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Abstract: An existence theorem is obtained for a gene-
ralized Hammerstein type equation.
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In [4] Browder has obtained an existence theorem for

a generalized Hemmerstein type equation
(l) A+ 2 A F.u = 0

where each AL is a linear operator from a function spa-
ce X to its dual space X* and F; is a nonlinear ope-
rator from X* to X . Each linear operator A; is assumed
to be angle-bounded and the nonlinear 'operators Fis Foyuu

«iey Fpy,  satisfy a condition of the type

m i Py
(2) E}(r&m) SR umv)z-e Sl - I,

n m
where ¢ is some constant and w = = L, = s, .
41=4 * E7 T Bid
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Condition (2), though a natural generalization of the mo-
notonicity condition, is rather hard to verify. In this
paper we weaken this condition on the pperatora Fyyeees By
by assuming additional hypothesis of compactness on the
linear operators A; .In the application of this theory
to the case where the A; are integral operators, the
assumption of compactness is & natural one.

We now introduce the following definitions:
Let X be a real Banach space, X* its dual and let
(wr, 44) denote the duality pairing between the elements

Aar in X* and 4 in X .

Definition 1. A mapping T from X to X* is said
to be of the type (M) if the following conditions hold:

(Mg) =~ If a sequence {u,? in X converges weakly
to an element 4 in X (written 4, —~4« ), the sequen-
ce Tw,—~w in X* and m sup (TUp,up) £ (v, u),

then Tu = w .,

(Mp) - T is continuous from finite dimensional
'.ubapacu of X to the space X¥* endowed with the weak*-
topology.

It should be observed that if T is monotone and
continuous then T is of type (M) L2]. The concept of
mappings of type (M) was first introduced by Brezis [2]
using filters and later used by de Figueiredo and Gupta in
(51.

Definition 2. If T is a bounded monotone linear

map of X into X* ,then T is said to be angle-bounded
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with constant o = 0 if for all w4, in X
1
(Tw, a) = (T, )l & 204 (Tu, 4325 (Tar, 223" .

It is clear that every monotone map T which is sym-
metric is angle-bounded with a = 0 . In proving existence
theorem we shall appeal to Proposition 3 of [5] and Theo-

rem 4 of [3] which we now state.

P:opgsition 1 (de Figueiredo and Gupta). Let X be a
reflexive Banach space and T be a bounded mapping of ty-
pe (M) from x' to X* ., Suppose that the mapping T sa-
tisfies the following condition:

There exists R > 0 such that

(3) (Tx,x) >0 tor lul>R

Then the range of T is all of X* .,

Theorem 1 (Browder and Gupta). Let X be a Banach
space, X* its dual, T a bounded linear mapping of X in-
to X* which is monotone and angle-bounded. Then there ex-
ists a Hilbert space H , a continuous linear mapping S
of X into H with 8* injective and a bounded skew-
symmetric linear mapping B of H into H such that
T =8*%(I+B)S and the following inequalities hold:

(i) IBl € a , with'a the constant of angle-

boundednes of T
(i) 181* & R if and only if for all 4 in X ,
(Ta, ) & xu»u;
CEENIN {3 % YU S RS S Py for
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all 4 in H .

We are now in a position to state and prove our exis-

tence theorem.

Theorem 2. Let X be a Banach space and X* its du-
al. Let €{X4,...y K, ? be a finite family of bounded, li-
near, monotone and compact operators from ‘X to X* with
constant of angle-boundedness a =0 and Xyl < X,
for each 4 . Let {F,,...,F, 3 be a corresponding finite
family of continuous, bounded nonlinear operators from xX*
to X which satisfy the following condition:

For every m -tuple {ag,4hy yeeeydly }

s 5 2 %
(4) i§4 (F, (), ) 2 - cidllw‘iﬂx*ﬁ-kgl F,¢0),u,)
i 2 A gt
where M= S, and c<(i+a) X .
iz4 # 0
Then the equation
n
(5) ll-+,z K*P.H’-o
=4 »

has a solution in X* .

Proof: We first prove the following lemma.

Lemma 1. Let T be a continuous mapping from X +to

X* such that T= T, +T, where T, satisfies the con-
dition
(6)  (T,x-T 4,x-4) = ¢(hx-gl) for all x,4

oYz 0, dn) =0 iff =10

and T2 is compact.
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Then T is of type (M) .

