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COMMfiNTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
20, 1 (1979) 

ON ORDER TOPOLOGY OF SPACES HAVING UNIFORM LINEARLY ORDERE0M51S 
R. FRANKIEWICZ, W. KULPA 

Abstract : I t i s shown t ha t a dense in i t s e l f topologi­
cal space X which has a uniformity with a l inear ly ordered 
(with reapec t to s t a r - r e f i n e m e n t s ; base of uncountable c o f i -
n a l i t y i s an ordered topo log ica l space . 

Key words: Order topology, l i n e a r l y ordered base of 
uni formi ty . 

AMS: 54F05, 54-215 

A class of topological spaces which have uniformities 

with linearly ordered bases (shortly, with uniform l.o. ba­

ses) contains ail metrizable spaces. The topology of a metri-

zeibld space is induced by a uniformity with a countable base 

linearly ordered (with respect to the star-refinements of co­

verings). Herrlich [1] has proved (and I#nn [3] for separab­

le metric spaces) that for each metric space X with dim X « 

s 0, the topology of X is induced by a linear order. Our re­

sult can be treated as an extension of the results of Herr­

lich and Iiynn. If a space X has a uniformity with l.o. aasef 

then X is metrizable or X is paracompact, dim X = 0, and X 

is a dense subspace of the limit of dm. inverse system over 

well-ordered set of discrete spaces 12]. Consequently, if X 

is dense in itself, then the topology of X is an order topo-
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logy. 

If a space X with a uniform l.o. base of uncountable 

eofinality has "many" isolated points then we do not know if 

it is true that the topology of X is an order topology. We 

can apply proof that such a space is a GO-space, i.e. a sub-

space of an order space. The special case, every topological 

group with linearly ordered base of neighborhoods of the ne­

utral element is orderable, was proved in [4J. 

Lemma 1 f2}. If a space X has a uniform l.o. base B 

of an uncountable eofinality, of B>%0$ then for each family (Jl 

of open sets with card % -c of B , the intersection n 51 

is an open s et. 

Proof. Let x c r\ % . For each G s ^ let us choose 

a PQC B such that s t (x ,P G )c rG. Since card 4PQ:G e ftj-e of 

B, there exists P e B such that P ^ P Q (Pg~Q means that P is 

a refinement of Q) for each G e & . Hence s t ( x , P ) c C\ & . 

Thus n (R, is an open set. 

From Lemma 1 it follows that if a space X has a uniform 

l.o. base B with cf B > tfQ f then each Q^ subset is open 

in X, consequently, dim X = 0 C 23 • Indeed, let 4 V. :i * 1,... 

...,kj be a finite functionally open covering of the space 

X. There exists a functionally closed covering {F . :i = 1,,.. 

...,k} such that F.c V., i = 1,...,k. Each F. is a 9^ set> 

so it is clopen set. Put U-. = F-, and U- = F. - LJ { U. ;i< j $. 

The family 4 U . : i = l,...,k£is an open covering of X, U.ccV. , 

U.n U. = 0 for i j, i,j = T,... ,k. -Ctjms dim X = 0. 1 <J 

Lemma 2 [2J. Each topological space which has a uniform 

l.o. base is paracompact. 
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Proof. Since each linearly ordered set contains a cofi-

nal and well-ordered subset we may assume that B = i P^ : oc < 

< 2t} » *ic ̂ * */l i f f oc, > A , is a well-ordered with res­

pect to the star-refinements uniform base for X. Let P be an 

open covering of X. Define Q =<st(x,P|C - ):st(x,P0(̂  )c u, ueP, 

xe Xj . The covering Q is a star-refinement of P. This implies 

that X is a paracompact space. 

Lemma 3 C2J . If a space X has a uniform l.o. base with 

cf B ;> J&Q , then it has a uniform l.o. base B' consisting of 

open coverings of order 1. 

Proof. Let B = {P^ : fac -< ^flt f = cf B, be a well-orde­

red uniform base on X. Define zero-dimensional base B' = 4Q , : 

: c€ < y I . Since dim X = 0 and X is paracompact, there ex­

ists an open covering Q-, Ih-P-t arid "Q-, is of order 1. Let us as­

sume that Q , vc < fl < tf > a r e defined. By Lemma 1, there 

exists an open covering P such that P£^P, and P £^ Q ,<£</&* 

Let Q. J- P be an open covering of order 1. 

Theorem. If a dense in itself space X has a uniform l.o. 

base of uncountable cofinality, then there exists a linear or­

der on X inducing the topology of the space X. 

Proof. Notice that T is an infinite set, then there is a 

linear order < on T such that each x e T has elements x - 1 and 

m + 1 in a sense of the discrete order -< . Indeed, let -J be 

an arbitrary linear order on T, then the lexicographic order 

on T x Z , where Z is the set of integers is a discrete or­

der. Since card T = card (TxZ), hence T has a discrete order 

without the first and the last element. 

Let B = i P^ : <* < %> i , T - cf B, ̂  V* -% iff X, *» (I , 
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be a uniform wel l -ordered base c o n s i s t i n g of open coverings 

of order 1. For each xe X put x(oo ) = u e P ^ , such t h a t x c u , 

and f o r each u e P ^ l e t 3f (u) =-jVtf lJ^^ :v6 u} . Since X 

has bo iso3a ted p o i n t , without l o s s of g e n e r a l i t y we may a s ­

sume t h a t for each u e P ^ , c a rd 3r(\x) & JKQ . 

Now, assume t h a t for each ug P ^ , oc <: #* , i t i s chosen 

a d i s c r e t e order < (without the f i r s t a m the l a s t element) 

on or (u) and l e t us assume tha t i t i s given a d i s c r e t e order 

«< on each P* , where ft «<: tf i s a l i m i t o r d i n a l . 

Define a l i n e a r order on X. For each x, ye X l e t us put 

x< y i f f x(oc)< y(oc ) , where oc = min -L ft «z #- :x(ft ) + y(ft )} • 

Now, we s h a l l show tha t the topology induced by the o r ­

der <. i s equal to the topology of the space X. Notice t ha t 

B* = U B i s a base for the topology of 1L -Let ,ZJE u.e P ^ , oc< 

< tf . There e x i s t z(oc + 1) - 1, z(oc + 1) + 1 e or ( u ) . Choose 

x, y € X such t ha t x(oc+ 1) = z(ot+ 1) - 1, y(oc + 1) = 

= z(oc: + 1) + 1. Notice t h a t < x , y > c u . Now, consider an i n ­

t e r v a l <x,y> and z 6 < x,y> . There i s the l e a s t oc , ft -c 3" 

such t h a t x(oc )<s z(o£ ) and z(fc)«cy(ft). I f oc -£ ft , then 

z(ft)c< x ,y > . I f ft * oc , then z(oc) c < x ,y> . But z(oci)., 

z(ft) a re open neighbourhoods of the po in t z . Thus the topolo­

g ies a re equa l . 
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