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Comment at iones Mathematicae Universitatis Carolinae

13,2 (1972)

ON EXISTENCE OF THE WEAK SOLUTION FOR NON-LINEAR PARTIAL
DIFFERENTIAL EQUATIONS OF ELLIPTIC TYPE, II.
J. KABUR, Bratislava

This paper is a direct continuation of my paper [1]
concerning the existence of a weak solution of boundary va=—
lue problems for non-linesr elliptiec equations of the form

JRIIi NN LR
in Orlicz=-Sobolev spaces. Therefore, to follows this paper,
we have to make use of [1]. The used notation is in accor-
dance with [1] and the numbering of paragraphs, theorems and
relations is being continued as well. The used fundamental
notions are defined in [1l). The main aim of our paper is to

prove the fact that it is sufficient to assume the algebraiec
condition (2.16), i.e.,
IR FEAACH RIS TN NS PR

to guarantee the coercivity (2.7), i.e.,

. - i P
nwﬁ‘;’;»a"“'"wg .l;‘“p wa, (x, D i, u))dx = oo,

M
where &, € WG’ .

In the paper [1] we proved (2.7) assuming (2.16) and the
rather limited assumption (1.9) which includes the following
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condition:

For all £ e M there exist x, > 4, By > 4 with
O<n; -4, <41 sothat

e lwl™ & ugy () £ ey lul™
for all lawl 2 «, > 0 , where Coiy Cpy, 4, aTE the
suitable constants.

In many cases, the condition (2.16) can yet be weakened.
In this connection a theorem about the equivalence of norms
is proved (Theorem 10), which itself is also interesting. As
& consequence of these results we obtain existence theorems
for the weak solution with hypotheses that can be easily ve-
rified in concrete problems.

In the next remark we call the attention to the fact that

the cless M by means of which the non-linear members are

]
described 1s essentially larger than the set of polynomials

lwl®

Bemark. If g (w) e m3 , then Assertion 1, § 1 gua-
rantees the existence of p > 41, @ > {1 such that (1.1),

l.e. ’

c1lu.l""éu9«(.a.)é c.,_l.ul’" for all lul = ¢

holds, where ¢, ,c¢c,, ¢ are the suitable constants.
On the contrary, for all s, @  with g > 2 > 1 ,there
exists Frg (u) e mg such that (1.1) holds, while
the relation (1.1) does not take place for any 41.', g" with
pr<p < <q . ~

We shall denote positive constants by ¢ with or with-
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out subseripts and the dependence of ¢

on the parameter
€ will be denoted by ¢ C€)

§ 5.
Let “, (x) ©be a function in '\V;: Q). <“'o (x)
represents the stable boundary values - see p. 153.)
Our main result is

N

Theorem 7. If the conditions (2.2) and (2.16) are ful-
filled, then (2.7) holds.

Proof. From (2.16) we obtain
J;_ EMD'LMa_;(x,DéCM,+ aNdx =
= f EM'D“’(w,-t-u)a.«; (%, D¥(u,+ N x -
-4 gun‘u,a,;(x,mf'mﬂu))dx =
2, E, LoD, tu) gy (D (uptu))dx -
-fa B Drupay (x, D% (uy+u)) dx =
-~z e =, [ G (D% Cavy+ Nl -
—f; P Dru, ay Cx, D¥ Cayt ) dx = €5+

(5.1)

In the last inequality,we have used the evident estimation

~ay +uqy () &G (w)&ug; (u)+ )

for all &4 , since f.f1. G (w) = gy () = see § 1.

Now , with the help of the Young s inequality and using the
convexity of N -functions P& () we estimate

3 f&eaﬂ €, D¥Cuy+ ) dx &
Tv ‘0 & A ”;
&,
(5.2) <3, Le(=)dx +

+ = fa_P; (e a.;(x,-])?'(u,-vw») dx £
~CM .
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Sc,(up,e)ve Z LB Cay(x,0% (uysu) du

where € & (0,4) . Again by the convexity, together with
the Az-condition and (2.2), we successively obtain

Pola,(x, §;)) £

(5.3) 1 .
£ 5 ,%’ 17 (u.cm(l%cgé)l,lq—?-(ﬁ,-)l)-o-ae,c)é
<c, “MP,;(M(IQ,;CQ_)I, lgy (§2010) + eg

where 26 = cord M+ 1.

