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COMMENTATIONES’ MATHEMATICAE UNIVERSITATIS CAROLINAE
21, 4 (1980)

PRIME EXTENSIONS AND NEARNESS STRUCTURES
John W. CARLSON

Abstract: An extension Y of X is called a prime exten-
sion If the open trace filter on X for each point in Y-X is
a prime open filter. An ultrafilter generated nearness spa-
ce is one for which the closure of each near collection is
contained in a near ultrafilter. These spaces are shown to
be induced by prime extensions. When the nearness structure
is also concrete then the prime strict extension that indu-
ced it can be recovered, up to a homeomorphism, using Herr-
lich’s completion. The category of ultrafilter generated
nearness spaces is bicoreflective in NEAR.

Key words: Nearness space, extensions, ultrafilter
complete, coreflective subcategory, H-closed.

Classification: Primary 54-02, 54A05, 54B99
Secondary 54D99, 54E05

én extension Y of X is called a prime extension if each
open trace filter on X corresponding to a point in Y-X is g
prime open filter. An ultrafilter generated nearness struc=-
ture is one for which the closure of every near collectiom
is contained in some near ultrafilter. This concept is int-
roduced in this paver and it is shown that they play the sa-
me role in the study of prime extensions as the concrete ne-
arness structures play in the study of strict extensionms.
Specifically, one can recover, up to the usual equivalence,

a Tl prime strict extension of a space as the completion of
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the space equipped with an ultrafilter generated nearness

structure.

1., Preliminaries. Herrlich’s completion of a nearness
space was presented in [11]. A trief description of it ap-
pears in [4]) which we provide here for the convenience of
the reader. Let (X,g ) be a nearness space and let Y be the
set of all X-clusters A with empty adherence. Set X*¥= XuY.
For each Ac X, define cf A = {ye Y:Ae y}uclf A. A nearness
structure £* is defined on X* as follows: B € £* provided
A ={Ac4: there exists Be B with BccfAle § . (X¥,g*)
is a complete nearness space with ckﬂ X = X* ., Also, for Ac
cX, cl§* A =ckA.

Let (X,§ ) be a nearness space. For any AcX, A will de-
note the closure of A in X, even when X is embedded in a lar-
ger space. For any ultrafilter F on X, (%) will denote the
collection of all the open subsets of X that belong to &. Al-
so, let G(F) ={AcX:AnF*@ for each Fe ¥¢ . Then G(F) =
= {Ac X:A eFf, Define:

Y = {g(F):% is a free near ultrafilter in (X,§ )

X" = Xvuy

cl A =Ruig(Br e Y:Ae G@F)} for AcX

cex, (A) = Avcl(ANnX) for AcX’.

Define §‘ as those AcP(X’) such that Necly, A+ or
fAnX:Ae Aje § . Then (X, §’) is an ultrafilter completi-
on of (X,¢), L9].

2, Basic_ construction
Theorem 2.1. lLet (X,t) be a symmetric topological spa-
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ce. Let ¥ be a collection of free ultrafilters on X. Define
§'(3) by

£ ={Ac®P(A): NA £ @ or there exists Fed with
Ac G@&3.

Then g('&) is a nearness structure on X compatible with the
topology t. .

Proof. For each Ac X it is apparent that cﬂg(s)A =
= clyA, Axioms (N1) and (li4) are clearly natisfied. ixiom
(N2). Suppose A e € ; then either nia + @, which implies
that NA % p and A e f or there exists Fe 9 with 4 cG(F)
which implies that A c (%) and hence A e € -

Axiom (N3). Suppos\e A ¢ § and B & ¢ . Then Ngv A=
= P, let F€¥, then there exists A €« A and Be B such that
R4% and B¢ %, Thus AUB = AuB& 7 since # is an ultrafilter.
Therefore A v B ¢ € .

Definition 2.2. A nearness space (X,¢ ) is called ultra-
filter generated if there exists a collection ¥ of free ultra-
filters on X such that §¢= ¢ (¥) as defined in theorem 2.1.

Let (X,€ ) be a nearness space. The fcllowing statements
are equivalent.

(1) ¢ is ultrafilter generated.

2) (x’, £°) is topological.

