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TAIL-BEHAVIOUR OF LOCATION ESTIMATORS IN NON-REGULAR
CASES
Jana JURECKOVA

Abstract:/ Let xl""’xh be a sample from a population

with the density f(x-6) such that £(x) = O for x ¢ (-a,a), a>
> 0. It is proved that the probabilities Po(Tn-O {-a+o"),

Pg(Tn-O) > a-d') with T, being a translation-equivariant es-

timator of © tend to O a8 J'J O at most n-times faster than
F(-a+Jd") and 1-F(a-J’), respectively. It is proved that the
upper bounds are attained by every L-estimator Tn which puts

positive weights on the extreme observations while the upper
bound cannot be attained if the extreme observations are trim-
med-off. It among others means that, in the case of distribu-
tion with compact support, the sample mean dominates the sam-
ple median.

Key words: Translation-equivariant estimator, L-estima-
tor, distribution with compact support.

Classification: 62F11, €2G05

1. Introduction. Let XyyX5,0.. be a sequence of indepen-
dent random variables, identically distributed according to
an absolutely continuous distribution function F(x-8) with
the density f£(x-0) such that
(1.1) £(x)>0 for -a<x<a, a>0

£(x) = 0 for x4 -a, x>a,

lim & ™% P(-a+d’) = A
940
(1.2)

[}
w

Lim 5* 1-F(a- o))
Jlo
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and

lim ol-« £(-a+d’) = A’
(1.3) W

Yn 1P £(a-o) = B’ )
where « , (3 are finite positive constants and A, A°, B, B’
are finite positive numbers. The problem is that of estimat-
ing the location parameter ©.

The asymptotic theory of estimation of location ef the
distribution with the compact support was develeped by Aka-
hira [1],02],[3]. He dealt with the existence of consistent
estimator of ©, with the rate of the consistency and with the
asymptotic distribution of the estimators. Under the assump-~
tion that f is twice differentiable, satisfies (1.1),(1.3)
and

lind 2" %2’ (-atd’)| = A"
(1.4) 9%0

d,1}0- 32 Ple’(a-g)| = B", 0<A", B"< @
and if £"(x) is bounded in the case 3'= min (o, )= 2, Aka-
hira (1] proved the existence of c’n-conaistent estimator of
© with ¢, depending on 7y . Wiile c = 1/2 ;¢ %> 2 and
e, = (n.log n)""/2 if o = 2 and the corresponding cn-c‘omiu-
ent estimator is e.g. the maximum likelihood estimator, ¢, =
= nl/'x if 0 < 7°< 2 and one of the possible consistent esti-

mators is

(1.5) 1, =3 (x + x{n))

where g(‘l)é oo _4,4”) are the order statistics corresponding

to xl,...,xn.

Moreover, Akahira proved in [31 that the statistic
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(él)’én)) is aay,-pt'otically sufficient a8 n —> 0 inm the
sense of LeCam [101], whatever is the value of ¥ > 0.

Let us xfestrict attention to the translation~-equivari-
ant estinatoz;a, i.e. to the estimators T, satisfying (2.1)
below and among them to the estimators satisfying the natu-
ral condition X,ﬁl)é Tnéén).
We shall consider the finite-sample behaviour of the es?;ina-
tors; more precisely, the behaviour of the probabilities

(1.6) Pg(T, - @<-a+d), Po(T - 6>a-0")

for s'mall v,aluee of o> 0. These probabilities tend te¢ O as
od'$ 0; we expect from a good estimator T, that the probabili-
ties in (1.6) tend to O as fast as possible.

More authors have considered similar measure of perfor-
mence of estimators of location in the case that the under-
lying distribution is extended over all real line. (Bahadur
[4] and [ 5], Fu [6], Sievers [11) have considered the case
n —» c0 , Juredkovd [7],[9] has considered the tail-behavi-
our of estimators for a fixed n). The present paper is an ex-
tension of the author ‘s results of [ 7] and [9] to the non-re-
gular case of distributions with compact support. Some of the
present results are analogous to those being valid in the re-
guz.lar case while other results are gquite different. It turns
out that the statistics (xél),x,(!’"), being proved by Akahira
as asymprotically sufficient, play a fundamental role for the
distributions extended over a bounded interval, regardless
of the values of 3 = min (<,(3).

We shall show that the rate of convergence of probabili-
ties in (1.6) to O is at most n-times faster than the rate
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of convergence of F(-a+d) and (1-F(a-o7)) to 0, respective-

ly, as d'J 0. Similarly as in Jurefkové [7J, we shall prove

that trimming-off the extreme observations restricts the sco
pe of possible rates of convergence for an L-estimator of &
and the convergence is [(n+1l)/2] -times faster than that of
F(-a+0”") or (1-F(a=o”)) in the case of the sample median (if
n=2k+1).

