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Commentationes Mathematicae Univeraitatis Carolinae 

13,3 (1972) 

PRIME FILTERS WITH CIP 

ZdenSk SROLfK, Praha 

Many definitions and theorems in general topology have 

common background in the theory of filters. It seems to me 

that the most convenient object for the study filter proper­

ties is paved space which is defined to be a set endowed with 

a finitely additive and finitely multiplicative cover (called 

paving). It appears then, e.g., that normality and extremal 

disconnectedness of a topological space have formally the sa­

me definition, and the description by means of filters is sti­

mulating. 

Here we consider the properties related to realcompact 

spaces, ultracompact spaces, almost realcompact spaces etc. 

In other words, we study the tightness of two valued # -addi­

tive functions and their extensions. Thus the cardinal 4-r0 en­

ters all the definition, e.g. we consider filters with the 

countable intersection property and various kinds of comple­

teness are introduced by properties of these filters. Almost 

all the results hold if the cardinal #Q is replaced by any 

larger cardinal, and in addition, the proofs work. The rea­

der is invited to read this paper in this more general set­

ting. 

AMS, Primary: 54A99, 54D60 Ref. 2..: 3.96 
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For more results on extensions we refer to Frolfk [53 

where the extensions to hyper-extensions of pavings are stu­

died - abstract "discrete" unions are taken as admissible 

operation. For more examples we refer to Frolik [6] wnere 

BB-complete spaces (= every Borel two-valued tf'-neasure is a 

Dirac measure in Baire sets) are studied. Finally, in Frolfk 

[7] a neat theory of multivalued maps into a paved space is 

developed. 

The basic definitions and results were discussed in my 

1970-71 seminars, and one of the main results was included in 

Herrlich s lecture on the 3rd Prague Symposiumo The aim of the 

present paper is to furnish the proofs and the background ma­

terial. The approach to the problems seems tc he more impor­

tant than the results© 

--• Filters. In this paragraph let X be a set, and let 

f be 8 paving of X . The elements of T are called stones, 

and the elements of ftP are called co-stones. We denote by 

t S" the smallest additive and completely multiplicative col­

lection which contains f. The elements of t ? are called 

closed sets (more precisely, f-elosed sets), the elements of 

^ t y are called open sets. 

1.1. Filters. An &-filter is a finitely multiplicative 

subset <$ of T~(0) such that F a F ' c tf , T € F implies 

F B $ . A maximal T-filter is a filter which is a proper 

subset of no T -filter. Clearly an <F-filter $ is maximal 

if and only if each stone which meets each element of $ be­

longs to $ . If f as yf then $ is maximal if and only if 
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for each F in T either T e § or X -̂  F c $ . 

^•2» Definition. An T-filter $ is called prime if the 

mutually equivalent conditions in the following proposition 

are fulfilled. 

Proposition. The following conditions on an #-filter $ 

are mutually equivalent: 

a) If T^ u Fa € $ , F4 c T then F̂  £ $ or ?z € $ . 

b) The collection $ « -ftf-FIFe f - $J » y f ̂  - $ > 

is a filter in f $ , 

c) <£ u $ is a maximal centred collection in SFv / F, 

d) There is a maadmal centred collection Y in Tu <f T 

such that $ « Y n f . 

e) There is an ultrafilter If' on X with $ * y'n f -

Proof. I. Conditions a) and b) are equivalent because if 

F is the union of a finite family fR ? in f— £ then 

x~rm m x - F ^ i , 

and hence condition a) holds if and only if $ is finitely 

multiplicative• 

II. We will check that conditions a) and b) imply condi­

tion c), and that condition c) implies condition d). Put Hta 

= $ u | , If Y c f then either Y e $ or X - Y e $ , and 

hence Y is a maximal centred collection in Tu f T if Y 

is centred. Assume conditions a) and b), and prove that If is 

centred. It is enough to show that if F e $, U « $> f then 

F r\ U is non-void. If F n U =» 0 then F c X - IL } and hence 

1 - H 6 $ , and hence U £ $ which contradicts our assump­

tion li G $ . This proves that a),b) imply c). To prove that 

condition c) implies condition d) it suffices to show that 
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Yn fc $ . 
If F e l ^ f - i then both F and r - F belong t o f c T 

which contradicts our assumption that Y is centred. 

