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C03MENTATI0NES MATHEMATICAE UNIVERSITATIS CAROLINAE 

16f4 (1975) 

GENERALIZED INJECTIVITY 

J. JIRiSKO, Praha 

Abstract: In this paper, a new general theory of in­
ject ivIiyroF"left R-modules is introduced. The existence 
and unicity of the infective envelope of every module is 
established for a large class of inactivities. Some earli­
er known results on injectivities with respect to preradi-
cals are derived from the theory in a more general form. 

Key-words: ©6-injective module, £6-injective envelo­
pe, preradical. 

AMS: Primary 16A52, 16A64, Ref. ?.: 2.723 

Secondary: 18E40 

We start with some basic definitions and notations. 

Throughout this paper, R stands for an associative ring 

with unit element and R-mod denotes the category of all uni­

tary left R-modules. If f 6 Hom«(NfM) and P if a submo-

dule of M then f"1(P) * 4x€N, f(x)eP? . The fact that 

A is an essential submodule of B (i.e. A meets every 

nonzero submodule of B in a nonzero submodule) will be 

denoted by A £'B • 

A class & of modules is said to be abstract if it is 

closed under isomorphisms, hereditary if it is abstract and 

closed under submodules and cohereditary if it is closed 

under homomorphic images. 
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§ 1 . General t h e o r y . I n the c l a s s 7?i-r-t< MfNfffQ > f 

MfNfQeR-modf N£Mf f€HomR(N tQ)} def ine the p a r t i a l o r ­

der .£ in the fo l lowing way: 

<M fN tf fQ > *£ < M ' f N ' f f ' t Q ' > i f and only i f S I - M' f N£ 

S N ' . Q s Q' and f'|N « f . 

In t h i s paragraph X always denotes a subc lass of 7)1 . 

The fo l lowing f ive c o n d i t i o n s on X w i l l be usefu l l a t e r , 

(oc) < MtN,f ,Q > 6 £ , < M.N' . f ' .Q > 6 071 , <M,N,f fQ > £ 

£ < M f N ' t f ' t Q > impl ie s < M tN' t f ' fQ > 6 X , 

( £ ) < M,N,f,A > € ^ t A cjL» B impl i e s < M t N t i f t B > € < £ , 

( £ ' ) < M,Ntf,A > e X , AcJl> B t A s ' B impl ies 

< M,N f if tB > e X f 

( y ) < M,N,f ,A>e$C , A—--->B an isomorphism, impl ies 

<M,N tgf tB > e X , 

( c O < M tN,f,A> 6 & , A - i > B impl ies < MfN,gf ,B > e X . 

For every < B tA t f tQ> € TO l e t us def ine r ^ ( B f A t f t Q ) 

( s«£ (B,A,f ,Q) ) t o be a submodule of B generated by a l l 

t he g(M), g€ HomR(M,B) , t o which t h e r e e x i s t s a commuta­

t i v e diagram 

N <• > M 
h I I g 

Ac »» B 

with < M , N , f h , Q > € # ( N » g ^ U ) ) . 

We also use the following abbreviations: r^(B,Q,lQtQ) « 

* r^ (B,Q) , s^(BtQtlQtQ) * sie(BtQ) , r^ (Q,Q) *- v^ (Q) f 

s^ (QtQ) = s^(Q) . 
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Lemma 1.1* Let $6 be a subclass of Hi and 

f 
Q^t Ac ^ B P c - -*• M 

(*> k | h I 1 ' I1 <**> g J l g ' 
T « Cc >, D A'- =*- B 

commutative diagrams. If for every diagram (##)» 

< M,P,tcfg,T>6 X whenever <M,P,fg,Q > e # then 

l(r^(B,A,f ,Q))c r^(D,C,h,T). Especially, l(r^(B,Q))c 

c r^(D,T) . 

Proof; Obvious. 

Definition 1.2. We say that a module Q is #-infec­

tive, if every diagram 

N c ^ M 

(1) f 

with <M,N,f,Q>€$& can be completed to a commutative one. 

Theorem 1.3. Consider the following five conditions 

concerning a module Q : 

(i) Q is a direct summand in each extension N2 Q such 

that NSQ + r^(N,Q) , 

(ii) Q2r^(Q) , 

(iii) every diagram (1) with MSN + r^(M,N,f,Q) can be 

made commutative, 

(iv) Q is A -infective, 

(v) Q2fl£(Q) . 

