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GENERALIZED INJECTIVITY

J. JIRASKO, Praha

Abstract: In this paper, a new general theory of in-
jectivily of left R-modules is introduced. The existence
and unicity of the injective envelope of every module is
established for a large class of injectivities., Some earli-
er known results on injectivities with respect to preradi-
cals are derived from the theory in a more general form.

Key-words: &£-injective module, & -injective envelo-
pe, preradical.
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Secondary: 18E40

We start with some basic definitions and notations,
Throughout this paper, R stands for an associative ring
with unit element and R-mod denotes the category of all uni-
tary left R-modules, If fe HomR(N,M) and P is a submo-
dule of M then £ 1(P) = {xeN, £(x)eP3? . The fact that
A is an essential submodule of B (i.e. A meets every
nonzero submodule of B in a nonzero submodule) will be
denoted by Ac’B .

A class O of modules is said to be absfract if it is
closed under isomorphisms, hereditary if it is abstract and
closed under submodules and cohereditary if it is closed

under homomorphic images.
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§ 1. Ggneral theory. In the class M=4{<¢ 4,N,£,Q),
M,N,Qe R-mod, NE M, fe HomR(N,Q)} define the partial or-
der £ 1in the following way:

{M,N,f,Q > < < M/,N7,£7,Q”> if and only if M = M°, Nc
€N’y Q=Q and fy=1f.

In this paragraph & always denotes a subclass of M .
The following five conditions on & will be useful later.
() < MN,£,Q>€ & , <M,N,£/,Q>€ M, {M,N,£,Q > £
< (M,N’,£7,Q Y implies (M,N’,£',Q> € & ,
() <M,N,f,A>e&L , A c-f-> B implies <M,N,if,B> € &,
(Y <MN,f,A>e &L , pActs B , Ac’B implies
{ M,N,if,B>e &£ ,
() <MN,f,A>e & , A —i»B an isomorphism, implies
{M,N,gf,B>e & ,
(") <M,N,f,A>e &£ , A% implies { M,N,gf,Bde s .
For every <B,A,f,Q> € M 1let us define Ty (B,4,£,Q)
( Sg (B,A,£,Q) ) to be a submodule of B generated by all
the g(M), ge HomR(M,B) , to which there exists a commuta-
tive diagram

—
e

e =
(1]

'
|

with <M,N,£h,Q>e & (N = g~1(a) ).
We also use the following abbreviations: r&(B,Q,lq,Q) =

= Ty (B,Q) , 8 (B,Q,10,Q) = 84 (B,Q) , vy (§,Q) = vy (@) ,
sy (Q,Q) = 8y (Q) .
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Lemma 1,1, Let &£ be a subclass of 71 and

Qe—— At—= B PE——>» M

‘ ‘

O T L PR }e
Tee——-— Cec——> D AS~—> B

commutative diagrams. If for every diagram (%x),

{ M,P,kfg,T>6 & whenever < M,P,fg,Q> e &£ then

1(ry (B,4,£,Q))e ry (D,C,h,T). Especially, 1(rg (B,Q)) &

€ ry(D,T) & '
Proof: Obvious. _
Definition 1,2. We say that a module Q is &-injec-

tive, if every diagram
N&——>M

(1) £ l
Q

with <(M,N,£,Q> & &£ can be completed to a commutative one.
Theorem 1,3. Consider the following five conditions
concerning a module Q :
(1) Q 1is a direct summand in each extension N2Q such
thet NsQ + rg(¥,Q) ,
(11) Q2rg@) ,
(111) every dlagram (1) with MeN + ry (#,N,£,Q) can be
made commutative,
(iv) Q is &£ -injective,
(v) Q284(Q) .
Then the conditions (1),(ii),(iii) are equivalent and
(1i1) implies (iv) and (iv) implies (v). Moreover, if & sa-
tisfies (o) then all the five conditions are equivalent.
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Proof: (i) implies (ii). The module N = Q + r.&(Q) is
an essentisl extension of Q o that N =Q by (1).

