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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

22,4 (1981)

SOME RESULTS ON INVERSE SPECTRA I
M. G. TKACENKO

{mﬁ“: In this paper, we consider the following
question: when a homeomorphism of limit spaces of two in-
verse spectra is induced by an isomorphism of cofinal sub-
speetra? We prove two apectiel theorems which,generalize a
umber ,of A.V. Arhangel skil s, B.A. Pasynkov & and E.V.
%epin’'s results.Some related questions are considered, too.

Koy words and phrases: Isomorphism of spectra, open
mapping, continuous spectra, d-open mapping, almost conti-
nuous spectra, semiopen mapping, ¢ -metrizable space.

Classification: Primary 54B25, 54425

Secondary 54Cl10, 54Bl0

In the second part of the paper we introduce the new
notion of a d-open mapping (Definition 5) and prove the spec-
tral theorem for spectra with d-open projections (Theorem 3)
which generalizes a similar §6epin'a result for spectra with
open projections. We consider also the question: when a spa—
ce of a regular weight T > Ko is representable as a limit
of a spectrum fX ,p.f ;et,p<t' with d-open projections such
that w(X )< 2 for every c¢c < ¥ ? Theorem 4 is a partial
answer to this question. The spectra with semiopen projecti-
ons are considered, too. We prove that a limit of an almost
continuous spectrum fxw,pfc %{,p«z"“h semiopen projections
has Souslin property iff a space X, has Souslin property for
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each oc < T (Theorem 6). Our last result (Theorem 7) is a
generalization of Theorem 1 from [5]. With the aid of Theo—
rem 7 we prove that s first-countable regular image of a den-
se subset of 22 -metrizable compact has a countable network

(Corollary 4).

re exists the following spectral theorem belonging to E.V.
$Zepin. Let © be a regular cardinal > %, and S, T be re-
gular spectra of the same length 77 with open projections.
If their limits are homeomorphic to a space X then there ex-
ists a closed cofinal subset A of © such that the spectra S
and TA are isomorphic.

To prove it, 3%epin shows first that v ¢(X) 27, i.e.
the cardinality of each disjoint system consisting of open sub-
sets of X is less than © -«

Here we show that it is possible to replace the require-
ment on projections to be open by the weaker condition of d-o-
penness (see definition 4 below), however, we need to retain
the property wvecl(X) £~ which does not follow from the d-open-
ness of projections (see example 2).

The following definition is new.

Definition 4. We say that a continuous mapping f£f:X—» ¥
is d-open if a set £((') is dense in some open subset of ¥ for
each open subset U of X.

It is obvious that every continuous open mapping is d-open.

In lemmas 5-9 below we establish some properties of d-open map-

pings.
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Lepma 5. Let £:X—> X be a continuous mapping. Then the
following conditions are equivalent:

(a) £ is a d-open mapping;

() £100’] =[£71¢"] for each open subset O ¢ Y.

Proof. Primarily we show that . (a) implies (b). Let ¢
be an open subset of Y. Since [£7X0") € £ '[() for each 0'S
€ Y, it is sufficient to show the inverse inclusion. Let xeX
and £(x) € (0] . Let us assume that x¢[£10’] . ThenV =
= X\L'f-]'UJ is an open neighbourhood of x in X. Consequent-
1y £(V) is a dense subset of some open subset WEY so [W] =
= [£(V)]. However, £(W) A’ = A , hence [£(V)INn0 =A.
Thus [W)n 0" = A . It contradicts the fact that f(x)e WnL{J.
So the inclusion £ X[ 01c [£720] 1s proved.
Now we show that (b) implies (a). Let ¥ be an open subset of
X. Put F = [ £(V)]. Then £(V) is contained in the interior of
F. Indeed, (' = ¥\ F 1s an open subset of Y hence £ Y[ ('] =
=[£20’] . However, ¥n£™2() = A so Vnl£ 10l = A, t.e.
Vo trol = A . Consequently £(V)N[0] = A therefore £(V)
is contained in Int[£(V)). Thus lemma is proved.

When a d-open mapping is open? The following lemma is a

partial answer to this question.

Lemma 6. Let £ be a d-open closed mapping of a regular
space X to a space Y. Then £ is open.

Proof. We prove that{£ 1a]l= £™¥al for each subset A Y
which implies that £ is open. Indeed, let A€ ¥, x€X and
£(x)€ [A). Let us assume that x¢[£ }Al. Choose an open sub-
set 0'S X such that x¢ 0 and[0J1n £72a =A . Since £ is
d-open, a set £(0') is a dense subset of some open set Wg Y,
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hence [£((’)) =[W] . But £ 1s closed, hence £([(]) =
= [£(0')) end £([01) = [W). Since [0')n £2a = A , we con-
clude that [W)nA = A . It contradicts the fact that £(x)e
€ WAlAl, Thus xel£71a) so [£72A] = £71[4). This completes
the proof.