Then the conditions (i),(ii),(iii) are equivalent and 

(iii) implies (iv) and (iv) implies (v). Moreover, if X sa­

tisfies (cc) then all the five conditions are equivalent. 
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Proof: (i) implies (ii). The module N • ft + r^(Q) is 

an essential extension of Q so that N » Q by (i). 

(ii) implies (iil). Consider the diagram (1) and extend 

f to g: M — > Q . Then g(M)fig(N) + g(r^ (M,Nff fQ))c Q + 

+ rj£ (Q) • Q . 

(iii) implies (i). Obvious. 

(iv) implies (v). Take the commutative diagram 

i 
Nc *• M 

QC *» Q 

where N - g"1(Q) and <M,N,h,Q>6§e . 

Then h » fi for some f: M — > Q and g * j£ since 

(g - jf) (M)nQ -s 0 , as it is easily seen. 

(ii) implies (iv). Obvious. 

Finally, if &£ satisfies (oc) then rg = s^ and we 

are through. 

Corollary 1.4: Let «& be a subclass of ffl satisfying 

(/J). If Pf QeR-mod, P£Q , then P is §6-infective pro­

vided P2 r^(Q) . 

Proof: We have r^(P)cr^(Q) by Lemma 1.1 and P is 

£ -infective by Theorem 1.3. 

Definition 1.5. For any ordinal oc and modules A£B 

let us define the sequence r°J(BfA) of modules inductively 

as follows: 

r£ (B,A) * A 

r^+1(BfA) . r£(BfA) + rJfc(8frJ(BfA)) 

and r" (SfA) - JU r j (BfA) , oc limit. 
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Further, put F^ (BfA) • rj (BfA) where r£ (BfA) « 

= 4+1(B,A) . 
Corollary 1.6: For every module Q f the module 

r^(3fQ) is 56-injective. 

Proof: Denote P « Fg (QfQ) . Then *#(P) • *g, (QfP)£ 

£ r^(QfQ) » P and apply Theorem 1.3. 

Lemma 1.7. Let SB be a subclass of %> satisfying 

(<y) and A£B be modules. If f: B — > B is a B-isomor-

phism of two infective envelopes Bf B of B then 

f(r*(BfA)) * r£(B,A) . 

Proof: It follows easily by transfinite induction using 

Lemma 1.1. 

Lemma lf8. Let £ be a subclass of ffl satisfiyng (£'). 

If Q£PS$ then r*(§fQ)sr£ (<SfP) for every ordinal oc . 

Proof: By transfinite induction and Lemma 1.1. 

Theorem 1.9. Let tf be a subclass of HI satisfying 

(<*),(£'). Then F^ (QfQ) is the smallest 56-injective sub-

module of Q containing Q . 

Proof: The module r^ (§fQ) is 56 -infective by Co­

rollary 1.6. Let a module P f Q£P£Q f be & -infective. 

From Theorem 1.3 we get P « r1 (QfP) and Lemma 1.8 then 

yields F^ (QfQ*)£P . 

Definition 1.10. An tf-infective module B is said 

to be an SC-injective envelope of a module A if there is 

no proper S6 -infective submodule of B containing A . 

Remark 1.11: If & satisfies (*y) then the class of 

«£ -infective modules is abstract. 

Theorem 1.12. If the subclass S£ of 1fl satisfies 
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(oc)f(/S) and (y) them every module Q has an ^-infect­

ive envelope which is unique up to ^isomorphism. 

Proofi The existenoe of an £?- .Injective envelope of 

Q follows from fheorem 1.9* Put Q^ » rS (Q,Q) and let 

f0 be the canonical embedding Q*-»P where P is an ar­

bitrary X -injective envelope of Q • Suppose that f^ : 

8 Q^—» P is a monomorphism. from Q ^ « Q^ + r^ (QtQog ) 

we get Q^^S Q^ + r^ (QfQ^ ffoc »P) by Lemma 1.1 (using 

((3),(9*)) and consequently f^ extends to a homomorphism 

oc+1* ̂ c+1—** fey Theorem 1.3. It is easy to see that f ^ 

is a monomorphism. Prom this, one easily derives the exist­

ence of a monomorphism f t Q • r^ (Q,Q)—**P extending the 

identity on Q • Hence f(Q) is §6-injective by 1.11, so 

that f(Q) m p f which finishes the proof. 