(i1) implies (iii), Consider the diagram (1) and extend
£ to g: M—>Q . Then geg) + glry @,N,2,0))2Q +
+re(Q) =Q.

(iii) implies (i). Obvious.

(iv) implies (v). Take the commutative diagram

N
|
Q

where N = g~1(Q) and <M,N,h,qd>e & .

8

O e— B

i
——e—
J
—

Then h = fi for some f: M—>Q and g = Jf since
(g - i£) (M)AnQ = 0 , as it is easily seen.

(i1) implies (iv). Obvious.

Finally, if & satisfies («) then ryp =8y, and we
are through. *

Corollary 1,4: Let & be a subclass of 7 satisfying
(). If P, QeR-mod, PEQ , then P is & =~-injective pro-
vided P2rg (@) .

Proof: We have ry (P)erg(Q) by Lemma 1.1 and P is
& -injective by Theorem 1,3.

Definition 1,5. PFor any ordinal o and modules AEB
let us define the sequence r; (ﬁ,A) of modules inductively
as foll‘ows:

r (B,4) = &

FPLE) = 2 Boa) ¢ g BrZ (B,0))

end rf (8,4) = ra,é (B,A) , o« limit,
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Purther, put ¥y (B,n) = r; (8,4) where r; (B,4) =
= 5 GE,0 .

Corollary 1,6: For every module Q , the module
F&(G,Q) is & -injective.

Proof: Denote P = Ty (Q,9) . Then rg(P) = ry @Q,p)e
ETy (@,Q) = P and apply Theorem 1.3.

Lemma 1,7. Let & be a subclass of M satisfying
(%) and AEB be modules. If £: 3—7% 1sa B-igomor-
phism of two injective envelopes ﬁ, B o B then
£ (B,0)) = rg (B,0) .

Proof: It follows easily by transfinite induction using
Lemma 1.1,

Lemma 1,8, Let £ be a subclass of M satisfiyng (3%).
If QEPsQ then rz (6,0)51'; (Q,P) for every ordinal «< ,

Proof: By transfinite induction and Lemma 1.1,

Theorem 1,9, Let & be a subclass of 7 satisfying ’
(<)y(@3’). Then 'i"& ('c‘:.o) is the smallest & ~injective sub-
module of @ containing Q .

Broof: The module Ty (@,Q) is &£ -injective by Co-
rollary 1.6. Let a module P , QEPEQ , be & -injective.
From Theorem 1,3 we get P = r;' (3,1—“-) and Lemma 1.8 then
yields Ty (Q,0)sP .

Definition 1.10, An & -injective module B 1is said
to be an & -injective envelope of a module A if there is
no proper &£ -injective submodule of B conteining A .

Remark 1,11: If & satisfies (79") then the class of
&-in;jective modules is abstract.

Theorem 1.12. If the subclass & of MM satisfies
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(<)y(3) and (g) then every module Q has an & -inject-
ive envelope which is unique up to Q-isemorphism.

Proof: The existence of an & -injective envelope of
Q follows from Theorem 1.9, Put Qi = r:c" (?,Q) and let
f° be the canonical embedding Q<>»P where P 1is an ar-
bitrﬁry & -injective envelope of Q . Suppose that £, :

: Q. —>P is a monomorphism. From Q ., = Q.+ rg, (3,0,‘)
we get Q“ﬂs Qe + L) (a,o, +foc sP) Dby Lemma 1.1 (using
(B),(2)) and consequently £, extends to a homomorphism
%le q‘+1—>P by Theorem l.3. It 1s easy to see that fac+1
is a monomorphism, From this, one easily derives the exist-
ence of a monomorphism f£: Q = Ty (Q,Q)—> P extending the
identity on Q , Hence £(Q) is & -injective by 1.11, so
that £(Q) = P , which finishes the proof.