The following lemma shows a way the d-open mappings a-

rise on.

Lepma 7. Let £:X—> Y be a continuous open mapping and
S be a dense subset of X. Then a mapping g = £|S is d-open.

Proof. Let V be an open subset of S. Then there exists
an open subset U of X such that UnS = V. A set V is dense
in U hence the set g(V) = £(V) is dense in the open subset
W = £(U) of Y.

Corollary 2. Let S be a dense subset of a product X =
= ﬂ,‘e/\ X, . Then a mapping :n’BI S is d-open for each subset
BeA (g 1s a natural projection of X onto i = U“DX“ )e

Corollary 3. Let S be a dense subspace of X. Then a na=-
tural embedding 1:SG X is d-open.

legma 8., Let £:X—> Y and g:¥—>Z be d-open mappings,
Then a mapping h = gof is d-open, too.

Proof. Let O’ be an open subset of Z. Then g"lL'O'J =
= [g10'] becamse g is d-open. As £ is d-open and g L ( is
an open subset of Y, 8o g0 =122 00 . Thus
el 0) =[£71g 1 0'] . The lemma’s conclusion follows

from Lemma 5.

Lemma 9. Let £:X °BQY  g:¥—p» Z be continuous mappings
and h = gof, If £ and h are d-open then g is d-open, too.
Proof. Let V be an open subset of Y. Then U = £y 1a
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an open subset of X. Since h is d-open, h(U) is a dense sub~
set in some open set W of Z. However g(V) = h(U) which comp~
letes the proof.

Now let us begin to consider the spectra with d-open
projections. We recall once more that all projections of
spectra under consideration are assumed to be onto (it should
be noted that if a space X 1s a limit of some spectrum then
X can be represented as a limit of a spectrum with projecti-

ons onto).

Lemma 10. Let a space X be a limit of a spectrum § =
={x, ,pc":?d“r“‘. Then the following conditions are equiva-
lent:

(a) p£ is a d-open mapping for each «, 8 € A with
< <f3;

(b) a limit projection P 18 a d-open mapping for e-
very oG € A,

Proof. (a) —>(b). Let oc € A and U be an open subset
of X . Let us assume that there exists a point xeX such
that py (x) e[ U] but x¢£p;lU'_\. Then there exist an element
fe & and an open subset V& X, such that xepglv and

o
P
and B€ 7y . Put y = Py (x). Then p;:(y) =p, (x) € LU]. How-

ever y«f[(pg)—]'UJ which contradicts the fact that p:: is a

Wnp'u = A . Let 3 be an element of A such that oc & 7

d-open mapping. Thus [p;]‘UJ = p;ILUJ hence R, 1s d-open.
The fact that (b) implies (a) follows immediately from
lemma 9. Thus our lemma is proved.
Combining lemmas 8 and 10 we get
Lemma 11. Let a space X be a limit of a speetrum
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s =4X_ -Pﬁf.c,,ug where ﬁf:’l is a d-open mapping for every
K < g . Then all projections of a spectrum S (including
limit ones) are d-open.

Recall that a continuous mapping f:X—> Y 13 said to be
skeletal iff £ 1(K) is nowhere dense subset of X for each
nowhere dense subset XK€Y, It is easily seen that every d-
open mapping is skeletal It is known (see [12]) that the e-
quality vec (El_n ) = sup{velX, ):ec <2} holds for every

continuous inverse spectrum S ={X_ ,pg Z‘i; with skeletal

<T
projections onto. This result will be usedpin Lemma 12 below.
The following example shows that there exists a continu-
ous well-ordered spectrum of the length &Jl consisting of
separable metrizable spaces with skeletal projections which
has no factorization property.
Example 2. Let I be the unit interval with the usual
topology and Y be any nowhere dense subset of I such that
Tl = ¥,. Then there exist countable discrete disjoint sub-
sets A,BSI\LY] such that [A1n[B) =[Y), Put X = YUAUB
and let 5"0 be a subspace topology on X. Then A and B are o-
pen discrete subsets of the space x° = (x,ﬂ'o). We can enu-
merate the set Y so that Y ={x_: oc < @;}. Now a chain
{ G, :c< ;% of strongly increasing topologies on X will
be defined such that

1} each space X = (X, J,_ ) is regular second-countab-

Xe
le;