(3) For each A & § there exists a near ultrafilter &
such that A c 7.

The above result is found in [9) and the following comm-~
ent follows easily from the definitions.

Let (X, § ) be an ultrafilter generated nearness space.
Then A e € implies A has the finite intersection procper-

ty.
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Theorem 2.3, Let (X,§ ) be a nearness space. Then the
following conditions are equivalent:

(1) (X,§ ) is concrete and ultrafilter generated. N\

(2) § = §(¥) for some collection ¥ of free ultrafil-
ters satisfying the following equivalent conditions:

(A) If 7 and ¥ belong to ¥ then ¢ G(H) and 4G(9).

(B) If @ and ¥ belong to ¥ then 0 (3)¢3 and 0 (¥) ¢ 7.

Two ultrafilters & and ® are said to have the open in-
tersection property if each open set in ¥ meets every open

set in¥.

Corollary 2.4. Let (X,g) be an ultrafilter generated
nearness space with § = § (9.

(1) If ¢ is finite then (X,g ) is concrete.

(2) 1If for each pair ¥ and 3, members of ¥, we have that
#-and % do not have the open intersection property then (X,g )
is concrete.

(3) If 0(F) is an open ultrafilter for each Fe ¥ then
(X,§ ) is concrete.

El‘or each free ultrafilter 7, G(%) is a grill. Moreover,
16(5(’3‘) implies Ac g(.’:"). Hence we have the following theorem.

Theorem 2,5. Every ultrafilter generated nearness space
is bunch determined ard hence subtopological.

Thus each ultrafilter generated nearness structure is in-
duced by an extension. Indeed, each ultrafilter generated ne-

arness structure is grill determined, [61 and [131.

3. Extensions. An extension Y of a space X is a space

in which X is densely embedded. For notational convenignce we
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will assume that Xc Y.

If Y is an extension of X then ¢ ={Ac P(X):Nclyd+
4 @3 is called the nearness structure on X induced by Y.

let (X,t) be a topological space and X =Y, t(X) will
denote the subspace topology on X, For each ye Y, set 0’ =
= {0nX:yeOet}. Then {0’y:ye¥§ is called the filter trace
of Y on X,

Y will be called a prime (maximal) extension of X if for
each ye ¥Y-X it follows that 0’ is a prime open filter (opem
ultrafilter).

Let t (strict) be the topology on Y generated hy the ba-
se {0%:0e t(i)} where 0* = {yeY:0 e 0y§. let t (simple) be
the topology on Y generated by the base {Quiy}:0 ¢ Oy yeXs.
Then t (strict) and t (simple) are such that Y with either of
these topologies is an extension of (X,t(X)), called a strict
extension, or simple extersion of X, respectively. Note that

t(strict) <t £t(simple).
Moreover, a topology s on Y with the same filter trace as t,
forms an extension of (X,t(X)) if and only if it satisfies
the above imequality (see Banaschewski [1]). ‘

The following lemma, providing the crucial link between
the trace filters of an extension and an ultrafilter generat-

ed nearness structure, is due to Frolik [10].

Lemma 3.1, Let (X,t ) be a topological space and / a
prime open filter on X. Then there exists an ultrafilter 7 such
that 0(3) =0 . |

The following important theorem is due to Bentley and
Herrlich [41.
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Theorem A, For any T1 nearness space the following con-
ditions are equivalent:

(1) § is a nearness structure induced on X by a strict
extension,

(2) The completion (X*,¢*) of (X, ) is topological.

(3) Every nonempty X-near collection is contained in
some X-cluster.

Recall a nearness space satisfying the above equivalent
conditions is called concrete. Essentially the same relation-
ship that exists for concrete nearness spaces amn their comp-
letions exists between ultrafilter generated nearness spaces
and their ultrafilter completions. This is demonstrated in

the following theorem.

Theorem 3.2. For any nearness space (X,g ) the following
conditions are equivalent:

(1) § 4is induced on X by a prime extension.

(2) The ultrafilter completion (X, §’) of (X,f ) is
topological.

(3) g is ultrafilter generated.

