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COMMENTATIONES MATHEMAT1CAE UNIVERSITATIS CAROLINAE 
23.4 (1982) 

PRODUCTS OF CONVERGENCE PROPERTIES 
J. GERLITS and Zs. NAGY 

Abstract: The impetus for this paper was given by P. 
Simon 8 recant beautiful example for two compact Frechet spa­
ces whose product 1B not Frechet* Our aim la to study the be­
haviour of convergence properties with respect to the products. 
The sain new results are: the product of two w-spaces, one of 
which is compact, is a w-space; the product of a compact Fre­
chet space and of a w-apaoe Is a Frechet space. We give also 
an example for two w-spaces whose product has not even tight­
ness. 

Key words: Convergence properties, topological product, 
compact spaces. 

Classification: 54D50, 54055, 54B10 

In this paper by a convergence property we shall mean 

one of the following properties: 

(1) X is first c o u n t a b l e . 

(2) X is a W -space [41: for each pex the first player 

has a winning strategy in the Gruenhage's game on 

< X,p> 

(3) X is a G -space (G stands for Gruenhage) i . e . 

t(X)=a) and each countable subset of X is first count­

able. 

(4) X is a w -space: for each p€X the second player 

does not have a winning strategy in the Gruenhage's 
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(5) 

(6) 

(7) 

game on <X,p> ; equivalents 1 7 ] , if A cX , pe& 

(n<w) then there is a sequence p eA„ with lim p =p . 
r n n r n r 

X is Fre*chet: if peX , Acx and p€A then there is a 

sequence p eA with lim P = P • 

X is sequential: if Acx is not closed then there is 

a convergent sequence {p :n<o)}cA with lim Pn£A . 
X is a k -space: .if Acx is not closed then there is 

a compact CcX with CnA not closed. 

(8) t(X)=w , the tightness of X is countable: if pex , 

Acx and p€A then there is a countable subset -BcA 

with pe§ . 

See 1 2 ] , [3] and 14] for the proofs of the implications 

l)«*2)=»3)=*4)-»5)->6)=>7), 6)=>8) and that neither of these implica­

tions is reversible. The only open question here is 

Problem 1 Is there an example (in ZFC) of a w -space which 

is not a 6 -space? 

A moment's reflexion shows that if there is such an 

example then there is also a countable one with only one non­

isolated point. Let us note also that assuming Martin's 

Axiom and the negation of the Continuum Hypothesis, any 

countable space with weight less than continuum does the job. 

A more complicated example can be constructed also if the 

Continuum Hypothesis holds. 

Let now *Y be any fixed convergence property. Our aim 

is to characterize those convergence properties Q for which 

the product of any \ -space and of any Q -space has 'p . 
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It is immediate that any of the convergence properties is 

hereditary with respect to closed subsets hence if a product 

has a certain property then each factor space also d o e s . Con­

sequently the best case is when the product of two *P -spaces 

is again f while the worst case is when there is a r -

space and a first countable space whose product is not a 

> -space. 

The general case 

ad 1) The product of two first countable spaces is 

evidently again first countable. 

ad 2) By a theorem of Gruenhage [41 the product of two 

W -spaces is again a W -space. 

ad 3) See Gruenhage's paper [ 4J for the proof that the 

product of a G -space and of a W -space is a G -space. 

On the other hand, the following example shows that 

the product of two G -spaces need not be a G -space. This 

example solves a problem posed by Gruenhage in [ 4 1 . 

Example 1 Two G -spaces whose product does not have tight­

ness (it . 

We begin with some set-theoretical d e f i n i t i o n s . 

Let C denote the set of limit ordinals in u>, , C' = 

=Cu{0> • Two sets A , B are almost equal (A= B) if their 

symmetrical difference is finite (|AftBKw) . An u>, -sequence 

is a sequence {A :£€C> having the following properties: 

a . ) A c e for each sec , 

b . ) if £,nGC , £<n then A = A n 5 . 

An a), -sequence is trivial if there is a set Acu>. 

such that A =J*Ane for each £€C . 
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Assume now that {A :£€C} is a non trivial w^ -sequence; 

using it we construct two 6 -spaces X, Y with t(XxY)=w« . 

Let the ground sets of X and Y be w,u{p} , p^w^ . 

