = 2(,3(8)),

204,35 () (8D < By gy + 28Ty () (D) = 340y (8)3

therefore, by the result on "strong differential inequalities”,
’(t)<yi(m)(t) (m = 1,2,..0) for O<t <T, Now, taking the limit
as m — 00 , conclude y(t)£y°(t) for O£t <™, Consequently,
y° 1is the desired maximal solution of (BC.) on J .

Let (xi) be a sequence of X which converges to X,e Deno-
te by m;, m  the maximal solutions of (I’Cxi) and (PC), respec-
tively. To show that

t'g%‘, Moy (8) - m (%) - as i — oo,
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let (my(4)) be any subsequence of (m;). In view of Lemma 1
(resp, Lemma 2), (‘k(i)) contains a convergent subsequence when~
ever the condition (I) (resp., (II)) holds.

Let (m/ (4)) be a convergent subsequence of (my(4)) and
'n(i)(t)—’ n(t) (1— 00 ) uniformly on J . By

no(o) =X <Xp4) = mn(i)(o),
m (t) = £(t,m (t)),

Mgy (8) = 2(t,m 4y (),
we may apply the theorem on "strong differential inequalities"
to obtain m (t)< nn(i)(t) (1 = 1,2,s..) for 0<t<T, Hence
m,(t)£m(t) for 0Lt <T and since m is a solution of (PC),
n(t) =m (t) on J .
In a pimilar way one can imtroduce the definition of the
minimal solution of (ch) and formulate a result analogous to

Theoren 2,

7. Dependence on parameters. The solution of (PC.) is an
operator (multivalued, in general) defined on some spaces of
points (£,x). In [11] and [12]) we characterize sufficient con-
ditions for this operator to be continuous. Here we give a ver-
sion of the Krasnoselskii and Krein result (see [8]) on conti-
nuous dependence of a solution of the differential equation
vy = P(t,y, %) on the parameter A .

Let {l= Ix<Bx.A , where A is some space with a limit
point .7\,0. We assume that P: £l — E is a bounded mapping and
the function (t,x) +—> P(t,x, A\) 1is continuous on I~B uniform-
ly with respect to (t,x, L) ¢ QL' (i.e., for every ¢ > O there
exists = J'(€)>0 such that
WP(ty,xq,A) - P(ty,x,, M) Il < & whenever It - %, |<d,
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Mxy -z, l<d” ana AeA).
Next, denote by SL the set of all solutions of the eqa-
tion
y' = (5, A), ¥(0) = x,

on the interval J = [O,min (a,r/M)] with [P(t,x, A)ll€ M onQ. .

Theorem 3. Suppose that

Ju tne 2! [P (X + BP(,X,A)) - §)T4alt, HX)
for any sequence X of B and all (t,A)€I =< A , where
g:Ix[0,00) —10,00) is a continnous function sueh that u(t) =
=0 is the unique solution of the differential equation u’ =
= g(t,u), u(0) = 0 on the interval I. Moreover, let

t &
(%) a}ﬂ'a,-’; ¥(s,x,A)ds = L ¥(s,x, A,)ds

for every (t,x) in IxB.
Under our assumptions for any n>0 there exists a neigh-
bourhood U of the point A such that if A€ U, then

'g.jin‘.riuo tug.% “’L(t) -yll<

for every ’16 3.7\,'

Broof. By Exeample 1, S, # # for each A e A. . Suppose that
the theorem is false. Then, there is A > O and for every n (n =
= 1,2,...) there exist A 6 A and yncs_7|n such that lim A, =

(]
inf Sup l,I(t) -’N(t) l—j ,! (n- Ilaguou)'

As in the proof of Lemma 1, we obtain that {yn:n:'1} is a
conditionally compact subset of C(J). Let (¥y4(n)) be a conver-
gent subsequence of (y,) with y,(,)(t) —=> ¥o(¥) (n —» 0 ) uni-
formly on J.
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Now obgerve that by means of (<) we obtain
t t
a5 P(e,808), A)d8 = fF F(s,d(8), O)ae

for every on J piecewise constant function 3. Therefore (of.