Proof. (2) and (3) are equivalent by section 2. (2) im-
plies (1). By [ 9], we have for each 9(3’) € X’-X that the col-
lection {£G(#)}u0:0€ F7 is a base for the open sets in X’
containing G(3). Thus 09(,3,.) = Ug, and since ¥ is an ultra-
filter, 034 is a prime open filter.

(1) implies (3). Let Y be a prime extension and E =
=tAc P(X): Necly A + g3, For ye Y-X we have that Uy, the
trace filter on X, is a prime open filter. By lemma 3.1, the-

re exists an ultrafilter 9"y on X with 0(?’y) = Uy. Let ¥=



= {‘B'y:ye Y-X% amd let € (8) be the nearness structure on X
generated by f. Let £ € § . Then there exists teNclyAd.
If te X then A e § ($). Otherwise teY-X and T, e 4. Now let
Ae A ., Since teclyA, we have that (Y-cfyA)n X does not be-
long to 0y = 0 (F,). Hence cfyhnXed,, and § c £ (¥).

To show that §(¥)c § it suffices to show that :’fy € g
for each ye Y-X. But, since Oy = U(G"y) it follows that y e
e ﬂcfxg; and hence ?y e § . (Note: 913;,) now belongs to §
by axiom N2.) Hence £(¥) = €.

The following theorem gives a slightly stronger result

for strict Tl extensions.

Theorem 3.3. Let Y be a Ty strict extension of X. Let §
be the induced nearness structure on X. Then the following
conditions are equivalent:

G Y is a prime extension of X.

(2) g is ultrafilter generated.

Proof. (1) implies (2) by theorem 3.2. (2) implies (1).
Let ye Y-X. We must show that Oy is a prime open filter. lLet
./Ly = {Ac X:ye clyA. Then ./Ly € § . Since Y is a str:?.ct T,
extension of X it follows that {y} = ﬂcfyﬂy. Hence ﬂc[xﬂy =
= @, and since g is ultrafilter generated there exists a free
near ultrafilter % with ﬂycg(ﬂ’). Now e § , the nearness
structure induced by Y, and hence we have & = clxé“c ﬂcﬁxﬁy =
= {y%. Thus Uy c0(F).

let O € 9(3)., Then O* = O Uiz €Y-X:0 e 0'2'4 is open in Y.
Now X-O¢ ¥ and hence X-0 & J?,y. Hence there exists Q, open in
Y and containing y, such that Q N (X-0) = @. Hence Q0 Xc O, and
thus O e Oy. Therefore 01 = 0(#), a prime open filter.
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Theorem 3.4, For any T; nearness space (X,€ ) the fol-
lowing conditions are equivalent:

(1) ¢ is induced on X by a prime strict extension.

(2) The comple tiom (X¥, ¢*) of (X,§ ) is topological
and X* is a prime extension of X,

(3) § 1is concrete anl ultrafilter genérated.

Proof, The proof follows immediately from theorem A and
theorem 3.3.

Two extensions Y and Z of X are called equivalent if the-
re exists a homeomorphism f£:Y—> 2 such that f restricted to
X is the identity map. The following theorem will be useful

for the work in the next section.

Theorem 3.5, Iet (Y,t) be a prime strict 'L‘l extension of
X. For each ye Y-X choose a free ultrafilter ?’y on X such that
U(G'y) = 0’. Set ¢ ={?’:er-x§_and §= § (¥). Then (I,t) is
equivalent to (X*,t(¢*)).

Proof. Let § be the nearness stiructure induced om X by
Y. Then, as shown in the pr§of of theorem 3.2, §o=¢ = £ (8).
Hence X* and Y are strict Tl extensioms of X, generating tfhe
same nearness struct:ure. By corollary 2.12 in [4] it follows
that (Y,t) and (X*,t(g*)) are equivalent extensions.

We call an extension Y of X maximal if- the trace 'filterl
corr?sponding to points in Y-X are open ultrafilters. Hence

each maximal extension is a prime extension.

lemma 3.6, Let Y and S be extensions of X with £:Y—> 2
satisfying:

(1) £ restricted to X is the identity map.

(2) £ is one-to-one and onto,
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(3) £ is continuous

(4) 2Z is a maximal extension of X.
Then:

(A) Y and Z generate the same collection of trace fil-
ters on X.