The points of w, are isolated in both spaces. For a set 

Tcuj , p€TX iff TnA is infinite for a suitable £GC . 
v 

Similarly, peT if Tn ( r , -A £ ) is infinite for some £€C . 

It is immediate that X and Y are 6 -spaces: any countable 

subset is the union of a clopen discrete set and of a con­

vergent sequence. On the other hand, tfXxY)-^, . We must 

prove that for each n^C n is the union of an X -closed 

and of a Y -closed set but w^ is not such a union because 

then the point (p,p) is in the closure of the set 

S={(£,£): c<wj} in XxY but each countable subset of S is 

closed. 

If neC then n-^n-A )uA ; n-A is X -closed and 
n n n 

A is Y -closed. If Acu,. is Y -closed then for each 
n -

n^C An(n-A ) is finite. Using now that {A :£€C} is not 

trivial we get an nGC with A -A infinite but then 
a n 

w, - A is not X -closed. 

Hence our task is reduced to construct a non-trivial 

w, -sequence. The following lemma will be helpful. 

Lemma If the wj -sequence {A :£€C} is trivial then there 

are two ordinals C n ^ C , £<n such that A =A n^ . 

Proof Choose a set AcWj such that A = Anr, for each 

£€C and take the function 

h(ç) - (Anç)-Aç 
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Evidently h(c) is a finite subset of £ for sec . 

Using Neumer's theorem I 51 we get Cn^C , £<n with 

h(s) = h(n) * l t is immediate now that A =A n c . a 

Consequently we have to construct a sequence {A :£€C} 

with the following properties: for £,n^C , t<n 

a.) A ^ C £ , 

b.) 0#IA^(A nn 5) l<« • 

The construction is by transfinite recursion. 

We shall also assume that 

c.) The system & £ = {Acn-*-: V Te ((n+l)-£)
nC 

0<|(A*A )n(T-5)l<w} is infinite for any 5,n<=C , e.<n . 

Let A c a) be arbitrary. If aeC , {A :£€Cna} is constructed 

and fulfils a.), b.) and c.) for n<a , we distinguish two 

cases. 

1.) a=&+u> . Let A be any member of J P . 

2.) a=lim a , aneC , a n < a j (n<w) . Choose a set 
a 

An €^a ^a-i = °) a n d Put A =u{An:n<w} . 

It is now easily seen that a.), b.) and c.) hold also 

for n-a . D 

Problem 2 Let X and Y be G - s p a c e s . Is it possible that 

t(XxY)>2w ? 

ad 4) By a theorem of Gruenhage 141 the product of a 

w -space and a W -space is a w - s p a c e . On the other hand, 

Example 1 shows that a G -space is not e n o u g h . 

ad 5 ) , 6 ) , 7) These properties behave very badly with 

respect to products as the following example s h o w s . 

Example 2 A Fr£chet space and a first countable space whose 

product is not a k -space. 

Let the ground set of the spaces X and Y be 
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(wxu))u{p} . The points of wxw in both spaces are isolated. 

For fe^o) and nGw put 

U f = {(k,£)eu,xu>: £>f(k)}u{p} 

Vn = {(k,£)ewXo): k>n}u{p} . 

A nbd -base of p in X is given by the system {Uf:fe
a>a>} 

while in Y by the system {Vn:neu)} . 

It is easily seen that X is a FrSchet-space and Y is 

first countable; we assert that XxY is not a k -space. 

Note first that if C is compact in X then Cn(wxto) 

can be covered by a finite number of columns because a set 

{(k » £ ) :n<a)} , ^ <k « (n<u)) "•s an infinite closed discrete 

subset of X . 

Similarly, if C is compact in Y then each column con­

tains only finite points of C because for any n<w 

{(n,k):k<u)} is a closed discrete subset of Y . 

Put now 

A = A - {(p»p)> = { (x,x):x€ „,xw} C X X Y . 

A is not closed in XxY because (p,p)€ft but for each com­

pact subset K in XxY the intersection KnA is finite hence 

closed; XxY is not a k -space. D 

ad 8) By a theorem of Gruenhage 1 4J the product of a space 

with countable tightness and of a W -space has countable tight­

n e s s . Moreover, Example 1 shows that the product with a G -

space need not conserve the countable t i g h t n e s s . 
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The compact case 

Let us now assume that one of the factor spaces is compact. 

We shall see that in this case the situation is totally different. 