[81), one can prove that
t t
%1:00 _f; F(a,yi(n)(s), li(n))dn = j; P(s,yo(s), xo)ds
for t €J. From this it follows that J € S% and consequently

«?étsao £ Nyi(n)(® - y()l—> 0as n — o0,

a contradiction. The proof is therefore complete,

It is known that if a function G:Ix B —> E is Lipschitz
on B with a constant k, then < (G(t,X))<£k . o<(X) (here oc is
the Xuratowski measure of noncompactness) for t €I and X cB,
From this remark and Theorem 3 we obtain the following result:

Let (Q,) be & sequence of A convergent to 7\0, let y, &

G S (m = 0,1,...) and S, 1s singleton. Further, let
0

*n

Um f: P(s,x, A )ds = Lt P(s,x, X )ds

for (t,x) ¢ IxB. Assume in addition that
HECE 2y, A) = Plt,xp, M)W £ p(8) hxy = 00 for teI, x,x,
in B and A e A , where p is an integrable function such that
t
z-iu‘pl j; p(s)ds <1. Then
sup_ lly (t) -y (8)§ — 0
supy Tn(t) = y,(B) M
as n — o0 .

8. Appendix. The object of this appendix is to derive a
result of Stokes type ((16]1) on existence of solutions of (PC)
on the half-line tZ0 via the fixed-point theorem given below,

Denote by C[0,00) the set of all continuous functions
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from the nonnegative reals inte B (E is our Banach spase with
the Kuratowski measure of noncompaciness o¢ ). The set C[0,00)
will be considered as a vestor space endowed with the tepelogy

of uniform convergence on compact subsets of [0,00),
Ne use the following fixed-point theorem [13]:

Let ¥ Dde e nonempty clesed convex and boumded subset of
cl0,0). Let " be a function which assigns to eash nonempty
subset X of £ & nonnegative real number ["(X) with the fellow-
ing properties: (1) [(conv X) = N (X), (2) if M(X) = 0 then
X is eompact, and (3) ,,Q4 I, is nonempty compact whenever (X))

is a decreasing sequence of nonempty vlosed comvex subsets ef
% and M(X,)—> 0 as n — @ . Suppese that T is a contimm~
ous mapping of £ into itself such that T"(2(X)) <« g( (X)) for
each nonempty subset X of 2 , where @ is a right-continuous
function with @(t)< ¢ for t>0. Under the hypotheses, T has a
fixed point im ®.

Tor XcCl0,0) and t20 we denote by X(t) the set of all
x(t) such that xeX. We state the Asooli Theorem as follewss:
A subget X of C[0,00) is conditionally compact if and only if
X is almost equicontinuous and x(—t) is compact in E for every
tZ 0.

Let us denote by oCI the Kuratowski measure of noncompact-
ness on the space C(I). A. Ambresetti (1] proved that

Ly(X) = G (ULI(t)1teI}) = sup, ot (X(t))

for each bounded equicontinuous subset X of C(I). We shall use
also the following theorem due to Kuratowski [9)s If (X)) is e
decreasing sequence of nonempty closed bounded subsets of C(I)
and Uy (X)) —> 0 as n —» 0 , then .(;\41“ is nonempty and
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compact subset of C(X).

Theorem 4, Suppose that f :[0,00)<E—>E 1s a continuous
function such that Nf (t,x) K< H(t, Hxll) for 20 and xcE,
where H is continuous and monotonically nondecreasing in the
second variable. Let L: [0,00) —> L0,00) be a continuous function
with fl(a)dl €1, and @:00,00) —> L0,0) a nondeoreasing
right-continuous function with @(t)< t for t>0, Further, let
the scalar differential equation

u’ = H(t,u), u(0) = hx Il
have a bounded solution u and u(t) £u, for t=0. Assume in ad-
dition that
oc(fotlxxl)éflgl L(t) « (e (X))
for any compact subinterval I of [0,00) and any Xc B bounded
by Uge
Then there exists a solution y of the equation
77 = 2,(%,), ¥(0) = x,
satisfying the inequality lly(t)ll £ u(t) for every t=o.