Definition 1,13, A submodule A of a module B 1is
said to be & -dense in B if BEA + rz(ﬁ.A) « 4n essen-
tial & ~-dense submodule A of B is said to be & -essen-
tial,

Theorem 1,14, If & satisfies (oc) then a module @
is & -injective if and only if it has no proper & -essen-
tial extensions.

Proof: The condition is necessary since every & -den-
se extension of an & -injective module splits by Theorem
1.3. Conversely, r‘lt (6,@) is an & -essential extension of
Q 8o that ry (Q)Q and Q is & -injective by Theorem
1.3.

Definition 1,15, Let &£ be a subclass of M satisfy-
ing (9)e A module 4 is said to be weakly & -dense in B
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if BEF;& (3.&) . An essential weakly & -dense submodule A
of B is said to be weakly & -essential.

Theorem 1,16, If &£ satisfies (o) and (2~) then a
module Q is Sﬁ;injective if and only if it has no proper
weakly &£ -essential extensions.

Proof: The sufficiency follows from Theorem 1,14. Con-
versely, suppose that K 1is a weakly & -essential extens-
lon of Q . Then = (4,Q) = @ by Theorem 1.3 and 80 § £
cKEF, (K,Q) = Fy §,Q) = @ .

Remark 1,17: If & satisfies () then Ty (3,Q) is
the greatest weakly & -dense extension of Q contained in
6 since for a weakly < -dense extension P of Q with
QsP=q we have PeFy (F,Q) = Ty (,0) .

Lemma 1,18, Let & satisfy (‘) and (9~) and AgcBes
€ C be modules. Then
(1) if & 1is a weakly & -essential submodule of C then
B is weakly &£ -essential in C ,

(i1) 4if A 1is weakly & -essential in B and B weakly
¢ -essential in C then A 18 weakly 8;esaential in C.,
Proof: (i) is immediate since Lemma 1.1 yields

A - A A
i-": (C,A)e rz(c,B) o Purther, we have Bsx"t (B,4) , C &
= (A - A - A= A
ETy (C,B) and Lemma 1.1 gives C& Ty (C,B)e Ty (c,rx (C,4a))=

Theorem 1,19, The following are equivalent for a class
& satisfying («),((3) and (¢):
(1) XN is a maximal weakly ¢ -essential extension of Q ,
(11) ¥ 4is an &£ -injective envelope of Q ,
(111) N 18 & ;-:I.njective weakly & -~essential extension
of Q.
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Proof: (1) implies (ii)., The & -injectivity of N
follows from 1,16, If K is & -injective, QEKSE N then
1.18 and 1,16 yield K =N,

(11) implies (iii). It follows from Theorem 1.9 and
1.12 that Q&’N . Hence QcNed=F and ¥« F, @,Q) by
Theorem 1.9,

(1i1) implies (1). By Theorem 1l.16.

Proposition 1,20. Let & ©be a subclass of 7 satis-
fying (¢ ),(d") and Q be a module, Then Q is & -injec-
tive if and only if every diagram (1) with N &£ -~dense in
M can be made commutative,

Broof: If the condition is satisfied then Q = rl, (§,Q)
and Q is & -injective by Theorem 1l.3. Conversely, MSN +
+ rg (M,N) and it suffices to use Theorem 1.3 (1ii) since
Ty H,M) e Ty (ﬁ.N,f,Q) by Lemma 1,1,

§ 2. (Q,H)=injective modules.

Definition 2,1. ILet @ and 73 be non-empty classes
of modules, We say that a module Q is (Q ,B )=-injective
if every diagram (1) with M/g e Q@ and M/gen ¢ € B3 can be

made commutative,

Baer’s lemma 2,2, If G and 73 are abstract, heredi-
tary and cohereditary classes of modules then a module Q
is (Q,R)-injective if and only if for every left ideal I
of R with R/I €  every homomorphism f£: I—>Q with
R/ker ¢® $ can be extended to g: R—>Q .