III. Assume d), and let f*' be any ultrafilter on X such 

that Y c Y'. Clearly, Y'n (PUT?) » Y (because if Y 

is a maximal centred collection in 71 with -y 71 -» 71 then 

each ultrafilter Y' 3 If meets 71 in Y )• Hence e) holds. 

IV. Assume condition e) and prove condition a). If F u 

u F1 e $ with F . g f then T u F2 e Y y and hence F ^ f 

or ^ e Y / j since Y'n -̂=5 $ , we conclude that either 

F^ e $ or F 2 e f , 

Remark. In what follows we shall freely use Proposition, 

and the following relation 

% -. $ 

which holds for every prime filter $ . 

Corollary. Every maximal filter is prime, and the conver­

se holds if the stones and the co-stones coincide. Prime fil­

ters are just the traces of ultrafilters. An T -filter $ is 

prime if and only if $ is a prime r̂ ̂ -filter. If $ is a 

prime filter in W 9 and if ?"c 7 then $ n &' is a prime 

filter in &' . 

A prime filter need not be maximal. For example, usually 

comaximal filters (see 1.3) are not maximal. 

--•3. Definition. An ?*-filter $ is called comaximal 

if % is a maximal y ? -filter. 

By Corollary 1.2 every comaximal filter is prime. 

Proposition. An $ -filter $ is comaximal if and only 

if 
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^ E i F I F e ^ F D U e f f o r some tt* . 

Proof. Assume that $ is maximal. If F e $ then 

DC - F £ f , and since §> is maximal, U n (X - F) ^ 0 

for some It in § j hence IL c F . This proves the inclu­

sion c • The inverse inclusion is always true. Conversely 

assume that $ is given by the formula. Then |> is a filter 

(and hence both $ and $ are prime by 1). If $ were not 

maximal then there would exist an element 11 in y ^ - $ 

which would meet each element of $ • then F-S- .X-H e & and 

F r> U for no It in $ . 

The result in Proposition is restated as follows. The mea­

ning of the term basis is clear (a basis need not be a part 

of the filter). 

Theorem. An $ -filter $ is maximal if and only if $ 

is a basis for $ a filter $ is comaximal if and only if 

$ is a basis for $ . 

Remark. The following conditions on <& are mutually 

equivalent: 

a) Each prime & -filter is maximal. 

b) If $ is prime, and if F 6 <F- $ then F'c X -

- F fdr some F' in $ . 

c) If y is an ultrafilter on X and F e f - Y then 

F ' c X - F for some F' in Yn T . 

d) If $^ and $ a are two distinct prime filters in 

f , then there exist F^ e $ ^ such that E, ̂  F2 » 0 . 

e) If §^ and $,-, are prime, and if $4 c $ a then 

#, - *a • 
f) Each prime ^ SF -filter is maximalo 
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Examples. 1. Let $ be the collection of all closed sets 

in a topological space X . The following conditions are equi­

valent: 

a) Each closed prime filter is maximal* 

b) Each open prime filter is maximal* 

c) The interior of each non-void closed set is non-void* 

d) X is a topological sum of indiscrete spaces. 

m e proof is routine, and will be left to the reader. 

2. Assume that $ is a prime closed filter in a topo­

logical space X # Then $ is maximal and comaximal 

only if for each F in $ there exists an F' in $ such 

that F' C <m£ F (use Theorem)* 

!•*• Separation axioms 

Proposition A. The following three conditions on 3" are 

equivalent: 

a) If Fi c * , P2 € r , P1 A Fa » 0 then there 

exist XL^ in j $ such that Ej, c lt^ and \ A \l±» 0 . 