In § 2 (proof of Lemma 1) the inequality
mim Clge, Cudly gy () 1) & 2 gy CG77C 6, Cud))

is proved for each lul & ¢4 , i, F6M, (Gf(u.) is the
inverse function to G;(«u) for w« 2= 0 .) From this
inequality and owing to (1.4), i.e.,

P, (g, (w)) £ G () for each lwlZc,,ieM,
we deduce, using the Aa. -condition
(5.4) }?ifmbLCquCgi)l, lqicg,._)l))é c(2)G’. C§’-) +e, .
From the inequalities (5.3) and (5.4) we conclude
LB Ca; (2, D¥Cups wd)) dx &
£ ¢, EM LG;(D‘(u.O‘o-,w)) dx +¢, -

In the relation (5.2), we choose € € (0,4) such that
> 0 . Then, from (5.1),(5.2) and (5.5) we

1.CM

(5.5}

(P e.cq- S

have
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I LD%a, (D, uNdx 2

(5.6) o
zc, =, S0 G (D' Cu,+u))dx-c, (u,, e} .

Finally, it follows from Theorem 1, §1

.

A‘- W?

if ¢0,...,0)e M . In the case (0,...,0) ¢ M , we consi-
[-]

der u € W'a? (Q) . Then, using the Young’s inequality

_'alu.,,-n-u.ﬂw... L . G (D*(u, +.a.))d.x - 00 ,

and applying Lemma 4, § 1 we estimate

[luldx € [GUuldx+c, & oy [ G Puldase,

for some 4+ € M from which it follows that the foregoing
assertion is true and hence owing to (5.6) the proof of the
theorem is complete.

In the following we establish some assertions in which
the econdition (2.16) will be weakened by means of assumptions
of monotonicity and equivalence of norms. Now, let X, L, M,
M, am M, from § 2 denote the sets of indices defined in
§ 2 (ps151 and p. 155). For the multiindices i = (i,,..., %),
#=(3,,...,4y) we denote 4 =4  iff 4, = 4, for all
£ =4,2,..., N .

We shall weaken the condition (2.16) in the following
way:
5.1 2 Siv (650 e, 4%“1 §.9, (6 ~¢ey -

In the case of non-Dirichlet problem we suppose that
€0,...,0) e M,
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Moreover, we assume
For each ¢ € Mﬁ_ there exists i'cM, such that
(5’8)
¢/24 and G;(wu) € G, (u) for each lulzc.

Theorem 8, Let the conditions (2.2),(5.7) and (5.8) be
fulfilled. Then, the relation (2.7) holds under the assump~
[
tion w € Wat () .
>
Proof. Similarly as in the proof of Theorem 7, we ob-

tain
4¢ZM &D‘“@;(X’D"(uoi' wdx =
(5.9) z ¢y B, Jo G, (D*Cu,+ ) dx -
-2 an“u, a, (x, D’(u,«- wddx~c, -
In § 1 (proof of Lemma 4} the estimatiop
LG(n(a Ndx & ¢ LG (gf—;_-)dx + e

(]
is proved for « € W; and 4 = 41,2,..,N , where G(u)
is the N -function satisfying the A, -condition. By ite-
ration of the last inequality and with the help of (5.8)

we obtain for each < & M,

LG; (D )dx é_[;G,., (D"‘»)d.x+c, = c, J;G,;, (D) dx + cy

Hence, due to the convexity and the Az-condition, we have
LG D euNdx & § [ G20 M ax +
1 : <
+ 7 Jo G (2D%,)dx & o [ G (Dwldx+e, &

s cy f;G,‘.C:D"'Cu,-bw))d.x +Cup ¢
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In view of these estimations the relation (5.9) implies

= (Duayx, DVuendds 2 ¢, 3, f6; Dluru)dx-

iem
- = J;D‘u,a,_:(x,lb"(u,-ru))d.x -C. -

From the last inequality the assertion of the theorem fol=-
laws by the same argument as in the proof of Theorem 7.

In the following theorem we shall suppose that

(5.10) ‘5%‘4 fia,(x,§,) 2 c”%“‘ §:.9:C§) - ¢, -

In the case of the non-Dirichlet problem we suppose, in
addition, that (0,...,0) e M, .

(5.11) HZMZC §o-t ) lay (x,§)-a,(x, ;01 2 0.

(5.12) 4’:'i'.MzII:D"«,II@__, = °4‘§‘M, .I\Du.lle__,
for 4 € W;,’ () .

Theorem 9. Let the conditions (2.2),(5.10),(5.11) and
(5.12) ve satisfied. Further, let a;(x,§;) for i eM,
be independent on §; , 3 € M, . Then (2.7) holds.