Proof: We proceed to the sufficiency, the necessity
being obvious. Suppose that there is a diagram (1) with
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M/Ns Q and M/Ker e € B  which cannot be made commutati-

ve. By Zorn’s lemma,we can assume that f cannot be extend-

ed toany N§ KEM . Let beM\N be arbitrary, I = (N:b) .
Then R/Ig (Rb + N)/1\I lies in @ , Further, defining ¢ :

: I—Q by @(r) = £(rb) we have Ker ¢ = (Ker f: b)

o~

and consequently R/Kercg & (Rb + Ker f)/Ker p lies in B,

Thus ¢ extends to ¥ : R—>Q and hence f extends to g:
: {N,b}—> Q given by g(n + rb) = £(n) + 3 (r) , a contra-
diction.

§ 3. Applications, Let P be a subclass of the class
R of all couples (M,N) , NS M . We say that & satisfies
the condition (a) if (M,N) e ® , NeN’s M implies (M,N')e
e P,

Remark 3,1: Let X , P be subclasses of & and

¢ = 4<M,N,£,Q>; (M,N) € P , feHomy(N,Q) , (M,Ker £)e
e X'} . Obviously, &£ satisfies (3 ) and (7). Moreover, if
both X and P satisfy (a) then & satisfies (e« ) and (o).

Now we recall some basic definitions from the theory of
preradicals (for details see [4] and [5)).

A preradical s for R-mod 1is any subfunctor of the
identity functor, i.e. s assigns to each module M its
submodule s(M) in such a way that every homomorphism of M
into N induces a homomorphism of s(M) into s(N) by res-
triction. A preradical is said to be
- idempotent if s(s(M)) = s(M) for every module M ,

- a radical if S(M/s(M)) = 0 for every module M,
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- hereditary if g(N) = Nns(M) for every submodule N of
a module M .

& module M is s-torsion if s(M) = M and s-tor-
sionfree if s8(M) = O , If r and 8 are preradicals then
we write r<s if  r(M)ce(M) for all Me R-mod . The ze-
ro functor is denoted by =zer gand the identity functor by
ia .

Por every Me R-mod we define =, M ==t , £
ranging over all f¢ Homp(M,N) . It is easy to see that
r“” is an idempotent preradical and, in fact, the small-
est preradical for which M is a torsion module,

For a preradical s and modules NEM 1let us define
Cy (N:M) by C (N:M)/g=8(¥y) . Iz M =F then we write
simply Cg(N) = C (N:¥) . Obviously, for N SN , M S M
and fe Homp(M,N) with £(M)e N, we have £(C_ (M :M)) e
€ C (N :N) .

. Definition 3,2, Let ® and u be preradicals for
R-mod o A submodule N of a module M is said to be 8,-
dense in M if MsC(N:C (M)). A preradical s is said

to be balanced if A/Bg C/D implies that B is s,,-den-

gse in A 1if and only if D is sia-dense in C .

Remark 3,3: The fact that N 1is g4q~dense in M
means that N 18 s-dense in M 1in the sense of Beachy
[1). Parther, N is 8,op-dense in M if and only if M/N
is s-torsion and if 8 1s hereditary then su-deneity

means the same as azer-density for every preradical u .

Lemma 3,4, Let 8 and u be preradicals for R-mod
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and le N, &N be modules. If Ny is uu-denae inn N +then
N, 1s so,

Broof: Obvious since N&C,(Ny:C, (N))sC (Ny3C (W) o

Definition 3,5. Let to every Me R-mod correspond four
preradicals e(M), t(M), u(M), v | Let P be the class
of all couples (M,N) of modules such that N 1is sfl&)-
dense in M and X be the class of all couples (M,;) such
that N is tén(l&)-dense in M , Now let & ©be the class ofall
{M,N,£,Q> such that (M,N)e @ , fe HomR(N,Q) and
(M,Ker £) € X . We say that a module Q is (s,t,u,v)~in-
jective if it is & -injective.