b) If $ is a prime ? -filter, and if &. and $ 2 are 

maximal <? -filters with <j> c &, r\ $ a then §„, « $ a • 

c) If $ is a comaximal £"-filter with $ c $ i n $ a 

where $^ are maximal then $^ a $ 2 * 

A paving ? which satisfies these three conditions is 

called normal* 

Proof. Assume a), and let §^ , $ a be maximal ^-fil­

ters, and let $ c $ n $ a be prime. If &, -+- $ 2 then 

there are 1^ e &* with P̂  n F 2 » jgf f and by Condition a) 

we can choose U,̂  e. y 7 with F^ c li^ , It̂  »A U-a-* 0 j 

put 1^ * X - U ^ . Clearly V? 4 <$^ , and hence f! £ 

^ $ , 4, » 4, 2. „ On the other hand, since «$ is prime 
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and T<f u F2' « X e $ we have either F^ € $ or F2 c 

c $ and this is a contradiction. Clearly b) implies c). 

Assume Condition c) and let F* e f with F, n F„ a- 0 . 
*l» * l X 

Let %• be the set of a l l l l € r ? with F* c U . If 
*i* * *§*• 

U„ n Urt 4= 0 for each U* in Yj then we can take a 
*i 2. *-** "-* 

maximal *y fT -filter Y :_> IP"* u ¥3 , and the cbmaximal 

? -filter Y has at least two distinct extensions. Indeed, 

F- meets each element of Y and hence there exists a ma-*v 

ximal f -filter § ^ 3 ? u CF 4) . Since Ĵ  n T± «* / , 

necessarily $» 4* $ a 

Examples, a) If iT = closed X where X is a topo­

logical space then f is normal if and only if X is a nor­

mal topological space. 

b) If T = open X where X is a topological space 

then 7 is normal if and only if X is extremally discon­

nected. (See 2.6.) 

c) If <T= meter X ( = the collection of all zero sets 

in X ) then ST is normal. 

d) If £"= COKAW X then 9 is normal if and only if 

X is an F -space. 

Another characterization of normality is given in 2.6. 

Proposition B. The following conditions on T are equi­

valent: 

a) If $ is a prime (comaximal) T tfilter then fl$ 

is empty or a singleton. 

b) If x^ e X , x% e X , x^ + ** ^en #*t A U*a* 0 

for some U- e / y f with x. e LI* 
*%> Q *•» * t * 

c) If x^ c X , Xa e X , X̂  + X4 then X * F< u Fa 

for some F^ c gr, x^ £ FV -
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A paving T which satisfies these three equivalent 

conditions is called separated* 

Proof, Obviously the conditions b) and c) are equiva­

lent, and c) implies a). Assume there are o^ 4= .x^ such 

that if 1F̂  is the collection of all 11 a x^ then there 

exists a maximal y & -filter i f a ^ u f 2 - Clearly 

X^ e D $ where $ is the comaximal T -filter T . 

This concludes the proofo 

If X is a topological space then X is Hausdorff if 

and only if closed X is separated. Similarly, X is regu­

lar if and only if closed X is regular in the sense of the 

following definition. 

Proposition C* The following conditions on & are 

equivalent: 

a) If T € T and * e X ~ F then there exist 11 e 

€ y T and V e y f such that x e tt , F c V, U n Y =* 0 . 

b) If $ is a prime <T -filter, and if f* is a co-

maximal filter contained in $ , then fl $ » f) V „ 

c) If $ and $ ̂  are prime ? -filters,. and §i c 

c $ a then f } ^ -> f\§± . 

A paving .jF is called regular if it satisfies these 

conditions* 

Proof* Since every prime filter contains a comaximal 

filter (which is prime), the two conditions c) and b) are 

equivalent* 

Assume that Condition a) holds, and $ c $» a r e Pr~~ 

me filters* If ^ c « n $ < 1 - n $ a then there exists an F 

in $ - $ with * <£ V . If It and Y are as in Condi­

tion a), then (X - l i ) u < X - V ) - * X , and hence 
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X-Uecfcj ^aft hence * e X - U ; this contradicts our as­

sumption x c VL 

Now assume that condition a) does not hold, and choose 

F e ? and a e X - F such that .x and F are not se­

parated by sets in y $* . Consider a maximal ff 2T -filter V 

which contains all VL n V where j(cll,FcT, 1 e y ? J 

Ve <y f . If C € V then x € C , and hence * e fl ? . 