2} the set A is dense in AU Y in the space X for
each oo < a)l;

3) for every o« < @; the set A, = Lu{xﬂ :B<ccl s
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open and locally compact in the space X_ ;

9 7| &y = 6‘1‘31 A, whenever B=< o< o,

The topology 3‘; on X has been defined. Let ev < <
and a topology 3;, on X be defined for each 3 <oc-. We be-
gin with the case when o~ = 3+ 1 for some ordinal 3 . Sin-
ce the space Xﬁ is second-countable, the condition (2) imp-
Iies that there exists a converging sequence -l'an:nc l,’}s-A
with a limit point Xoe * Obviously A, 1is & countable open lo-
cally compact subspace of a regular space X, . Hence there
exists a sequence §={'V‘m:n€ N'% or pairwise disjoint open
compact subsets of the space &, such that a €V, for each
ne®’ and g converges to X, .

For every ne N* put O’n =4ix_}ov UiV me ¥* and n< n3.
Put also 7=40’n:n¢l'f. Now we can take the family 5‘; vy
as a base for a topology :(; . It is easily seen that the con-
ditions (1)-(4) are satisfied.

In the case of a limit ordinal e~ we define a topology
q, on X by taking the family ﬁ%.‘f}; as a base for Jp »
Then the conditioms (1)-(4) are satisfied, too.

Thus the chain {ZJg : ¢ < @,% of regular second-count-
able topologies on X has been defined. Let X = (X, g ) and
s be an identity mapping of ¥, onto X, , < oc < .

Then arf';‘ is a continuous one-to-one mapping for each oc,

B<wy with B <o¢ , Put § = {Xw ’ -ﬂ’f %,(,,k‘,“. Obviously,
the spectrum S is continuous and the space 14’-'-5 S is naturally
homeomorphic to the space (X,J°), where T:dx’ﬂ; . Hence

‘ 1

we identify the space gg S and (x,-?‘). Let £ be a function
on X such that £(AuY) =0 and £(B)== 1. It is clear that AU Y
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and B are open subsets of the space (X,J’) hence £ is con-
tinuous. It is also clear that xp belongs to the closure

of the set B in the space X, , wheneverxX < f8 < @,. So the
closures of the sets AuY and B in the space X are not dis-
Joint for each o0 < @,. Thus the function £ does not admit
& continuous factorization in the spectrum S. It remains to
show that all projections of the spectrum S are skeletal.

But this follows easily from the fact that a limit pro-
Jection g, :lim S —> X, is skeletal for each < @),
Indeed, the condition (2) implies that AuUB is an open dense
discrete subset of the space (X,J, ), i.e. ¥ = XN\(AUB) is
a maximal nowhere dense subset of X for each o < @;. Thus
:(;;" is a skeletal mapping for each o, < @y with 3 <cc.

Let us continue our considerations of spectra with d-o—

pen projections.

Lemma 12. Let © be an uncountable regular cardinal and
a space X be a limit of a spectrum S ={X_ ,pg }qr,/s«::'ith d-
open projections. Let £ be a continuous function on X. Then
there exist an ordinal o*< = and a continuous function g
defined on X . such that £ = gop . (p 15 & limit pro-
Jection of X onto X & ).

Proof. Let 3 be a countable base of the usual topolo-
gy on R . Put F={R\U:UcB}. Fix an element F ¢ F . Let
2 be a countable family consisting of open subsets of R
such that F =N{L010’c 7§ . Since f-lo' is open in X and
velX) € T , there exist an ordinal oy < < and an open

-1 -
subset V S X,  such that g "V, is dense in f o, s
$o<ef(w) =T so there exists an ordinal oy < T such that
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oLo<oép for each Oey . For every 0 ¢ 9 put K,
=[epyF )7MV,). Put also Kp = N4Ky:0e 73 . Thcnflli‘-

= p"‘i Kpe Indeed, the d-openness of projections of a spec-

trum § implies that the limit projections p :X—> X, eare
- -] -1

d-open, too. Hence [£ 10'1 = [p"‘u Vol = pgy, [ Vg for every

0 € 7 . Moreover the equality F =N{[ 0’J:0'c >} implies
that £1F an{ 0N exl= Nl 00 ¥ T =
= N{pl 17,0:0 € 75,
However, poc [Vyd = p;: (8P Mv, ) = pocl L(p‘:‘) v,
which implies that £ F = g‘, [v):0ecyi=