Proof: Since T 1is continuous, it suffices to show
that T satisfies condition (M,) of Definition 1. Let
Mg —= 4 and Tu,—=w and Um sufe (Tly,, Ly ) £ (W u) .

Then we have
ellu, ~ul) £ (T, ~ T, u, ~u)

= (Tt = T, sy =) = (Tpaty = Tytr ) sty = ac)

= (Tum,u@)-(Tum,u)-(‘l‘@,w”—u)-(Tium- Tzw, Al - he) .
Since #4,~u« and T, is compact, there exists a subse-
quence (which in turn will be denoted by 4t, ) such that
Ty sy —> 4 . So we have
Xim gy o ik = ) & Lim pup (Tl by ) = (wr, )
& (wr, )=~ Cwrye)
< 0
which implies that u,,—> 4 .Since T 1is continuous
Tuy—> Tu = w, i.e. T satisfies condition (M;) of De-
finition 1.
We now proceed to prove the main theorem. Since each
K, is angle-bounded, by Theorem 2 for each 4 there ex-
ists a Hilbert space H; ,a continuous linear mapping
Sy + X—>-H,; with S_i:v inje¢tive and a bounded linear

skew-symmetric mapping B-i, of H-b to HL such that
2
(7) K‘iu S:(I-*B&)S_;’, NB_;lléa,, IIS&I <X,

-1 .
and [(1+3,)) &, “'.L]H.; 2 (1+a®! ll/ﬁ,&ﬂ”“ for

all . in H, .
4 4
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We form a Hilbert space H- as _the orthogonal direct sum
(4
H=424 ®H, . An element /» of H 1is an m-tuple
=
12 . . . 2 2 2
Thoyyoror b, 3 with oy in H, 7\111110 lh“Hgé%“’ha'-ng, .
We define a mapping S: X— H by
Su=48u, Su,.., S ul .

m

g
Then Sx i "5453""4‘" hom i, ., h,t -
If 4 is a solution of (5), then (7) gives

‘ n
(8) ,u.+4§4 S:(I-EB&)S_LPLA&-O .

»

Since S* is injective, there exists a unique % in H
such that

i m
(9) S*h + X SE(I1+B)JF, S%h a0
=i v it
which implies that
ot -
(10) h o+ &?4( I+ 34) S‘LF‘LS o= 0
‘ Taking projections we get
(11) B (1+BISF S = 0, 4ad 2, m
(12) (1+3) M, +S,F, 8% =0, i=d,2,m .

This can be written as an operator equation

Th =T, h+T,h=0 in H

’
where

(T,h), = (143,07 4,
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(T,h), = §,E, 5% .

(7) gives
[T st -
W, w1y = S LBy, byl
m
2U4+ad)! = 14 ?
+=1 e
=+ a1l
i.e.

(13) LT, o, b1, 2 (14 A im it

Also using (4) and (7) we get

[Th, o] = [T, h1+ LT 0, k]
=:§4E(1+B L LT 2 LS, F,S%, &, 1H,
=U+ady il + 2 (5 57, SEh,)
24+ Iml - e, s: usm.n+ z (F,(0),85h,)

21+ a?)” M»l - cX, Zlhﬂ—ZﬂP(O)lHls*h I
2 e @I} - X Ialf-¢ % I, com%”’(z 1Sth, %
2 LU +ad)" - X1 ImIE - Z IF; €0) 122K (E L 1)

PRSI STYRLS ATk S R
IE, (o \ "2
o= ———L 2 sl
Az1 “:.l
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where ¢, = (1+ a?)-t - ek, >0 by assumption on
the constants. Hence there exists R > 0 such that

[Th,nl>0 for all IUhIlH>R .

Since each X; is compact, by Amann [1] each S; in
the splitting (7) is compact and therefore T, is compact.
Thus the continuous operator T is the sum of 'the operator
T, &and T, where T; is linear and satisfies (6) and T,
is compact. Therefore by Lemma 1 T is of typ (M) . Fur-
thermore T is bounded because each 8; and F; is boun-
ded and satisfies the condition that [Th, K1 >0 for
I%ly, >R >0 . So it follows by Proposition 1 that there
exists a solution S+ in H of (10). This implies that
S*#%  is a solution of (8) and therefore of (5). This

completes the proof.

Remark. Our Lemma 1 is similar to the Proposition 1.1
of [6] with the exception that our hypotheses are diffe-~

rent.
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