By a theorem of V. I. Malyhin [6] the product of two spaces 

with countable tightness one of which is compact, has countable 

tightness. This shows also that the product of a compact G -

space and of a G -space is again a G -space. It is well-known 

(and easy to see) that the product of a k -space and of a 

compact space is a k -space. Finally, see 111 for a proof that 

the product of a compact sequential and of a sequential space is 

sequential. 

Hence the only cases left open are the Fre*chet spaces and 

the w -spaces. As for the FrSchet spaces, see P. Simon's 

example [81 for two compact Fr£chet spaces whose product is 

not FrSchet. The other questions are solved by Example 3 and 

Theorems 1 and 2 below. 

Example 3 A Fre*chet space and a compact first countable space 

whose product is not FrSchet. 

Let X be the FrSchet space X of Example 2 and let Y be 

u)+l (i.e. a convergent sequence with its limit). We assert 

that Z=XxY is not FrSchet. 

Put A={((k,.t),k):(k,i!)€ uxw) . Evidently (p,o))eA-A ; we 

have to prove that no sequence {((k , I ) ,k ) :n<u>} converges 

to (p,w) in Z . 

Indeed, if ( ( k
n ' ^ n

; , k n ^ "*" (p,t°) then, by the topology 

of Y , kn^o) in Y but then the sequence {(kn , ln): n<u>} 

is closed in X hence does not converge to p . n 
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Theorem 1 The product of a compact Fre"chet space and a w -

space is FrSchet. 

Proof Let X be a compact Fre*chet space, Y a w -space, 

Z=XxY , ACZ , (p,q)eff-A . Put 

T={xeX: there is a sequence (xn,yn)eA , (xn , y )-*- (x,q)} . 

We assert that peT . Indeed, if U is any closed nbd of p 

in X , put B^-An*"1^) . As (p,q)e"Ef and Y is Freshet, there 

is a sequence (x , y )€B with y ->• q in Y . Using now that 

X is compact and sequential hence also sequentially compact, 

we get a convergent subsequence {x :k<<u} . If lim xn =x 
"k k nk 

then xGTnU 

Choose now a sequence tneT with p=lim t . By the 

definition of T , for each new there is a sequence 

{(x£ , y£):k<»}cA with lim (x£ , yJJ)»(tn , q) . 

Let now w=u{T. : i<u>} be a partition of u> into infini­

tely many infinite sets. For (n,i)€wxu> put 

V i - <*k : k e V • 

For any pair (n,i)€u)xu> the sequence A_ . converges to the 
n , 1 

p o i n t q in Y . As Y i s a w -space there i s a sequence 

{ k ( n , i ) : ( n , i ) € wxu)} such t h a t k ( n , i ) e T . and 

{y[J/n . j« : (n t 1) € u>xo>} converges to q in Y . 

I t i s now e a s i l y seen t h a t the p o i n t p i s in the c losure 

of the s e t CxJ(n ., %: ( n , i )€<dxa>} in X . If S i s an i n f i n i t e 

subse t of CDXOI such t h a t the sequence {*£(« . ; \ * ( n , i ) € S } con-
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verges to p in X then the subsequence f(x[l/n i )>Yk(n i\)*(n»"OeS} 

of A in XxY converges to (p,q) • • 

Theorem 2 The product of a compact w -space and of a w -

space is again a w - s p a c e . 

Proof Let X be a compact w -space, Y be a w -space, 

Z = XxY • By the last theorem Z is Fre*chet, hence it is enough 

to prove that if A c Z and A converges to the point (p,q) 

z -»• (p,q) . Let ^ = {(xP , y.):kew} and choose a partition 

{T. : i€w} of w into i n f i n i t e l y many pairwise disjoint in­

finite sets. 

For (n,i)eoDxw put B . = {y":k€T,} ; evidently Bn . 
n j i K i n,i 

converges to q in Y for each (n,i)€u)xw . Using now that 

Y is a w -space, select a function k(n,i)eT. such that 

{yf|/ • x : (n ,i )€OJXU)} converges to q in Y . Put C = 

= {xP, .x:ieo)} . Then for each new C converges to p in 

X . As X is a w -space, there is a sequence {i(n):n€u)} 

such that {x£/ i ( n ) } : n € w * converges to p in X . Note now 

t h a t z n = (x" r n , / n n , y ^ n i / n n ) e A n and z n - (p,q) . D 
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