Definition 1*13. A submodule A of a module B is 

said to be §C -dense in B if B5A + rg(B9A) • An essen­

tial 06 -dense submodule A of B is said to be £ -essen­

tial. 

Theorem 1,14. If S£ satisfies (oc) then a module Q 

is c£ -injective if and only if it has no proper f£ -essen­

tial extensions. 

Proof: The condition is necessary since every ©£-den­

se extension of an & -infective module splits by Theorem 

1.3* Conversely, ri (Q,Q) is an oC -essential extension of 

Q so that r^(Q)EQ and Q is £ -injective by Theorem 

1.3. 

Definition LIS- Let X be a subclass of Tfl satisfy­

ing (y). A module A is said to be weakly # -dense in B 
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if BSr"l*(BfA) • An essential weakly id-dense submodule A 

of B is said to be weakly X -essential. 

Theorem 1.16. If X satisfies (ct) and (-y) then a 

module Q is X -infective if and only if it has no proper 

weakly X -essential extensions. 

Proof: The sufficiency follows from Theorem 1.14» Con­

versely f suppose that K is a weakly ££-essential extens­

ion of Q • Then rk (QfQ) « Q by Theorem 1.3 and so Q £ 

S K S F g (K,Q) » ¥& (QfQ) « Q . 

Remark 1.17: If X satisfies (y) then ¥% (QfQ) is 

the greatest weakly X -dense extension of Q contained in 

Q since for a weakly X -dense extension P of Q with 

Q S P S Q we have Psr^(P fQ) « F^ (QfQ) . 

Lemma 1.18. Let X satisfy (£') and (y) and A s B S 

S C be modules • Then 

(i) if A is a weakly X -essential submodule of C then 

B is weakly X -essential in C f 

(ii) if A is weakly X -essential in B and B weakly 

X -essential in C then A is weakly X -essential in C . 

Proof: (i) is immediate since Lemma 1.1 yields 

Fj(C,A)Srj(C,B) . Partner, we have BSr^(B fA) f C £ 

S r £ (CfB) and Lemma 1.1 gives CsF*j (S,B)s F ^ (C,F^ (C,A))« 

• ¥% (CfA) . 

Theorem 1.19. The following are equivalent for a class 

X satisfying (oc)f (fl ) and (^): 

(i) H is a maximal weakly X-essential extension of Q f 

(ii) H is an X -infective envelope of Q f 

(iii) N is X -injective weakly X -essential extension 

of Q . 
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Proof: ( i ) implies ( i i ) . The X - i n a c t i v i t y of N 

follows from 1.16. If K i s X - infect ive . QSK5N then 

1.18 and 1.16 yield K * H . 

( i i ) implies ( i i i ) . It follows from Theorem 1.9 and 

1.12 that Qc'H # Hence Q£H£Q « H and H - F^(QfQ) by 

Theorem 1.9. 

( i i i ) implies ( i ) . By Theorem 1.16. 

Proposition 1.20. Let £& be a subclass of Tfl s a t i s ­

fying (oc.),(cf) and Q be a module. Then Q i s X - infec­

tive i f and only i f every diagram (1) with H *s£ -dense in 

M can be made commutative. 

Proof: If the condition is satisfied then Q » r^(QfQ) 

and Q i s o£ -infective by Theorem 1.3. Conversely, MS H + 

+ r<£ (MfN) and i t suffices to use Theorem 1.3 ( i i i ) since 

Tg (MfH)£ r ^ (MfHff fQ) by Lemma 1.1. 

§ 2. (&.:B)-in:1ective modules. 

Definition 2.1. Let Q> and 3i be non-empty classes 

of modules. We say that a module Q is (&,3 )-injective 

if every diagram (1) with M/j- e d and M/Ker f e ft can be 

made commutative. 

Baer/a lemma 2.2. If & and 33 are abstract, heredi­

tary and cohereditary classes of modules then a module Q 

is (Ctt33)-injective if and only if for every left ideal I 

of R with R/--6 CL every homomorphism f: I—^Q with 

R/Kep £ « fo can be extended to gi R — * Q • 

Proof: We proceed to the sufficiency* the necessity 

being obvious. Suppose that there is a diagram (1) with 
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M / e & and M/%eT f e ® which cannot be made commutati­

ve. By Zorn's lemma,we can assume that f cannot be extend­

ed to any ff $ KS M . Let b e M \ N be arbitrary, I • (Nsb) . 