(B) If Y and Z are both strict (simple) extensions of
X then £ is a homeomorphism.

Proof, f establishes a one-to-one correspondence bet-
ween the trace filters generated ty Y and those generated by
z. Suppose f(y) = z, the 02 c Oy since £ is continuous. Sin-
ce Z is a maximal extersion of X, {, is an open ultrafilter
and 7, = 0y. Part (B) then follows at once.

If §= § (¥), where (&) is an open ultrafilter for
each Fe ¥, then by corollary 2.4 13 is a concrete nearness
structure. Thus, results similar to those obtained for prime
extensions can be combined as the following theorem indicates.
The proof, essentially the same as the proofs for the corres-

ponding results already presented is omitted.

Theorem 3.7. For amy T, nearness space (X, ) the follo-
wing conditions are equivalent:

(1) § 1is induced on X by a maximal extension.

(2) e ultrafilter completion (X, §) of (X, §) is to-
pological and X° is & maximal extension of X.

(3) ¢ = f (¥) for some collection ¢, of free ultrafil-
ters, such that Fc ¥ implies that ¢ (¥) is an open ultrafil-
ter,

(4) The completion (X*, §*) of (X,g ) is topological
am X¥ is a maximal extension of X.

(5) § is induced by a strict maximal extension.
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4, Applications, The results of the previous sections

are now applied to several special types of spaces.

Theorem 4.1, Let X be a Hausdorff topological space,
Iet ¥ be the collection of all ultrafilters ¥ on X such that
0 (%) is a free open ultrafilter on X. Set § = § (¥). Then
(X*,t(§*)) is homeomorphic to the Fomin H-closed extension
of X.

(Note: This theorem appears in slightly different form
in [8] and [61, It is included here to note that the Fomin H-
closed extension can be constructed as the completion of an
ultrafilter generated nearness space.)

For a completely regular space, Herrlich [11lhas shown
that there exists a compatible nearness structure on X such
that the completion X¥ with respect to this nearness structu-
re is homeomorphic to @X, the Stone-Bech compactification of
X. The following theorem characterizes the comple tely regular
space X for which there exists an ultrafilter generated near-
ness structure such that the completion with respect to this

structure is homeomorphic to (BX.

Theorem 4.2, Let (X,t) be a completely regular topolo-
gical space. The following statements are equivalent:

(1) Every maximal completely regilar filter is prime.

(2) There exists a compatible ultrafilter generated ne-
arness structure § on X such that (X*,t(§*)) is homeomorphic
to pX.

Proof. A completely regular filter & is an open filter
with a base B such that for each V€ B there exists Ue D



and an £:X—> [0,1], a continuous map, such that £(U) ={0%
and f£(X-V) = {13.

X can be constructed as the strict extension on the set
of all maximal completely regular open filters. (See Bourbaki
£21.)

(2) implies (1). By theorem 3.3, X* and hence f(3X is a
prime extension of X, Thus the trace filters are prime.

(1) implies (2). let V' = {0: 0 is a free ma ximal com~-
pletely regular filter3}. Let 7 be indexed by 22 . That is,

v = -[006‘:06 € 0% . By hypothesis, each (; is a prime open
filter. Then by theorem 3.1, there exists an ultrafilter F
with 0(%F.) = @ , for each ov € 0. ., Set ¥=4{% :xec )
Then § = § (¥) is an ultrafilter generated nearness structure.

Now, by theorem 3.5, the strict extension generated by
the {,:0c € L} is homeomorphic to (X*,t(§*)). That is:
(X is homeomorphic to (X*,t(§*)).

Theorem 4,3. Every uniform ultrafilter generated near-
ness structure is induced by a paracompactification.

Proof. This follows immediately from the results in sec-
tion 6 of [4] and the fact that each ultrafilter generated ne-
arness structure is subtopological.