Proof. From the condition (5.10) it follows

i 7 i
4§M f;'D w o (X, D, +u)dx 2 cy a%u, LG‘-_ (D" +aa N~
-3 JoDuy @y (2, D% Caty + ) dx +

*‘L?Mz Ja
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Similarly as in the proof of Theorem 7, by the estima-
tion of the second member on the R.H.S. we obtain
~.Mf_;Dwa, (x D’(u,-c-w))d.x =
(5.13) =c, () T, JaG: (D*u, 4 Ndx +
+.Fu, JaDua, (x,_‘D’ Cay v Ndx ~ ¢y (E)
Using the Holder's inequality we estimate
i < 7
L e, (x,D%,)dx “ Ty, 1D ly, oy (x D Ly &
&cluw) = 1D°
[ ‘,)‘,.M1 D ls‘

oGMz

and hence with respect to (5.11), it follows from (5.13)
o 2 LD ay (x, D (uys N dx =
<
(5.14) 2o (e), 2 Ly G (DCuy+ wNdx -
<

If ¢ is sufficiently small, then c.,’(e) > (0 . From
(5.12) we deduce

7 ey + a1 .
(5.15) Mgy T T

JoiZw, G D ugr ) dx = o
if ¢0,...,0)€ M, - see Theorem 1, § l. In case
€0,...,0) ¢ M,‘ we consider 4 € 'V?; (in the Dirich-

let problem). Then, similarly as in the proof of Theorem 7

we estimate
flu(x)ld..x = c, f G; (DYw wldx +c¢, =

..cj"n_ (J)Cu-o-u,))d..x-t-c‘ R

- 218 -



where 1 € M,‘ . Due to this estimation, (5.15) is true even
in the case (0,...0) & M1 . Finally, the assertion of
the theorem follows from (5.15) and (5.14).

Remark. If wo(x) = 0, then (2.7) follows from the
conditions (2.2),(5.7), and (5.12). The assertion is obvious.

In the following we establish a theorem in which we study
the connection between the compactness of the imbedding and
the equivalence of norms of the space ‘Wz:: Q) .

We shall suppose the condition (2.9). Theorems of imbed-
ding and compactness of imbedding of the space W;’, are
studied in [3]. (There Wg.", is considered, where

G (u)m Gg'-('“') for all 4, 4 with |<41,14] & & .)
Theorem 10. If (2.9) is satisfied, then
<
(Z 1Dl 4 bl
the space Wg; Q) , i.e.,

L, () is an equivalent norm in

= ‘ < ,
e huw llw?:g ¢.ZM, D% g + Hu.ll,_qm_) e, "“"w;t
Eroof. It is sufficient to prove the first inequality.

We prove it by contradiction. Thus, there exists a sequence

{uy, ¥ from W;» such that
1 i :
(5.16) mn“""'uW; = &g.“q ) “ﬂb“64 + I‘uwl‘_“cn) .

We can suppose that [, ’Iw5 = 4 , TFrom the sequence

fwm'i we can select a weakly convergent subsequence which

we denote again by fm,3¥, 4, — « € W;: .

The relation (5.16) implies hD"wﬁﬂo. —> 0 with
£ 2
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m —» oo , for all 4 & M, , and hence in view of (2.9)

it follows dy —F with m —» @ in the nmorm of

the space W; ) .

Now, it follows from (5.16) that N« lIL = 0 and hen-
1

ce l|u.llw§ = (0 , On the other hand,
lwlwg - lm lu-m,lw;; = 4

which ylelds a contradiction and the theorem is proved.

§ 6.

The definition of a weak solution of a boundary value
problem is given by the relation (2.3) in § 2 (p. 153).

Now, we present a modification of Theorem 3, § 2, assu-
ming the simplified hypotheses.

Theorem 11. Let (2.2) be satisfied. Let us consider the
following conditions:
I. The conditions (2.16) and (2.8) sre fulfilled.
II. The conditions (2,16),(2.10) and (2,9) are fulfilled.
III. The conditions (5.10),(5.11),(2.9) and (2.10) are ful-
filled and a, (x, gé) for 1 € M,, is independent on
§ e M, .

If one of the conditions I, II, III holds, then there
exists a solution of the problem (2.3).

Theorem 12. Let (2.2) be satisfied. Let us consider the
following conditiohs:
IV. The conditions (5.7),(5.8) and (2.8) are fulfilled.
V. The conditions (5.7),(5.8),(2.9) and (2.10) are fulfilled.

If one of the conditions IV, V is satisfied, then there

- 220 =



exists a solution of the Dirichlet problem (2.3).

For the uniqueness of the solution of the problem (2.3)
it suffices to assume (2.8a) in Theorem 11 and Theorem 12,

Proof of Theorem 11 and Theorem 12. The proof of these
theorems is the same as that of Theorem 3, § 2. It is suffi=-
cient to show that the hypotheses of the theorem 3, § 2 are
fulfilled. Due to the results from § 5, (2.7) holds in each
of the cases I, II, IV and V. In the case III the condition
(2.9) implies (5.12) and hence (2.7) holds. Finally, it is
necessary to show that in the cases II, III and V it holds
(2.11a), i.e.,

, 1
;é‘;ﬂ"’“ CFI8 1+, & gy (50D .;‘ZM" §ia,(x,§;) = @

uniformly for §,, £ eM-L in a bounded set and X& 2.
In the case III the condition (5.10) implies (2.1lla).