Then R/j = (Rb + M V N lies in & . Further, defining 9 : 

• I—> Q by <y(r) * f(rb) we have Ker 9 « (Ker f: b) 

and consequently R/Ker ̂  ~ (Rb * Ker f V Ker f
 lisa ^ ^ • 

Thus y> extends to f : R—** Q and hence f extends to g: 

: 4 N , b l — * Q given by g(n + rb) » f (n) + |r (r) f a contra­

diction. 

5 3. Applications. Let J5 be a subclass of the class 

& of all couples (M,N) , M S M . We say that (P satisfies 

the condition (a) if (MfN) e <P f NsN's M implies (M,N')€ 

e <P . 

Remark 3.1: Let % f (P be subclasses of & and 

<£ = 4< M fN ff fQ>; (MfN) € <P f f€HomR(N,Q) f (MfKer f) e 

6 X ? • Obviously, & satisfies ((I) and (/y). Moreover, if 

both X and <P satisfy (a) then A satisfies (oc) and (of). 

Now we recall some basic definitions from the theory of 

preradicals (for details see C43 and [53). 

A preradical s for R-mod is any subfunctor of the 

identity functor, i.e. s assigns to each module M its 

submodule s(M) in such a way that every homomorphism of M 

into N induces a homomorphism of s(M) into s(N) by res­

triction. A preradical is said to be 

- idempotent if s(s(M)) * s(M) for every module M f 

- a radical if s( /s(jj)]
 s 0 for every module M f 
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- hereditary i f s(N) » Nns(M) for every submodule N of 

a module M . 

A module M i s s-torsion i f s(M) • M and s-tor-

sionfree i f s(M) = 0 . If r and s are preradicals then 

we write r £ s i f r(M)Ss(M) for a l l M€ R-mod • The ze­

ro functor i s denoted by zer and the identity functor by 

id . 

For every M€ R-mod we define ^JJJCN) « 5S f(M) f f 

ranging over a l l fcHom-^M.N) . It i s easy to see that 

r*M. i s an idempotent preradical and, in fact, the small­

est preradical for which M i s a torsion module• 

For a preradical s and modules Jl£M let us define 

Cfl(N:M) by Cfl(N:M)/|[ • s(M/N) . I f M » N then we write 

simply CS(N) * CS(N:N) • Obviously, for N0<= N f MQS M 

and f€HomR(M,N) withf(M0)£NQ we have f (CB(M0:M)) £ 

SCS(N0:N) . 

definition 3*2. Let s and u be preradicals for 

R-mod • A submodule N of a module M i s aaid to be s -

dense in M if Ms C|N:Ca(M)). A preradical s i s said 

to be balanced if A / g s /p implies that B is si(3-den-

se in A if and only if D is s..-dense in C . 

Remark 3*>3: The fact that N is sid-dense in M 

means that N is s-dense in M in the sense of Beachy 

til. Further, N is s - d e n s e in M if and only if / N 

is s-torsion and if s is hereditary then sa-density 

means the same as s -density for every preradical u • 

Lemma 3.4. Let s and u be preradicals for R-mod 
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and N.tmNpSN be modules. I f N, i s s -dense in N then 

N2 i s s o . 

Proof: Obvious since N£ C^N-^C^N))* CS(N2:CU(N)) • 

Definition 3.5. Let to every MeR-mod correspond four 

preradicals s(M)
f t

(M)
f u(M)

f v
( M ) . Let & be the class 

of all couples (MfN) of modules such that N is s <?jg)~ 
u 

dense in M and X be the class of all couples (MfN) such 

that N is t (jU-dense in M • Now let £6 be the class of al 

<MfN,ffQ> such that (MfN) m. <F> ffeHomR(NfQ) and 

(MfKer f) m X .We say that a module Q is (sftfufv)-in-

jective if it is & -infective. 