Proposition 3,6. Every module Q has an (s,t,u,v)-in-
jective envelope which is unique up to Q-isomorphism,

Proof: Both classes P and X satisfy Condition (a)
by Lemma 3.4 so that it suffices to use Remark 3.1 and Theo-
rem 1,12,

Lemma . Let s8,t,u,v be préradicals for R-mod ,

4, B, M be modules, ASB and fe Homy(M,B) be such that
1) is s,~dense in M and Ker £ is % -dense in M.
Then f£(M)s C (A:B)n t(B) .

Proof: Easy.

Lemma 3,8. Let AE€B be modules and s8,t.u,v prera-
dicalé for R-mod satisfying one of the following conditi-
ons:

(1) u=t=141d , A is s 4-dense in B,
(i1) s 1is idempotent and u = zer , t = id ,
(1i1) 8 4is hereditary and v = id .
If, in the notation of 3.5, S(M) =85, t(M) =t ,
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o Ly . v® -y for every MeR-mod then C_ (A 8) N
nt@ery (5,0 .

Proof: Put M = C (A:B)nt(B) end ¥ =ant(@®), It
is easy to see that N 1is su-dense in M and O 1ig tv-
dense in M from which the assertion follows easily,

Definition 3.9, Let s, t be preradicals for R-mod .
We say that A is an (s,t)-dense submodule of B if BE
i + (Cs(!uﬁ)n t(8)) . An essential, (s,t)-dense submodule
A of B 1is said to be (s,t)-essential in B .

Proposition 3,10. Iet s,t be preradicals for R-mod
and AEB be modules. Then A is (s,t)-dense in B if
and only if A is sy4-dense in B and B =A + (Bnt(®) .

Proof: Easy.

We say that the preradicals s, t, u, v for R-mod sa-
tisfy Condition (x ) if one of the following holds:

(i) u=1t =14 ,

(%) (i) u =zer, t = id and s is idempotent,

(i1i) v = 1d and 8 is hereditary.

Corollary 3,11: Under the notation of 3.5 let s = *
=8, t(M) =t , u(M) =u, v(M) =v for every MeR-mod .
If s,t,u,v satisfy Condition () and A< B are modules
then A is ¢ -dense in B if and only if A is (s,t)-
dense in B ,

Proof: The proof of the necessity is direct and the
sufficiency follows immediately from 3.8 .

Corollary 3.12: The following are equivalent for pre-
radicals s, t, u, v for R-mod satisfying Condition (x):
() Q 4is a direct summend in each extension N in which
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it 18 (s,t)-dense,

(11)  Q2¢,(Ant@ ,

(1ii) every diagram (1) with N (s,t)-dense in M can be
made commutative,

(iv) Q is (s,t,u,v)-injective.

(see [11, 2.5.)

Proof: Conditions (iii) end (iv) are equivalent by 1.20
and 3,11, Purther, by 3.11, Condition (i) means the same as
that of Theorem 1.3. Now rg’(Q) = CS(Q)n 1G)) by 3.7 and
3.8 and Theorem 1,3 finishes the proof since & satisfies
Condition (e« ) by Lemma 3.4.

Corollary 3,13: Let 8, t, u, v be preradicals for
R-mod satisfying Condition (% ), For any Q€ R-mod define
the sequence of modules Q, inductively as follows: Qo =
= Q. Q. =G+ (C(Q )N t@) and Q= L/ Qs ,
limit. Then the module Q = Q, where Q, =Qq .; 1s the
smallest (a,t,u,v)-injective submodule of 3 containing Q .

Proof: By Lemma 3.7, 3.8 and Theorem 1.9.

Lemma 3,14, Let t be a preradical, s a radical and
AsBeC be modules. If A is (s,t)-essential in B and
B is (s,t)=essential in C then A 1s (s,t)-essential
in C.

Proof: With respect to Proposition 3.10 1t suffices
to show that if A is 8y4-dense in B and B is s, 4~den-
se in C then A4 1s B8y4~dense in C . But this follows ea-
sily from the radical property of s .