Each element of If meets F , and hence we can take a maxi­

mal T -filter $ 3 If which contains F. Clearly x 4 rt$ -

It seems to me that condition c) explains why regularity 

enters so many theorems as an assumption. 

--•5. Compact and almost compact pavings. A paving 7 is 

called compact (almost compact) if the intersection of each 

IT -filter (comaximal *$ -filter) is non-void. 

Each J -filter is contained in a maximal ^-filter and 

hence, compact implies almost compact, and each of the follo­

wing conditions is necessary and sufficient for $ to be com­

pact: 

a) If § is prime f -filter, then fl § + 0 • 

b) If $ is maximal f -filter then fl$ -# 0 • 

Proposition. If ? is regular (see 1.4) and almost com­

pact, ..then y is compact. 

Proof. Let $ be a prime 7-filter, and let $^ be a 

comaximal filter contained in $ (let V 3 $ be a maxi­

mal <y $ -filter and put ^ ** V ). By regularity f) $ » 

Theorem. The following properties of a compact paving T 

are equivalent: 

a) <$ is separated. 
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b) ? is regular, and if ̂  4= X a then .*e Tf x2 £ P 

for some F c & . 

e) *T is separated and normal. 

Remark* It is easy to see that <3f is compact if and on­

ly if t ?* is compact. For more results related to compact­

ness and t we refer to Frolik ClI, see also J. de Groot C U . 

2. Filters with CIP 

A collection Tfl of sets has the countable intersection 

property (abb. CIP) if the intersection of any countable sub­

set of HI is non-void. 

2.1. Proposition. The following conditions on a prime 

'J'-filter $ are equivalent: 

(a) $ has CIP. 

(b) If % c f & is a countable cover of X ,then 

| r\ % * 0 . 
Proof. If Fj> 0 , P^ e $ then tt-^X-F*,} is a 

countable cover of X 9 and % n $ » 0 . if % c f$* is 

a countable cover of X with % r\ $> =* P then 

lX~ItlU£*2£i is a countable subset of $ with empty 

intersection 

Definition. If f c exfr X then an 3" -filter $ 

is called HI -Cauchy if for each countable cover 9£ c 1TL 

of X , some element of % contains an element of $ . 

Theorem. Let $ be a prime ?-filter. Then <|> has CIP 

if and only if $ is ^r^T -Cauchy, $ is ^-Cauchy iff 

f> has CIP, and both $ and % have CIP iff $ is % -

Cauchy and $ is -y ̂  -Cauchy. 

Proof. From Proposition. 
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Corollary. If $ is a maximal <F -filter, then the 

following conditions are equivalent: 

(a) # has CIP; 

(b) $ is -gf #*-Cauchy; 

(c) $» is ^ff'-Cauchy. 

Proof. Use 1.2. 

Remark, Assume that for each sequence iT^l in & 

with F^\ 0 there exists a sequence itt^f in f ? such 

that U ^ ^ 0 and U,^ 3 F^ for each m * A paving fr 

with this property is called j£ -paracompact. Then obvious­

ly, for a prime $ , if $ has CIP, then $ has CIP. Hence, 

we can add two more equivalent conditions to the list in Co­

rollary: 

(d) % has CIP; 

• (e) $ is 'f-Cauchy. 

Example. If # nre the closed sets in a topological spa­

ce JC , then the spaces with the property in Remark are called 

countably paracompact. 

2.2. Proposition. Assume that $ ** cfP . The following 

two conditions on a prime S*-filter $ are equivalent: 

(a) c?$ ss $ , 

(b) i f % c y $ i s countable, and i f U1L e § then 

1L n | * 0. , 
Projjf. Let ^ € ?, F=r /HF^J , « * - X - Tn, and 

ILmiUfol . Clearly F 4 $ i f f U^t 6 $ , Now i f F H 

then U < 2 l e $ but <Z6 n $ = j? , If U'U 6 | hut % r- $ « 

-* 0 then F £ $ for F^ , F defined as above. 