=N{pg) L Be) V10 e yd = R N4 vyl =
_ -1
= pd'F KF,
Since IF| = IB)| = %, there exists an ordinal «¥* <
< ¥ such that oty < oc* for each F € ¥ . Then £ 1F =
-1 o ~ -1
= p_y Ky, where K = (p‘F) KF for every F e ¥ .
We claim now that
(%) for each closed subset & of R there exists a
closed subset rc‘1> S X such'that £§ = poi ¥, Ky
Indeed, 3 is a base for R hence a family F 1is such
that for each.closed subset ® € R there exists a family
%, €3 with$= gy . It is obvious that then 15 =
«}' y where xg = N{KF eyl
For every point r ¢ R 1let ”x’r be a closed subset of X
such that f"l(r) = p;'}, 'Er. A mapping g:X_ .« —> R we defi-
ne by the condition g(x) = r for each xefr, re R ., Tnis
definition implies £ = go Pex o We claim that g is continu-

ous.
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Indeed, let & be a closed subset of R . Then £ 13 =
= p;£ (e1d). However, the property (%) implies that
£71% =p L ¥, where X5 1is closed in X H -]@ =%
= Px Kg 3 closed in X , . Hence g = Ky
1s closed in X . . Thus g is continuous and the lemma is pro-
ved.

Lemmas 12 and 4 imply the main result of this paragraph.

Theorem 3. Let a space X of regular weight © > &, be
a limit of each of two almost regular spectra S ={X¢ ,pfidl,kt,
and T ={Y_ ,qg guc,p<14 with d-open projections. Then there e-
xists a closed cofinal subset A of ¥ such that the spectra
sA and TA are isomorphic.

Lemmas 7 and 12 imply the following

Corollary 3. Let S be a dense subset of some open subset
of a product «,QAX‘G of separable spaces and £ be a continu—
ous function on S. Then there exist a countable subset Bg &
and a continuous mapping g: :rB(S)--> R such that £ =
=go (JI‘B]S).

Corollary 3 is an improvement of a similar Gleason’s re-
sult (sea [91).

In connection with the fact that we have introduced the
new class of d-open mappings, it naturally arises the follow-
ing question. What are the spaces which can be represented as
Iimits of spectra with d-open projections consisting of spa-
ces of smaller weights? We will give sufficient conditions
for such representability (Theorem 4). To do this we need &
few notions and lemmas.

Definition 5. Let X be a space and A be an infinite
cardinal. We will say that a closed subset FS X is A -pointed
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in X iff there exist a continuous mapping f of X onto s spa-
ce Y of weight €A and a closed subset ® € Y such that
F=£1% .

It is obvious that ¥ (F,X) €« A for each closed A -
pointed subset F&X. Inveisely, if X is a normal space and
F is a closed subset of X with ¥ (F,X) £ then F is A -
pointed in X.

Lemmg 13. Let T be an infinite cardinal and F be a
closed subset of a space X where w(Ff,X) £ ¥ and £L(X}= <.
Then F is T -pointed in X.

Proof. Since w(#f,X)< T there exists a system & con-
sisting of closed subsets of X such that X\ F = U and
leel =7 . Pix an element $ ¢ &« . As FNP =.A for each
point x €  there exists a continuous function £, on X such
that fx(x) =0 and £ (F) =1, Put 0, {ye X:f (y)< %&. Then
~{dx:x € 0% 1is a cover of ® by open subsets of X hence the
inequality £(X) € © implies that there exists a subset
Pc § such that s U{ Oy ixeP} and |P) £ v . Put fg =
= A {£,:x6P§ and g = fg (X). Obviously, the image of F un-
der a mapping fj consists of one point yg and yét g ().

Put £ = A{fy:® e} and!=f(X).Then¥*%Z=

= nfe@.!Q « For each § € w let TP be a natural projecti-
on of Z onto ¥y . Let z be a point of Z such that (z) =
=yy for each § € w o Then z€Y and Fef 1(z). However
Yp 4 Ty () for each $ € « hence 2¢f( Uw) = £(X\F),
Thus F = £ 1(z) which completes the proof.
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Definition 6 (E.V. SZepin). A ae~pseudocharacter of a
space X or shortly 1 ,.(X) is a minimsl cardinsl © such that
a pseudocharacter of every canonically closed subset of X
does not exceed T .

It is known that a ae-pseudocharacter of any product of
metric spaces is countable (see [1], Theorem 15). The follow~
ing self-interesting lemma shows when there are a "large"™ num-
ber of d-open mappings of a given space onto spaces of smal-

ler weights.