Proof. Let us denote by X the set of all xeC[0,0) such
that llx(t)l L u(t) for £+20 and

_ t
lix(ty) = x(tx) € 1 [, ? B(s,u,)asl
1

for t,,%t,Z0, Obviously, ¥ is a closed convex bounded and an
almost equicontinuous subset of CIL0,co).

Put (X)) = ??oac(X(t)) for X c & , Since I'(X,) =
e.r'(xz) whenever X,C X,, by the corresponding properties of
<, T(@ = M(X) = M(conv X), It [(X) = O then '(t) 1s
compact for every t 20, and therefore Ascoli ‘s theorem proves

that X 1s compact in C[0,00). Now, let (X,) be a decreasing
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sequence of nonempty closed subsets of ¥ such that I'(X ) — 0
as n—>» o0 . Let t>0. Since the set V, = nl[o,t'l is equicon~
+ (X ())—> 0asn—> © , Ambrosetti’s
theorem proves that ocm.ﬂ(vn) —» 0 as n—> 00 , According

tinuou d su
8 onf 0t <

to Kuratowski s theorem applied to the sequence vy, Q 4V
is nonempty compact in C[O,tl; hence {x(%):x G”Q,‘ X,}is com-
pact. Consequently, 4{;1 X, is a nonempty and compact subset of
clo, ).

To apply our fixed-point theorem, let us consider the con-

tinuous mapping T defined by

(M) () = xy + [ 2.(a,3(a))a8

0

for ye Cl0,0), Modifying the reasoning from the proof of Theo-

rem 2,1.2 L10] we infer that TL¥E) c ¥ . Let X be a nonempty

subset of X . To prove the theorem it remains to show that
m™(Tx)) € ¢ ((X)).

To this end, fix t20. Let us put Xy = U { X(%):0£ &< 3,
Since I"(O,ti is uniformly continuous, for any given € > 0 the-
re exists & > 0 puch that 1t - t"|l <0’ (0<£t", t"=1t) implies

aC(xt)‘L(t’) - L(t")) < €& . Por a positive integer m >t/d” ,
let to = 04t1<...<tm = t be the partition of the interval
[0,t] with t, = % +ty_4 (1 =1,2,...,m), Moreover, let us de-
note by 6; (1 = 1,2,,..,m) a point in I; = [ti-d »t;) such that
L( 6,) = sup {L(&):t, 4 < &<t,d.

For x€X, we have

t m tg
j; 2,(8,x(8))ds = 1:2;_‘4 ft:-qro(s,x(s))ds e
m
e =
o B, (by = ty_4)-Tomv (£, (T,=Xy1)

1

and it follows that

24ty = ¥y ) Gonv (if (&,x(6))st; 4 £ 6 =t3})C
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«.(rm(t)) - {f £,(8,x(s))amxeX}) £
‘d(&24(t1 -ty 1).conv (¢4 rIi"xtD) <
< 2 - )i &) 9 (x‘:)

- gloe(xy) « [} nimas + 5, [ 63) - L) g (cc(x,))den
= @ (sup L (X(6))30 eeet}) . i’ Iy gl (X)) (1 8y) -

- L(e)ds £ g( (X)) +, 3, ft 9(m(xt))(h( 6,) - L(s))ds.

I o(Xy) = O then p(oc(Xy)) = 0 and therefore
< (TIXI(t)) £0 = @(0) < 9(T'(X)). As (X,) >0,

cc('rt[x](t)) <@(Nx) +
g O -
+ 2 fy, @ (xE)) e (@) s < o M) + et

and since © is arbitrary, we obtain oc (TIX1(t)) = ¢ (M (X)).

Thus, oc(TiX1(t)) € ¢ (I™(X)) for all t=0. This implies
F(2x)) « ¢( (X)), and, consequently T has a fixed point in
X . The proof is complete.
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