This result generalizes as follows: 

Theorem. The following conditions on a prime ? - f i l t e r $ 
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mre equivalent: 

(a) if iF^J is a sequence in $ 9 then any F e 9* 

with To f\ iT^i belongs to $ (i.e. if T» fH F^ J , 

P ^ e $ , F e ? then F c $ ). 

(b) If U € $ and if U c U 4 U ^ S where -C U ^ l 

is a sequence in <y JF then U r. U ^ e $ for some rn 

(i.e. if L*M U. ? € $ then U. c $ for some -£ ). 

A paving IT is called #0 -normal if 2T is normal and 

-K0 -paracompact. 

Lemma. If ̂  is .#fl -normal and a prime 3"-filter $ 

has CIP then each <T -filter $ ' D § has CIP. 

Proof. If % is #<, -normal and T^ \ 0 where I^, e 

€ 3* ,then there exist T£ e <T and U ^ « ^ST such that 
F*v «= um, c *£ , and I^ \ 0 - Now if $' has not CIP, 

and if VP^ 5 is a sequence in $' with f^ \ # , and if 

\TL f is a sequence as above, then Jj£ c $ (since $ is 

prime), and hence $ has not CIP. 

2.3. Completeness. 

Definition. A paving fT is called Lindelof if fl $ 4= # 

for each 2F-filter $ with CIP. A paving ff is called ma­

ximal-complete "(or simply complete) or prime-complete or co-

maximal-complete if# fl $ 4* 0 for each ST* -filter $ with 

CIP which is, accordingly, maximal or prime or comaximal. 

(Compare with 1.5.) A paving W is called countably compact 

if each ^-filter has CIP. 

Theorem. Compact implies Lindelof, Lindelof implies pri­

se-complete, prime-complete implies both comaximal-complete, 

and maximal-complete (this is obvious). For a regular IF , 
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prime-complete and comaximal-complete are equivalent (1.4), 

and hence comaximal-complete implies maximal-complete. For 

&0 -normal 7 (Lemma 2.2), maximal-complete implies prime-

complete, and hence maximal-complete and prime-complete are 

equivalent. For countably compact y , all properties men­

tioned except for comaximal-complete are equivalent, and co­

maximal-complete is equivalent to almost compact (here count­

able compactness may be weakened to almost countably compact 

(defined in an obvious way ), and in addition, a paving 9 

is almost compact if and only if it is comaximal-complete and 

almost countably compact • 

2*4. Examples of ¥: -normal pavings. 

A paving $ is called perfect if y & cz & & (equi­

valents, if & c cT tf & ). 

Proposition. Every perfect paving is jt0 -paracompact. 

Every normal perfect ( = perfectly normal) paving is #0 -nor­

mal. 

Proof. Assume & is perfect and F^ \ 0 . Write JĴ  = 

» CMG^\ to, e H ? , and put G^ niG&fr^ m,, JL si mi 0 

Clearly G^ D F^ and G^\ 0 . 

Example. If X is a topological space then xo/ur X (the 

paving, which consists of all zero-sets in X ) is &0 -normal 

and regular. Hence (2.3) the following conditions on ?-= XVWX 

are equivalent: 

a) T is maximal-complete; 

x) If -ft̂ J is a centred sequence in <$ SF f then fHF IF e ST , 

F D U ^ for some m, ? -fc- 0 
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b) t is prime-complete; 

c) $ is comaximal-complete. 

Definition. A paving f is called normally perfect if 

for each element U of -y & there exist sequences i^i^l in 

V? and {T^} in ? such that U F ^ = U and ^ c U ^ c 

c F^+4 . A paving & is called normally ^ 0 -paracompaetf 

if for each F^ \ 0 , F^ 6 $ there exist 4U^} in 

j . T and 4F^ J in f such that F^ c U ^ c F^ and 

F^W « 
Theorem A. The category of normally perfect paved spaces 

is reflective in the category of all paved spaces* Every nor­

mally perfect space is normally #:0 -paraeompact. Every ^ 0 -

normal space is normally -̂  -paraeompact. 

The proof is left to the reader. 