Lemmg 14. Let T be an uncountable cardinal end X be a
space such that £(X)-wy (X} £ ~ and “* = = for each car-
dinal A < v c(X). Let h be a continuous mapping of X onto a
space Z with w(Z) £ © . Then there exist a space Y with
w(Y) 2 7 a continuous mapping g:Y¥ —> Z and a d-open mapping
£:X —> Y such that h = go f.

Proof. Put Yo =2 and £, = h, Let B, be a base for ¥,
with 1Bl <o . Put w=veX) and B, ={Uy:igc A,
and {yl< % . Then l%o‘ £ 7 . We should note that u is
a regular cardinal (cf. [67, Theorem 3.1) and the lemmass con=
ditions imply that @ £ v .

Now let o¢ be an ordinal with 0 < o< w and for each
3 < ¢ we have already defined a space Ys a system ;‘ﬁﬂ of
open subsets of Y5 , a continuous mapping £, :X -9-'-139;!‘,, and
a :andly {:n'f. P¥=<p <, where Jra/i is a continuous map-
ping of Y, onto Y, such that I;ﬁﬁl £, fy= srg_ o £, for
¥<pB<o and wl¥p ) & © for every B <o¢ . It is easily

seen that or%e xrfl =afl forall Fey <P < o .
I. 063{3*1
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The condition £(X) -y, (X) £ 7 with lemma 13 together
imply that a set [0’] 1s 7 -pointed in X for each open subset
oex. Therefore for every U e ﬁﬂ there exist a continuous
mepping ¢, of X onto a space X;; of weight «7 and a closed
subset F € X, such that [£5 Ul = gyls) . Put g, =Alg,:
3U-Gﬁl3f,foo=fﬁA(pﬂ and ¥ = f_ (X). Then
Y tCoTu Y5 =< Ty .3¥y vit:ere wiigl=z, )fé/_, | £ ¢ and wl(Y, )=
< 7 for every U e '33;3 . Hence w{Y, ) < = . It is easy to
see that there exists the unique continuous mapping F,?:i(—)

Yﬂ such that f4 = ;n';;o £, . For each o~ </3 put .Jr;,,‘ =
= JI';: ° JrZ . Now we claim that for every U e 3\3’,3 the equa—
1ity [f Ul = £} (gt )"111] holds. Let us prove it.

Let U be an arbitrary element of a system .‘Bﬂ and Py

be & natural projection of a product ¥Y; =< ﬂVeBPYV onto a

factor ¥,; . Put F =Y n pu Fy (a set F, was defined above).
The equality [£5111 = ¢7'F, 1mpliea that L£311] = £21F,
Put W = (ary )7V . Then £ W = £711 ¢ £21F hence WS F. So
(Wi F emd £ = £ lWe IWle i =1 £; 1uJ Thus [ £;111)=
= focl['l] -IC(Jr"") 13, Let J), be a base for Y, such
that | B, 147, Put B = B UL (o) U e Byt ana
By=tUypy:yc® end lyl<wui.

II. o~ 1s g limit ordinal.

Put £ =alf, tB<cc? and Y=t (X). Then
*% 8 <t ¥, hence w(Y¥_ )%« . Obviously that for each
(3 < o¢ there exists the unique continuous mapping Jr,, ‘Y -
—9!,, such that £, =Jrﬂ o £ . Let B, be a base for X
such that | B_|<£ % . For every {3406 put 33"‘ ={(or o< )71y

/)
U 513 {and B =B v U 03;;'. Finally put
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33’$={U3r:7 E,’B:‘ and la”'< (a.}. Then IJ’)‘:CI & T,

So we have completed our recursive construction. Put
£=a{f, it <@? and Y = £(X). Then Yo T T80
w(¥)€ w.z=72 . For every o« < w let %, be the unique
continuous mapping of Y onto Y such that £, = ¢ ° £. Put
g = o, Then h = fo = gof hence it remains to show only
that £ is d-open.

Let 0’ be an open non-empty subset of Y. A continuity of
£ implies that we(¥) £9c(X) = & . From our recursive con-
struction we obtain that {(:n{‘;‘ lu:ue ﬁﬂ} < :?Soc for each
pair oc,(s such that {3 < o < . Hence there exist an or—
dinal 3 < @ and an element U* e ﬁ'ﬂ such that :;;;lu*(__: (43
;[ﬂl;‘lu*J . Indeed, for each 79"< w put .’R,a.={:f;1u:ll I3
3 352,} . Put also R = Uy<auTye Then R is a base for Y.
For each point ye 0’ there exist an ordinal oc(y) < @ and an

element U(y) € 3 such that ye.n’;%%)u(y)s 0. Then ¢’ =

=U{5T;](',sjl(y)=ye\0'}. As we(Y) £ v so there exists a set
Pc 0’ such that [Pl < e and U{ .'rrd;;) U(y):ye P} is dense in
0. The regularity of a cardinal w implies that there exists
an ordinal 3 < & such that oc(y) < w for every yeP. Put
U*= UL (™ Ueiyers.