On the other hand, unlike in the regular case, we shall

show that the estimator (1.5), or more generally,
= (1) n) ‘
@ 1= axit s a-a) X 0ca<

attains the upper bound in the rate of convergence of (1.6).
We shall even prove that the same property has the sample‘nun
and more generally, that the same property has every L-estima=-
tor T, =4%,, c3 x‘gi) such that ¢y>0, c,> 0, whatever are the
values «, 3 . It among others implies that the sample mean
dominates the sample median with respect to the tail-behavi-
our in the non-regular cases.

The lower and upper bounds on the rate of convergence are
derived in Section 2. Section 3 then investigates the tail-

behaviour of L-estimators of ©.

2. Lower and upper bounds on the rate of convergence.

Let xl,xz,... be a sequence of independent random variable-a,
identically distributed according to the distribution func-
tiom F(x-0) which has the density f(x-0) such that F and f

satisfy (1.1) - (1.3). Let T, = Tp(X)y004,X)) be an estima-
tor of © based on xl""’xn' We shall restrict our conside-

rations to the estimators which are translation-equivariant,
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i.e. which satisfy

(2.1) Tn(xl-l-c,.,.,)g‘-;—c) = Tn(xl""’xﬂ) + c, ceRl
and moreover, which are such that

(2.2) g‘(ll)‘é‘ Tnéén)

where xél)é ...£=%gn) ere the order statistics of (X;,...
«++»Xp) Denote
-log Pg(Tn-G-<-a+of)

-log F(-a+d)

]

(2.3)  w(E ,0)
and ‘

-log Pg(T 6> a- J)
-log(1-F(a=0"))

.O<J<28-

(2.4) E+(Tn,d‘)

It is desirable to find an estimator %, for which the pro-

babilities
(2.5) Pg(T < -a+d"), Py(T, -6)>a-")

tend to O as 0V 0 as fast as possible. The following theo-
rem shows that the rates of convergence in which F(-a+d)

and 1-F(a-o") tend to O, respectively, provide a natural up-
per and lower bounds on the rate of convergence of probabili-
ties in (2.5). Analogous bounds appeared in the regular case

(see [9]).

Theorem 2.1. let X,,X,,... be independent random vari-

ables, identically distributed according to an absolutely
continuous distribution function F(x-6) with the density

f£(x-8) such that F and f satisfy (1.1) - (1.3). Then, for

every translation-equivariant estimator T, = Tn(Xl,...,Xn)

of © satisfying (2.2), it holds
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(206) 1‘ B- é_'_- - _A_
, }% (T,,0') < Tim B™(T,;, )4 n
and
+ T nt?
(2.7) 14-6_13 B ‘Tn’d"ﬁ}?},n ('rn,d"")én.
Proof. It holds

Po(Ty - 6 <-a+ ) = Po(T, < -a+d") £ Py (x{ )< maro”)

1 .
1~ Q-F-ara)® = Fl-aro') JZ, 1-F(-aro DI 2

N

nF(-a+d’)
8o that
m B7(T,,d)z1.
Similarly,
Po(T, < ~e+d)Z By (X < cas ) = (R(-a+d"))P,

thus gﬁ; B'(Tn,d')én. The proof for B*(Tn, d") is analogous.

3. Tail-behaviour of lL-estimators. Taking the lower
and upper bounds of Section 2 into account, we are imterest-
ed in the behaviour of various estimators from this poin-t of
view, A broad class of estimators satisfying (2.1) and (2.2)
is that of L-estimators of the form

my <

n
m

with ¢;Z 0, i=1,...,n; “-’g_,, ¢; = 1. This class covers the sam-

ple mean, the sample median a8 well as the estimators (1.7).

(kq)
The following theorem shows that trimming-off x‘(‘lz..., 1
increases the lower bound in (2.6) by k, and decreases the
upper bound in((2i7)1t):y ky; an analogous effect provides

n-k,+ .
triming-oﬂ & 2 gece ,%ﬁn)c
m .
Theorem 3.1. Let T =1.‘§4 ¢y xél’ be an L-estimator of
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© based on X;,...,X and let the distribution of X;- © sa-
tisfy (1.1) - (1.3), i=1,...,n Put ¢, = ¢,
¢y = O for 0£i<k, and for n-k,+ 14£i£n+l, where O£k, +

+ k2< n, it holds

= 0. Then, if

(3.2) k1+1$%% B'(Tn,d')é}ino B7(T,, J )4 n-k,
and

+ = ot
(3.3) ky+1< %%_% B (T‘,d‘}é}%B (Tyr0’)£n-k, .