Corollar 15: Let s, t, u, v be preradicals for

R-mod satisfying Condition (%), If 8 is a radical and
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GeR-mod them T = Q + (C,(Q:@)A+(Q)) is the smallest
(s,t,u,v)-injective submodule of @ containing Q .
(See (11, 2.7 )

Proof: In the notation of Corollary 3.13, @ is (s,t)-
dense in Q2 by Lemma 3.14, so that °2 - Ql and Corollary
3.13 completes the proof.

Corollary 3,16: Let s8,t,u,v be preradicals for R-mod
satisfying Condition (% )y Q€ R-mod ., The module Q is
(s,t,u,v)=injective if and only if it has no proper (s,t)-
esgential extension.

Eroof: By Corollary 3.11 and Theorem 1.14.

Corollax 17: Let 8,t,u,v be preradicals for R-mod
satisfying Condition (%), s be a radical and Q, Né& R-mod .
The following are equivalent:

(1) N 1is a maximal (s,t)-essential extension of Q ,

(11) N is an (s,t,u,v)-injective envelope of Q ,

(111) N 4is an (s,t,u,v)-injective (sg,%t)-essential exten-
sion of Q .

Proof: It follows immediately from Lemmas 3.7, 3.8,
3.14 and Theorem 1.19,

Corollary 3,18 (Baer’s lemma), Let r, s be heredita-
ry preradicals for R~mod . Then a module Q is
(s,t,zer,zer)-injective if and only if for every left ideal I
Bzer-dense in R every homomorphism f: I—>Q with Ker f
t,ep~dense in R can be extended to g: R—> Q.

Proof: By Lemma 2.2,

Lemmg 3,19, Let s be a hereditary preradical for R-
mod and t ©be a balanced preradical. If A<SB are modules,
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£ e Homg (M,C_(A:8)n£(B)) , g = if where 1 1is the imolm-
gion of Ca(Azﬁ)n t(B) in B, then g"l(A) is 8, ,.-den-
ge in M and Ker g is tid-dense in ¥,

Proof: Easy.

Corollar 20: Let tp every Me€ R-mod correspond a

() s 8 balanced preradical t(m ’

hereditary preradical s

0™ o oser, v o 34 and let £ be as in 3.5. If & ,

BeR-mod , ASB then n,(B,0) = % rm;(cs(u,u:%)ﬁ 00 @)),
Proof: By 3.19. '
Corollar 2l: Under the hypotheses of Corollary 3.20

the following are equivalent for a module Q :

(1) Q 1is a direct summand in each extension N such that

NeQ + 3 rmgy (cB(M)(Q:ﬁ)nt(M)(ﬁ)) '
(M) A
A @22 rgn(o gny@nt Y@) ,
iii i 1) with MEN c N:
(11i) every diagram (1) w + %'. r{m( s(u)( M)A

n t(U)(ﬁ)) can be made commutative,
(iv) Q is (s,t,zer,id)~-injective.

Proof: By Corollary 3.20 and Theorem 1.3.

Corollary 3,22: Llet 8™ ana t+™) be as in 3.20.
Far any QE-R-mod define the sequence of modules Q. in-
ductively as follows:
% = Qs Qa1 = 9+ X 2o (0 an D) nt® @) ana
Qg =, Qg , o limit. Then the module q = Q, where Qg =

€« A<«
= Q.1 1is the smallest (syt,zer,id)-injective submodule of
q containing Q .

Proof: By Corollary 3.20 and Theorem 1.9.

Corollary 3,23: For every module M let t(M) be a
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balanced preradical for R-mod and s(u) =8 be a heredi-
tary raiical. Then the module Q = Q + % T iu; (Cs(Qxa) n
n t(u)(Q)) is the smallest (s,t,zer,id)-injective submodu-
le of Q containing Q .

Proof: By Lemma 3.14 and Corollary 3.22,
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