Then U* ¢ 35,, and sr,,'lu" is dense in 0%

Now we will show that [£710’] = £~1[¢f]. Notice that
[£;1u1= f;]'[(vrr:‘ )71U1 for each < @ md U « Ky whe-
re o= (3 + 1 (it had been proved after the construction of
a space Y was finished). Put V = (ay )~ly1* . Then o'V is

a dense subset of ¢ and [r;:lVJ = f;]'[VJ. Consequently [0] =
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=[] € a7l v) ana £ OIe £ aMv) = £l ) —(£h,
i.e.
(1) flroreregton

Moreover, v Ve O hence f-l.na':l
oL

ve £710. so 1:;1v§ 1o,
i.e.

2) [£vilele oo

Inclusions (1) and (2) imply the equality [ £ 10f1= £ iLd)J
which holds for every open subset OS Y. Thus d-openness of £

follows from lemma 5.

Definition 7 (A.V. Arhangel skii). Let X be any space.
Then wc(x) is a minimal cardinal ¥ such that there existas a
perfect mapping of X onto a space of weight <.

The following lemma will be useful in the sequel (see
[10] , Proposition 3.7.10).

Lepma 19, Let £f:X—> Y and g:¥—> Z be continuous map—
pings onto and Y, Z be Hausdorff spaces. If a mapping h =
= gof is perfect, then £ and g are the same.

Lempa 16. Let 7 be an uncountable cardinal and X be &

A= T <for each

space such that w (X) -y (X} ¢ v and 7
A < o c(X). Let h be a continuous mapping of X onto a space
Z of weight £« . Then there exist an open perfect mapping
f of X onto a space Y of weight < 2 and a continuous mapp-
ing g:¥—> 2 such that h = gof.

Proof. As wc(x) & T 80 there exists a perfect mapping
® of X onto a space T of weight « (in particular £(X)<<7).
Put h* =@A h and 2° = h'(X). Then Z2° S» TxZ hence w(2) £z .

tetr
Moreover h” is perfect as a diagonal product of perfect and
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continuous mappings. Applying lemma 14 to a space X and con-
tinuous mapping h’ we conclude that there exist a d-open map-
ping £ of X onto a space Y of weight <+« and a continuous
mapping g :Y —>Z° such that h” = g0 £. Then £ is a perfect
mapping (lemma 15). Lemma 6 implies that f is open. Let
be the unique continuous mapping of z° onto Z such that

roh’ =h. Put g = rog’. Evidently, h = go f. Thus the lem-
ma is proved.

Theorem 4. Let w be an uncountable regular cardinal
and X be a space of weight w such that £(X) -y (X) < w
and t’c(X)<  for each T < & . Then a space X is g limit
of some well-ordered spectrum of length @ with d-open pro-
Jections consisting of spaces of weights < « .

The above theorem follows from Theorem 1 and Lemma 14.
In the same manner we formulate the following result which

is an easy corollary of Theorem 1 and Lemma 16.

Theorem 3. Let & be an uncountable regular cardinal
and X be a space of weight s such that wc(x) s YelX) < @

and f_c(x),

< @ for each © < w . Then X is a 1limit of so—
me well-ordered spectrum S of length @ with perfect open
projections consisting of spaces of weights < .

Question 2. Can one make a spectrum S in Thecrem 5 con-
tinuous?

Now we proceed to the diacussion of the following ques—
tion. let S be a well-ordered spectrum consisting of spaces
with Souslin property. What kind of projections should a
spectrum S have to insure us that a limit of S§ has Souslin

property, too?
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To give some sufficient conditions we need the follow-
ing definition by I.A. Vainstein (see [11]1).

Defipnition 9. A mapping £:X—> Y is called semiopen
if an interior of £(d) is non-empty for each non-empty open
subset 0'cX.

Definition 10 (E.V. $%epin). Let S ={X, ,p,’j;‘)pw be
a speetrum, oc* < ¢+ and ACX = lim S. We will say that A
does not depend on oc* if p . (4) = (p:‘)'lp“ A for some
o < oc¥ where Py is a limit projection of X to Xa,, for e-~
very 7 < .« Let k(A) be a set of all ordinals oc* <7 a
set A depends on. From the definition it follows that O& k(A)
for each non-empty AS X. We will say that A is a set of a
finite type 1ff 1 k(A < &, and there exists o¢ < & such

that A = p‘c (a).