In the cases II and V let us substitute the vectors

§'5(§’_ Un) where or,e,M,' and @‘Mz with the vec~-
tors ~ 5,,), ge ,Mn in a bounded set into the relation
(2.16) or (5.7), respectively. Then we deduce

4:‘”4 E&va"(y’ ?‘,'yp)""‘gmz ’J.;_(L_‘(x, gg,gn) =

= e By B9 B -
and with respect to (2.2) we estimate

1% ey (X, 8, B £ e (14, 3, g CEOD
for each 4 ¢M2 .

From these inequalities we conclude easily that (2.lla)
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is satisfied. The rest of the proof is the same as that of
Theorem 3, § 2.

§ 7.

Applying the methods of the calculus of variation we
obtain a theorem guaranteeing the existence of a weak solu-
tion for the problem (2.3) by weaker assumptions about the
coercivity as in Theorem 11 and Theorem 12. A similar idea
was used in my paper [2].

With regard to (2.2) and (2.4) we construct the functio=
nal (2,5), i.e.,

1 : ,
OCud=, = [dt [ a, (x,tD%u)du= (u,£) - (4,255

which is continuous in the space W; Q) and has the Ga=
teflux ‘s differential at every point 4« € W;," - see Lemma
2, § 2 and [4].

Theorem 13. Let the conditions (2.2),(2.4),(2.9),(2.10)
and (5.7) be fulfilled. Then there exists a solution of the
problem (2.3).

Proof, Let us look for the minimum of the functional
(2.5) on the convex closed set A, + V&" « First we prove
the coercivity and the wegk lower-semicontinuity of the func-
tional (2.5). From (5.7),(2.9) and due to Theorem 10 we ob-

tain . ) :
L = 4

|wuw§.,,““uwg, fn EMI wa, (x,)7u)dx = @

and hence similarly as in Theorem 2, § 2 - see also [4] = it

can be proved
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(7.1) ¢(u.) = o .

'“"Vl;

Now, we prove the weak lower-semicontinuity of () . Sup-
pose that ay, —> 2 with m — oo (weak convergence)
[
in the space Wg’ .
¢ () - ) =D (v; 2, - ¥) =

_[ch(mtw ~w), 4 -)dt-DS (v, - r) =
-jo'dtf‘a“my (%-wt%(x,la w4+t Dy - )
Par+t P (- )= a; (x, D*v, D 4+ tDP(ay, - ) Idx +

4 . « A 4
+fdt [ o, D () Lay (lx,D v, D+ DB (v, - ) -
- a; (x, D%, DPwr )l dx + [ dt ‘_fl_;%_'uzl)" (g =)
Lay (o, D% + £D¥(w, - o)) -
- a.;(x,Dév)]d..x = A,+B, +D, .

Since ap — 2 with m —> o , it holds
m Do (w, ~ar) = 0 . Due to the assumption (2.10)

Mmoo
it 48 A, = 0 . With respect to (2.9), we deduce that
Dé%—f D‘:'U’ with m —» 0o in the norm of the space
L;‘ (D) for all 4 e Mg . In view of the fact

Lo, "w“!; =c, , we obtain

Na, (x, D% + £ D¥(ap, - w)lp, £ €, for each t e <0, 4>
and 1 € _M2 - see Lemma 1s § 2. Hence, using the Holder's

inequelity, we conclude M@'& :D,,.,- 0.
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From (2.9) we deduce
a; (x, %0, D% + t DP(wy - 4 )) = @ (x, D%, DPor )

with m —> oo, 1in the norm of the space L’:‘, (), uni-
formly with respect to t € <0,1> forall { eM =
sce Lemma 1, § 2. Thus, we conclude _&m B, = 0 and
hence the lower-semicontinuity of (2.5) with respect to weak

econvergence is proved.
I {up,t € u, + Vp is a minimizing sequence,
then ﬂu,“llw} S ¢ in view of (7.1). Since Wd‘t is

a reflexive space there exists a subsequence {4&%3 from

{4, t 80 that o, —= & © W;,‘ with & —» o .

The set 4, + VB’ is weakly closed and hence w« € «, +
+ Vao‘ . Due to the weak lower-semicontinuity of the functio=
nal (2.5) we conclude that ¢ (o) attains its minimum on
the set «, + Yﬂ’ at the poimt ueuo-rVa».If r e
€ Vp ,then D¢ (u,2) =0 (Gatedux ‘differential at the
point « ) for all ~ e Vg* . Thus, « is a solution of

the problem (2.3).
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