One can construct ultrafilter generated nearness structu-
res by starting with a collection of free closed ultrafilters.
This follows from the fact, due to Frolfk [101, that if ¥ is a
free closed filter then there exists a free ultrafilter 7° such
that 9(9') = g(@"). Hence, if ¢ is a collection of free closed
ultrafilters then there exists a collection of free ultrafil-

ters ¢’ such that (N =¢ (¥°). Herrlich, in [12], gives a



nearness structure for a space for which the corresponding
comple tion is homeomorphic to the Wallman compactificatiom
for a Hausdorff space. Using the collection of free closed
ultrafilters and the above comment, one can see that the ne-
arness structure is ultrafilter generated and hence the Wall-
man compactification for a Hausdorff space is a prime exten-
sion. Similarly, the Stone-Cech compactification of a normal
space is a prime extensions

A topological space is compact if and only if each pri-
me open filter converges. Moreover, a Hausdorff topological
space is H-closed if and only if each prime open filter clus-
ters.

Let (X,t) be a Hausdorff topological space. Let M be the
set of all free open ult rafilters on X. Set Y = XuM. The set
Y with the simple extension topolqy is the Fomin H-closed ex-
tension of X, while the set ¥ with the strict extension topo-
logy is the Kat&tov-H-closed extension of .X. Both are prime
extensions of X. By enlargifxg M to the set P, of all non-con-
' vergent prime open filters, we are able to construct a compac-
tification of X that is also a prime extension of X, Set !‘ =
= XuP and let X be the set Y with the topology generated by
the base {0¥:0¢€ t} where 0* = Qu{le P:0e0F.

Theorem 4.4, Let (X,t) be a topological space. Then @ X
is a prime compactification of X.

Proof. Easily @ X is a strict prime extension of X. To
see that p X is compact let 0’ be a prime open filter on PX,
Set 0={0¢t:0*e 0’3 . Then 7 is a prime open filter on X,

Case 1. Suppose U —» xeX. Then #(x)c 0 , where

N(x) is the collection of all open sets in X containing x.
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Then B = {0*:0 € ¥ (x)} is aase for the open sets in @ X con-
taining x, By the definition of J it follovs that B c 0 and
rence 0 —> x in EX.

Case 2, Suppose U does not converge in X. Then 0 ¢ P.
Let Q° be any open set in ©X containing 7 . Then @ = Q'n X
is a nonempty open set in X. Since Q¥ c Q emd Qe 1t fol-
lows that Q*e 0’ and hence Q° € 77 ., Therefore, ‘' — 0
in P4

Hence every prime open filter in X converges and thus it

fellows that gox is compact.

5. Ultrafilter generated is bicoreflective in near. Let
(K,g ) be a nearness space and ¥ = {3: # is a free near ultra-

filter on X}. Then §(¥)c § and €(9) is compatible with
the underlying topology on X.

Theorem 5.1, Let (X,€ ) be a nearness space and let (Y,7)
be an ultrafilter generated nearness space. Let f:(¥,%) —
—> (X,g ) be a nearness map. Then there exists a unique near-
ness map f such that the following diagram commutes.

-~

f

--=>

£
(Y,'rL )

Proof. Define 'f‘/by Fily) = £1y) for each ye Y. It suffi-

ces toshow that ¥ is a rear map. Let B e L) « If NclyB+

¢ then Ncly £ (B0 and ¥(Be g (.
If nc£Y53= # then there exists a near ultrafilter & such
that Bc GF). Let R=4£(3):FeF} . If NclyR+P, then
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Necty#(B)+ 8 and F(B)e § (9). If NelyR= g let % = fAcX:
: there exists Fe & with Aof(F)j. Then e ¢ and¥ is a
filter. To see that 2 is an ultrafilter let AuBed. Then the-
re exists Fe9 with AuBOf(F). Then f—l(AuB)e 3’and hence
either £ 2(A) or £ X(B) belongs to %' . Then, since A 5
S£(£71(A)) and Bof(£71(B)), eihter A or B belongs to %. Hen-
ce ¥ is a near ult rafilter in (X, g) with empty adherence and
thus ¥He ¥,

Llet Be B . Then c.BIB €F , and f(cfyB)e X. Now cly(£(B))>

> f(clyB)e¥. Thus £(B )c GWH) and hence FB)re g ().

Corollary 5.2, The category of ultrafilter generated nea-
rness spaces and nearness maps is bicoreflective in the catego-
ry NEAR.

Proof. For each nearness space (x,g) the coreflection is
given by (x,g)%—(x,gtw). The result then follows by the above
theorem.
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