Proposition 3.6> Every module Q has an (sftfufv)-in-

jective envelope which is unique up to Q-isomorphisnu 

Proof: Both classes 3* and X satisfy Condition (a) 

by Lemma 3«4 so that it suffices to use Remark 3*1 and Theo­

rem 1.12. 

Lemma 3.7. Let s,tfufv be preradicals for R-mod f 

A.f Bf M be modules, A SB and f 6 HomR(MfB) be such that 

f (A) is s -dense in M and Ker f is t -dense in M • 

Then f (M)£ Cs(A:B)n t(B) • 

Proof: Easy* 

Lemma 3 . 8 . Let A £ B be modules and s f t . u , v prera­

d i c a l s for R-mod s a t i s f y i n g one of the fol lowing c o n d i t i ­

ons: 

( i ) u « t = id f A i s s i < 3-dense in B f 

( i i ) s i s idempotent and u * zer f t = id f 

( i i i ) s i s hered i tary and v « id • 

If f in the notat ion of 3 . 5 f s ( M ) - s f t ( M ) = t f 
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tt(M) m ii f v ( M ) m v for evepy McR-mod then Ca(A:$) n 

n t ( B ) S p ^ ( B f A ) . 

Prftof: Put M-« Cfl(AiB)nt(S) and H » Ant(8)# It 

is easy to see that N is s -dense in M and 0 X0 \ -

dense in U fpom which the assertion follows easily. 

Definition 3.9. Let sf t be ppepadicals fop fi-mod . 

We say that A is an (sft)-dense sttbmodule of B if B £ 

S A + (Ca(AsB)nt(B)) • An essential, (sft)-dense sttbmodttle 

A of B is said to be (sft)-essential in B • 

Proposition 3*10. Let sft be ppepadicals fop R-mod 

and A SB be modules. Then A is (sft)-dense in B if 

and only if A is s^-dense in B and B » A + (Bn t(B)) 

Proof: Easy. 

We say that the preradicals sf t» tt, v for R-mod sa­

tisfy Condition (# ) if one of the following holds: 

(i) ti « t = id , 

(*) (ii) u = zerf t - id and s is idempotentf 

(iii) v s id and s is hereditary. 

Corollapy 3.11: Undep the notation of 3.5 let s ( M' « 

» s f t
( M ) * t f tt

(M) - tt f v
( M ) - v for every Me R-mod . 

If sftfufv satisfy Condition (*) and A £ B are modules 

then A is Sfi-dense in B if and only if A is (sft)-

dense in B . 

Ppoof: The proof of the necessity is direct and the 

sufficiency follows immediately fpom 3.8 • 

Copollapy 3.12: The following are equivalent for ppe­

padicals sf tf tt, v fop R-mod satisfying Condition ( # ) : 

(i) Q is a direct summand in each extension N in which 
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i t i s (s tt)-dense t 

( i i ) Q9CB(Q)nt(§) t 

( i i i ) every diagram (1) with N (s,t)-dense in M can be 

made commutative, 

(iv) Q i s (s t t t t t t v)- inject ive . 

(See t l ] t 2 .5.) 

Proof: Conditions ( i i i ) and (iv) are equivalent by 1.20 

and 3.11. Further, by 3.11, Condition ( i ) means the same as 

that of Theorem 1.3. How r^(Q) * Cf l(Q)nt(§) by 3.7 and 

3.8 and Theorem 1.3 finishes the proof since & sat i s f ies 

Condition (oc) by Lemma 3.4. 

Corollary 3.1g: Let s , t t a t v be preradicals for 

R-mod satisfying Condition (* ) . For any Qc R-mod define 

the sequence of modules Q^ inductively as follows: Q • 

- Q • Q « c + 1 - Q«c + ( C s ( Q « * > " t ( Q ) ) a n* Q* - / .V* Q/J • * 
l imit . Then the module Q » Q^ where Q^ * ^ ^ i i s the 

smallest (a , t ,u ,v ) - infect ive submodule of Q containing Q • 

Proof: By Lemma 3.7 t 3.8 and Theorem 1.9. 

Lemma 3.14. Let t be a preradical, s a radical and 

AsBrsC be modules. If A i s (s t t ) -essent la l in B and 

B i s (s t t ) -essent ia l in C then A i s (s t t ) -essent ia l 

in C . 