Lemma 17. Let S ={X_ ,pf}‘)p<,: be an almost continu-
ous spectrum with semiopen projections and X = lé_n_n S. Then
the family of open subsets of finite type in X forms a Jr -
base for X.

Proof. Let 3(7*) be the following statement: if T =
={Y_ ’qﬂ}mp<a’ is an almost continuous spectrum of length
T with semiopen projections then a limit of T has a ar-ba=-
se consisting of sets of finite type (with respect to T), It
is obvious that P(y) holds for each < o . Let y 2 @
and P(y”) holds for each 3’ < 3~ -

I, 9 is & 1limit ordinal. Let T =£Y, 'qfcit,uz*b‘ an
almost continuous spectrum with semiopen projections and Y =
= U T. for each 4'<y put T yiq = 4% ’qctd(!e.y' ; then
Y‘Jf’g lqg r,,,.,. Further, ® (¢’+ 1) implies that the open
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sets of finite type in Y. (with respect to T,44) form
=1 4.

a jy-base .333,, for Ya” . Put 333,, =-fq3, Vig’<cy and Ve

€ 353',§ where qr:'r—-> Yr, is a limit projection for every

»’< ¥ . It is obvious that 553, is a gr-base for Y con—

8isting of open sets of finite type with respect to a spec~

trum Te
II. ¢ = Jd'+ 1 where o is a limit ordinal. Let T =
= {Y, q‘fid,r,‘y be an almost continuous spectrum with semi-

open projections.

Put ¥ = ]&’i‘lwhere T =41, qf‘}&'p{d- . An almost con-
tinuity of a spectrum T implies that Y, is dense in Y. Ac—
cording to our inductive assumption 7(o”) holds hence the o-
pen sets of finite type in Y form a # -base :Edc for Y, Put
Bpe=4iUNYp:Ue 35;3 . As p:: is a mapping onto for eve-
ry @ <d so By 1is a or ~base for Y consisting of sets of
finite type.

III. < =J + 1 where o is a non-limit ordinal. Let
T=4Y,, qi} be a spectrum as above. Let o=@ + 1 and Ty=
={Y , ‘lfiz,p«f . Then Y, = 1im Ty and P(J") implies that
the open sets of finite type in YM' (with respect to Td“) form
& w-base B, for Y, . Let 04+ A be some open subset of
!‘J,. Then there exists a non-empty open subset U & !cw such
that U & q::(d). But B, is a x-base for Y, hence we can
choose an element V e 55‘«, such that A4 V< U . Then a non-
empty open subset O = O’H(q::)'lv of Y+ is contained in O’
and q;f:(O") = V. Therefore 0° is an open set of finite type
in Y; with respect to T. Thus () holds for every ¥ .
This completes the proof.

Lemma 18. Let S ={X_ ,p%, 5 . be a spectrum and X =
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= ]i:_l_xg S. Let also A and B be disjoint subsets of finite type
in X (with respect to S). Then there exists an ordinal e €
€ k(AYN k(B) such that p, (A}N p_(B) = A .

Proof. We will put n =] k(a)] + ) k(B)| and prove our
lemma 5y induction. The case A = A or B =A is trivial hen-
ce we assume that A and B are non-empty sets. Then Oe k(A) /)
Nk(B) sonZ2. If n = 2 then A = p';lpo(A) and B = p;lpo(B)
which implies that py(A)N po(B), = /A (we recall that P, is &
mapping onto).

Now let us assume that the lemma’s conclusfon is proved
for all n4£ m where mZ 2 and prove it for n = m+ 1, Put P =
= k(AJN k(B). Then O€ P hence P+ A . Put o«*= max P, We
claim that p.(A)N P #(B) =A . Indeed, assume the contrary.
Put Q =fxe k(A):oc*2oc?, R =¥B € k(B):ot®< 8¢ and = max
(RUQ). Then oc*< o otherwise 4 = g:,]: P x (A) and B =
= %:*]: P oA (B) which implies that p**(A)np*,*(B) =A,i.e. a
contradiction. Without loss of generality we may assume that
% € Q. Then k(%) = k(A)\4y} hence Ik(R)] + (k(B)) = m. It
is obvious that k(A)Nk(B) = P and p,, (KN p (B) =p, (AN
ﬂp‘w(B)# A for each ¢ e P (because p_,, iA),ﬂ P x (Bl A).
So the inductive sssumption implies that ANB 4 A . Moreover
A* p“(fm Pe (B) = p (A)N p (B). We choose a point x &
€ Poc (AN p ,(B). Let us consider two cases.