Proof. It follows from the assumptions of the theorem

1
that % , £ Tn' . Then

(k,+1) k. +1
Po(Ty<-atd &P (X, 1 < card ) gy (LH(R-asd))

which implies the first inequality in (3.2). The remaining

inequalities are proved analogously.

Corollary. Let T, be the median of the sample X;,...,X,;
from a distribution F(x-0) satisfying (1.1) - (1.3). Then

(3.4) P4lim B;(T ) «1im B;(T FI4«8 + 1 for n even
27%00 n’ ) n? H = =
and :

(3.5) lim B(T,, ) = Lim B*(1,,o") = B5 for n oa.

The behaviour of L-estimators described in Theorem 3.1
and its corollary is quite analogous as in the regular case
(see [7] and I91). The situation is quite different in the
case of L-estimators which put positive weights on the ext-
reme observations, i.e. for which ¢,>0, ¢, >0. The following
theorem states that any such IL-estimator attains the upper
bounds both in (2.6) and (2.7), whatever are the values o 3
in (1.2) and (1.3). This among others implies that, in the
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case of the sample frcm a distribution with the compact sup-
port, such estimators as the sample mean and the estimators
of the type (1.7) have more favourable tail-behaviour than
the sample median. The results muy be surprising but they
are consistent with Akshira’s result on the asymptotic suf-

ficiency of (‘,(ll),l(‘(‘n)).

Theorem 3.2. Let X;,...,X be independent random vari-

ables, identically distributed according to the distributiom

function F(x-8) such that F and its density f satisfy (1.1) -

”v .
(1.3). Let T =.2, c. X(l) be an IL-estimator of € such that
== "n 491 %1 Y ===—=EnoTd === =L

(3.6) >0, ¢ >0.
Then it holds

(3.7) 1lim B™(T_,d") = lim BY(T_,d") = n.
ddo n ae0 n
The theorem will be proved with the aid of the following
lemma,

' Lemma 3.1. Let T, be the estimator of the form

3.8) 1, = ax{ + -2) X L o<ca<1,

Then, under the assumptions -(1.1) - (1.3), it holds
(3.9) 1lim'B7(T_,d') = lim B¥(T _,d") = n.
dio n’ 3%0 n’
Proof of Lemma 3.1. From the well-known joint density
of él)

it has the form .

and JS(‘Y’), we could easily derive the density of T ;
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n(x.x-lz f [F(I':l_’)%‘.) F(uﬂn"zf(t'a“)f(u) du

1Y

eee =a< t< a(l-220)

(27 K
G.10) nncd) fIRw)-pdee R duy n-2e (2oUod e (y)
g

[}

eee 8(1=2A )< t<a

0 .»s Otherwise

8o that, for C<d < 2(1-2A)a,

Py(Ty<-ard) =n | U perdsAn | pu)n p(w) au

(3.11)

4n [ F(-a+ -,_—‘;YT )L F(-atd).

It follows from (1.2) that, to any > O, there exists

a d’°>0 such that

(3.12) (A=¢ ) F4F(-a+ 0)< F(=a+

lf‘a ) < (A+€ )(l'ﬁ )-d'Jd,
holds for d e (0, &), 80 that

_ ~logln(A+ €)™ (1-2 )% = n« - 1ogd”
(3.13)  B(1 )z — it

~log(A-g )=oCelog J

holds for O0<d < dJo and this implies that

(3.14) %:j.g B'(Tn,d')-z n.
If we put Y 1, i=l,...,n and

- (1) (n) .
3.15) T = -a) ¥V« ay(® =

- T,
we get quite analogously that

(3.16) %r% B*(T,, o)z n.

The lemma then follows from (3.14),(3.16) and from Theorem
3.1.
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m
Proof of Theorem 3.2. Let T, =%, c; %) be an I-es-

timator such that e1>-0, ¢,> 0. Then

Gan i« Tn.c.rff)

where

(3 - (1) )
(3.28) 1,9 = Al - ), =12

and

m-1
3.19) Ay = Fgeq, Ap =g

Then o<7tj< 1, j=1,2 and it follows from (3.17) that

Po(T, < -a+d’') £ PO(T£1)< -a+d”)

(3.20)

Py (T,> a- o) £P(T§2) > a- o).

Theorem 3.2 then follows from Lemma 3.1 eand from Theorem 3.1,
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