Proof: With respect to Proposition 3.10 i t suffices 

to show that i f A i s s^-dense in B and B i s e^-den-

se in C then A i s s^-dense in C • But this follows ea­

s i ly from the radical property of s • 

Corollary 3.15: Let s t t t uf v be preradicals for 

R-mod satisfying Condition (* ) . If s i s a radical and 
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QsR-mod than 5 -= Q + (Cfl(Q:Q)n t(Q)) is the smallest 

(8ftfafv)-injective submodule of Q containing Q . 

(Sea C13, 2.7 .) 

Proof: la the notation of Corollary 3.13» Q is (sft)-

dense In Q« by Lemma 3.14, so that Q 2 « Q^ and Corollary 

3.13 completes the proof. 

Corollary 3.16: Let s , t ,a ,v be preradicals for R-mod 

satisfying Condition (* ) f Qc R-mod • The module Q i s 

(s ft fu fv)-in;jective i f and only i f i t h&a no proper ( s f t ) -

essentlal extension. 

Proof: By Corollary 3.11 and Theorem 1.14. 

Corollary 3.17: Let s f t f u f v be preradicals for R-mod 

satisfying Condition (* ) , s be a radical and Q, W£ R-mod • 

The following are equivalent: 

(1) N i s a maximal (s , t ) -essent ia l extension of Q , 

( i i ) H i s an (s ft fu fv)-in;jective envelope of Q , 

( i i i ) H i s an (s ft fu»v)-injective (s f t ) -essent ia l exten­

sion of Q . 

Proof: It follows immediately from Lemmas 3.7 f 3.8, 

3.14 and Theorem 1.19. 

Corollary 3.18 (Baer's lemma). Let rf s be heredita­

ry preradicals for R-mod • Then a module Q is 

(s»tfzerfzer)-injective if and only if for every left ideal I 

s2er-dense in R every homomorphism f: I — * Q with Ker f 

tzer-denae in R can be extended to g: R — * Q • 

Proof: By Lemma 2.2. 

Lemma 3.19. Let s be a hereditary peeradical for R-

mod and t be a balanced pre radical. If ASB are modules, 
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f€Hoia&(MfC8(As.i)nt(B)) f g • i f where i i s the inclu­

sion of C^(AsB)nt(B) in B f then g (A) i s fl^w-dem-
S 55 Bar 

se in M and Ker g i s t ^ -dense in M . 

Proofs Easy. 

Corollary 3.20s Let to every Jl€ R-mod correspond a 

hereditary preradioal B* ' f a balanced pperadical t* , 

a (M) m zer f v ( M ) * id and le t $£ be as in 3 .5 . If A f 

B€ R-mod f ASB then J^CB,A) » £ ^Mifc (M) { A s S ) ^ t { M ) (g ) ) # 

Proofs By 3.19. 

Corollary 3.21s Under the hypotheses of Corollary 3.20 

the following are equivalent for a module Q s 

( i ) Q i s a direct summand in each extension N such that 

N S Q + 5 *\m (Cg(M)(QtN)nt(M)(H)) f 

(i i) Q a . g ^Mi( c
s (M) ( Q ) A t < M ) ( a ) ) • 

(iii) every diagram (1) with M£H + <£ a?^»(c /-jstHsflbn 

nt^ '(M)] can be made commutative, 

(iv) Q is (sftfzerfid)-in;)ective. 

Proofs By Corollary 3.20 and Theorem 1.3. 

Corollary 3.22 s Let s ( M ) and t ( M ) be as in 3.20. 

.For any Q€ R-mod define the sequence of modules Q^ in­

ductively as followss 

Q0 - Q , Q ^ = Q^ + % *W[0%WlQ« .3)nt<M>(Q)) and 

Q^ = \J Q̂ j , oc limit. Then the module Q » Q^ where Q^ * 

« 0 n is the smallest (sftfzerfid)-injective submodule of 

§ containing Q . 

Proof s By Corollary 3.20 and Theorem 1.9. 

Corollary 3.23 s For every module M let t^M' be a 
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balanced preradical for R-mod and s^ ^ = s be a heredi­

tary radical. Then the module Q » Q + 5j * J H | ( C S ( Q - § ) A 

n t ^ ' ( Q ) ) i s the smallest (s , t ,zer , id) - inject ive submodu-

le of Q containing Q • 

Proof: By Lemma 3.14 and Corollary 3.22. 
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