I. (3 £ o< . There exists a point ze€ A such that px(z)=
= x. Then the equality B = p;lpﬂ (B) implies that z€ ANB=*A
which contradicts the lemma s condition.

II. o¢ =< (3 . There exists a point y¢ ppg (B) such that
p2(y) = x. Then the equality pn (A) = (p)7% p (A) implies
that Yep, (a)n P (B). Now we may choose a point z e A such
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that pg (z) = y. Since B = p,;l Pa (B) we conclude that z€ AN
NB %A which is a contradiction.
Thus p» (A)) Py (B) = which completes the proof.

Legpa 13. Let S =X ,pf},t)PeA be a spectrum with
semiopen projections and X = y,m S. Then the limit projecti-
ons p. X ""xcc are semliopen, too.

Proof. let U be an open non-empty subset of X and e 4.
Iet x € U . Then there exist an element 3 & A and an open
subset V<X, such that xSp/-slV ¢ U . Further, there exists
an element 3 e A such that c =y and B = 9 . Put W =
= (pY )71V, Then W p, (U) and p¥ (We p¥ p, (U) = p, (W),
Since W i1s an open non-empty subset of Xa, and pz' is semiopen,
there exists an open non-empty subset GE X  such that Gg
cp (W), Thus 6sp_(U). Lemma is proved.

mu. Let S ={X, ,p./:}‘)p<1,be an almost continu-
ous spectrum with semiopen projections, X = Lm S, and c(X_ )£
£ A for each o¢ < T where A 1is an infinite cardinal. Then
e{X) £ A . Analogously, if (w,A) is a precaliber (caliber)
)x) then («,A ) is a precalibver (caliber) for X.
Proof. We will prove only the first part of the theorem

for every X L.

using the stendard method of quasi-disjoint families. Assume
that e(X) > A . Then there exists a disjoint family 3 con~
sisting of non-empty open subsets of X with l7’| = .2.’. Since

x) A pair (ctl-'a\) of cardinals is said to be a precaliber of
a space X iff for every family 3 consisting of non-empty
open subsets of X with |y 1= A there exists a subfamily
7' € 9y with finite intersection property such that

7'z w.
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the family of all open subsets of finite type in X (with res-
pect to S) forms a I ~base for X (lemma 17) without loss of
generality one can assume that all elements of - are of fi-
nite type. For every U € 3* put p; = k(U). Since At 15 0
regular cardinal and \P | < &, for each Ul e 3 there exist
a finite set Pc v and a subfamily 3”& 9 with lp“l=2a*
such that P.u_(\ Py = P whenever U, € 3 and Pués Pv. Put
«* = max P.

Then Lemma 18 implies that p . (UINp_ . (V) for each
different Uy, V& 7" « This contradicts the inequality
e(X %) % A because Intp (L)+ A for each U -y’ (Lem-
ma 19). Therefore c(X) £ J\. o The theorem is proved.

Theorem 6§ generalizes a similar S%epin’s result concer—
ning the case when S is a continuous spectrum with open pro-

Jections.

Definition 10. Let {f:X%ngfee be a family of con-
tinuous mappings of X and ®E be a homeomorphism. We will
say that € is a €-system iff @7y € € for each countable
subfamily v ¢ & and every £ € £ 1is a mapping onto (here
®y 1s a diagonal product of a famlly 3 considered as a
mapping of a space X onto its image).

Our last result generalizes Arhangel'skii theorem con=-
cerning the mappings of dense subspaces of products (see [ 5],
Theorem 1).

Theorem 7. Let € be a & -system consisting of open
mappings of X and £(X) has a countable network for each f ¢
¢ € . Let S be a dense subset of X, ¢ be a continuous map—
ping of S onto a regular space ¥ and M ={yeY: ’L(’D!)é*"o .
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Then there exist a mapping £ ¢ € and a continuous mapping
y:f(N) —> M such that @IN = y o (£[N) where N = g,'lm. In
particular, n w(M) L. e

Theorem 7 can be proved analogously to the same in [51].
However, to do this, one should reformulate lemmas 17 and 18
for & -gystems. This reformulations do not present any diffi-
culties.

Corollary 4. Let S be a dense subspace of & se-metriz-
able compact space X and a first-countable regular space X
be a continuous image of S. Then n w (Y) = Hoe

Proof. As X is a s¢-metrizable compact space, there ex-
ists a &8-system € of open mappings of X onto compact metric
spaces (see [ 1], Theorem). Therefore Theorem 7 implies that

nw (Y) £,
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