Theorem B. Let f be normally tf0 -paraeompact. If $> 

is a prime f -filter with CIP then each f-filter $ o $ 

has CIP. 

Proof. If T^ s $ and T^\ 0 then there exist U ^ 6 

e #- <T and F^ € ? such that F^ ̂  # and F^ c 

c U ^ c F^ . Since 1^ c U c F^ f necessarily F^ e $ -

Corollary. If J* is normally 4c -paracompact and re­

gular then Conditions a),b) and c) in Example are mutually 

equivalent© 

Remark. We have considered three kinds of completeness 

properties. There are three more of certain interest: D $ #> 

* 0 if 

a) $ has CIP; 

b) $ is maximal and $ has CIP; 

c) $ is comaximal and $ has CIP; 
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The statements in a),b) and c) may be restated as fol­

lows: 

a') $ is prime and ST-Cauchy; 

b') $ is maximal and ^-Cauchy; 

c#) $ is comaximal and 9 -Cauchy. 

The first two properties have been studied in the case 

when f is closed X where X is a topological space, e.g. 

Frolfk [1] and £2 J. The third property is not interesting in 

the topological space if the cardinal of X is non-countable 

because: 

if maximal open filter IT in X has CIP and OV ** 9 

then the cardinal of X is measurable. 

Indeed, consider a maximal disjoint family i^^ 1 o> 6 Af 

in open X - Y - The union U of 4U^} is dense in X , and 

hence U € f . Let Ou be the filter in exfr A which con­

sists of all KlcA such that the union of i U^ l a e M ? is 

in f. Clearly & is a maximal filter with CII in e*f A 

and A & **0 . Thus A is of a measurable cardinal, and hen­

ce X is oi a measurable cardinal. 

The first two completeness properties will be studied 

in subsequent paper on the space of prime filters. 

. 2.5. Invariance of completeness under mappings. Let 9 

and 9C c <T be pavings of X . Then £" is called % -normal 

if each two disjoint 9 -stones are separated by two disjoint 

% -costones. Similarly, ff is % ~ &Q -paracompact if for 

each 1 ^ ^ 0 , T^ e $ , there exists i ^ ? in y% such 

that Gr̂  o Z„ and £ „ > 0 , Finally W is % - jfi0 -nor­

mal if it is % -normal and £, — tf0 -paracompact. 

Remark. Two pavings f and % are called topologically 
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equivalent if t f» t . If Z c & then IT and £ are topolo-

gieally equivalent if and only if 

Fr m z i z € X , Z . ^ F ! 

for each F in ? , 

Theorem A. Let $ and 2 c ^ be two topologically 

equivalent pavings of X . If Z is prime-complete then so 

is f, If f is prime-complete and Z - -K0 -normal then 

Z is prime-complete. 

Proof. Assume that % is prime-complete, and let $ 

be a prime 3" -filter with CIP. Since % c T} V - Z n § 

is a prime % -filter which has the CIP. Hence 0 Y 4s 0 • 

Since y and 35 are topologically equivalent and Z c -T ., 

n$> » H Y . 

Now assume 3" is prime-complete and X — -K0 -normal. 

Let f be a prime Z -filter with CIP and let $ be a pri­

me ? -filter with $ r. £ s IT . As in the first part O f = 

a H $ , and it is easy to check that $ has CIP. If T^ \ 0 , 

I^e$ , then there exists Zne % with Z^\ 0 and Z^ 3 

o F .Clearly Z ^ £ Y • This contradiction concludes the 

proof. 

The second theorem concerns the invariance of complete­

ness properties under mappings. It gives the natural setting 

for the author's theorems on invariance of almost realcompact 

spaces| and in the light of the present theorem the old theo­

rems do not seem pure from the conceptual point of view. 

Theorem B. Let f be a perfect map of a paved space 

9£~ <X,T> onto a paved space X*'» <X\ 7'> (that means, 

f 171 c 7' , f ^ t f j c 7 , and a l l sets f ^ C C ^ J , 

ty € X ,are 7 -compact). 
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Then $ is prime-complete if and only if JF' is, ? is 

maximal-complete if and only if $" is (and of course, P is 

compact if and only if &' is). 

Proof, a) Assume that $> is an f -filter and $' is 

an ?"-filter such that f C $3 « $' . Then 

f r n $ 3 = f)§' . 

The inclusion c is always true. Assume afr e n $ , and 

consider the f -compact set X -* £~*t (<$,)! . Clearly X n 

n C $ 3 is centred ( =- has the finite intersection property), 

and hence X r\ fl $ 4- 0 . Take some x in this intersec­

tion; clearly f x « <y~ • 

It follows that fF is compact if and only if £" is com­

pact. Notice that $ has CIP if and only if $' has CIP. 

b) Now let <j> be an ^-filter, and put $'= f T$l • 

Clearly i"A t $ ' J c f ., and hence $ and §' satisfy the 

assumptions in part a). If $ is prime or maximal then so is 

$' . Indeed, if ^ u Fa e $', then f-*C £. J or f^CF^I be­

longs to <£ , and hence F̂  C= f C f *"'* C Fi H] ) or Fa belongs 

to $>', If F meets each F'e $' , then f^EFJ meets each ele­

ment of $ and hence F-srf t£~*tTl 1 belongs to $' . Final­

ly, by part a), if $ has CIP then $' has CIP. Again by the 

part a), it follows that if ?' is prime-complete or maximal-

complete then so is P . 

c) To prove that if & is prime-complete or maximal-com­

plete then so is *f'f take a prime or maximal $" -filter $' 

with CIP and an ultrafilter X' in X' such that £'n ?"« $' 

(Proposition 1.2). If §' is prime, put $ m X n f , where X 

is an arbitrary ultrafilter in 3C containing i~ t3E'l and 
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if $' is maximal put p to be a maximal 7 -filter con­

taining £"* Z$'l . In both cases £ t§ 1 .» §' and $ 

is prime or maximal whenever $' is. Hence, by part a), if 

y is prime-complete or maximal complete then so is $' . 

This concludes the proof. 

The reasonings of parts b) and c) of the proof of Theo­

rem B are of certain interest in itself, and therefore the 

results are formulated in the following proposition. If 

X -= <X , ?"> is a paved space we denote by ji£ the set of 

prime $ -filters, by mtX the set of maximal % -filters, 

and by c«m3£ the set of all comaximal & -filters. 

Proposition. Let f be a perfect map of X onto & • 

For each 3" -filter $ let ^if$ be the f'-filter which 

consists of all £ C P ] , F € $ . Then j(i£:^iS£ —> ftS'is on­

to, >fi,f t/m,%l~tm%'*In addition, f [H $ ] = f| ̂  £ $ ^ and 

$ has the /m. -intersection property (in particular, CIP) 

if and only if >jt£ <$ has the nu -intersection property. 

Remark. In the set 41 X there is a natural paving which 

consists of all sets 

F * « m j e ^ X , F e $ ? , F e ? . 

This space will be studied in a subsequent paper. We just re­

call a construction of the projective resolution of a topolo­

gical space in 2.7* 

2.6. Normal pavings and extremally disconnected spaces. 

Normal pavings are introduced in 1.4. Here we want to 

add one more characterization which will be used in connec­

tion with extremally disconnected spaces which are usually 

defined by the property that the closure of each open set is 

open, or equivalently, that the paving of all open sets is 
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normal in the sense of our definition. 

If € i s a f i l t e r of subsets of a 3et X , denote by 

f i l t e r (HI) , J i s usually omitted, the f i l t e r on X 

which has Ufl for i t s basis. 

Proposition. A paving f of I i s normal i f and only 

i f for each comaximal ftf - f i l t e r V 

&Jbtot,x (C£Ut£jt,x V) n f> n r^ = V , 

i . e . for each U e V there exist a V e V and an F e 

<s W such that U ^ P i V . 

Proof. Assume that <T i s normal and II e If - Since IT 

i s comaximal, there exists an F' in af with F'c tt .Since 

T i s normal there exist disjoint V and V in tyS0 such 

that F ' c V ^ W ^ X - t t , Thus F = X - V i s in f , 

yeY,VcFctt . 

Conversely, assume the condition, take a prime 2T - f i l ­

ter $ , consider maximal IF - f i l t e r s $ > $ 2 such that 

$ c $ 1 A $ 4 •, we must prove that $,, » $ ^ . If $^ 4s 

# $ 2 ,then F,, rv F^ =- # for some % 6 $ - . Thus 

X - II « U z? 1^ , and hence U e $ a . B y the condition 

applied to $ 2 , we get U z> F-JVZIF' for some tt, V € 

« f i i F , P ' e $ a . Thus 

^ c X - F , F ' c V C X - F ) r > V « 0 • 

Thus F e $,- and F' e $3, a r e separated by costones, and 

this contradicts our assumption that $ . n $,3, contains a 

prime f i l t e r . 

Corollary. Assume that X i s a topological space. Then 

X i s extremally disconnected i f and only i f for each coma­

ximal closed f i l t e r $ open elements of <§ ( i . e . closed-
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open elements of $ ) form a basis for $ % *»e» i--* -f°r 

each comaximal closed filter $ the maximal ? A y f -

filter c j > n ? n y ? is a basis for $ , where ? » 

closed X . 

Proof. If open X is normal, thus by Proposition, if 

$ is a maximal closed filter then for each F € $ the­

re is an open V and an F'c $ such that Fz>Yz>F' • thus 

the closure of Y is a closed-open set which belongs to p 

and is contained in F . 

Conversely, if the condition is fulfilled, then the con­

dition in Proposition is fulfilled, and by Proposition, open 

X is normal. 

We shall need a little bit more: 

Theorem* If X is an extremally disconnected space, 

then for each maximal clopen filter F the closed filter 

$p * < F I F e closed XfFz>1l€ P for some 11} is a co-

maximal closed filter, and the relation -C T — * $p ? is Di­

rective. 

Proof. It remains to show that $ p is prime. If f̂  u 

u FX-D1L e r, F^ c closed X , then the interiors VJ^ of 

Fi are clopen, and hence they should cover VL , and since 

r is prime, either 11 e F or U 2 6 F , and hence F^ « $ 

or F% « § . 

2»7. Application to topological spaces. 

Proposition. If X is a regular extremally disconnected 

space then the following three properties are equivalent: 

a) Closed X is prime-complete ( = -tf,- -ultracompact 

Slot £13). 
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b) Closed X is comaximal-complete ( * almost realcom­

pact Frolik r 1 ,2 .1) . 

c) X is realcompact (i.e. the following equivalent 

conditions hold: warX is complete, omx/r X is prime-

complete, and X€Juy X is comaximal-complete). 

d) Clopen X is complete. 

Proof* The equivalence of the conditions a) and b) fol­

lows from 2.2. The equivalence of d) and b) follows from 2.6. 

The equivalence of c) to other conditions follows from Theo­

rem A in 2.5. 

Theorem. The following properties of a regular topologi­

cal space X are equivalent: 

a) Closed X is prime-complete. 

b) Closed X is comaximal-complete. 

c) X is the perfect image of a realcompact space. 

d) X is the perfect image of an extremally disconnec­

ted realcompact space. 

It is enough to show that for every regular space X 

there exists a regular extremally disconnected space Y and 

a perfect mapping f of Y onto X .The proof of Iliadis (see 

Foxnin-Iliadis fl]): we take Y« mt (open (X ) ) with the to-

polo'gy of 2.5 and prove that Y' is a compact extremally 

disconnected space. Let Y be a subspace of Y' which con­

sists of all % c Y' such that fl 11 4- 0 , Tne sets 

D 1JL are singletons (since X is regular), denote the 

element of % by £ U .The mapping f « -f & -> £111. Y-» X 

is perfect). 

Remark. The completeness is defined by means of filters 
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with CIP. Almost all results are true for *m -completeness 

where mi is an infinite cardinal; complete is then -K4 -

complete. In particular, all results of 2.5, 2.6 and 2.7 

hold; the proofs in these paragraphs were formulated to emp­

hasise this fact. 
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