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Commentationes Mathematicae Universitatis Carolinse

9,3 (1968)

ON THE DIFFERENT'IABILITY OF OPERATORS AND CONVEX FUNCTIO-
NALS
Jogef KOLOMf, Praha

Introduction. This paper is a continuation of our con-
sidergtions [1 -~ 4] concerning the differentiability of t;pe—
rators and convex functionals.

Theorem 1 establishes sufficient conditions under which
the GAteaux derivative F‘(0) of a mapping F at 0 is
the Fréchet derivative. This result can be useful for instan—
ce in branching theory. It is shown (Th.2) that for convex
subadditive functional f (under some further assumptions)
the existence of the Fréchet differential & f(0,h ) at
O and the G8teaux differential V£ (X, # ) in some o-
pen convex neighbourhoed U (0) of O imply the existen-
ce of the Fréchet derivative /(X ) on UCO0) -
Theorem 3 concerns with so-called weak one-sided Lipschitz
condition, while Theorem 4 gives some sufficient conditions
for continulfy of a linear functional f by means of proper—
ties of a convex functional g . For the recent results in
these topics see the bibliography cited in [1 = 4l.

1. Notgtions and definitions. Let X, be real linear
normed spaces, X* , ¥* their duals, F: X—> Y a
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mapping of X into Y . We shall use the symbols " —y “,
" W, %" 4o denote the strong and weak convergence in
X, Y. Then

a) F 1is said to be strongly continuous at x, if .x,,,ﬁ

Wy g, dmplies F(Xp)— F(x,)-

b) a functional £ is said to be weakly continuous at X,
if x, Xy x, implies 4 (X, ) —* £(X,) -
¢l F: X — Y 18 called compact ona set M € X if
for every bounded subset N &€ M the set F(N) is
comppect in Y .
d) A functional f defined on a convex open subset M &
& X 1is called convex if
FlaAX+(1-2)y) & AL(X) +(1=-2)F(y)

for each X, 4 € M and A e <0,1> .

For the Gdteaux and Fréchet differentials and derivati=-
ves we shall use the notions and notations given in [5,

chapt.Ils By V, £(x,, A ) we mean the one-sided Ga-

teaux differential of a real function £ at o,

« Through
this paper we shall assume that functionals f, V, f (X, #)
are finite. D (0,R) denotes the closed ball with the
radius R > 0 and the center O .

2. We shall prove the following

Theorem 1. Let X,X be linear normed spaces, X refle-
xive, F: X—>Y a mapping of X into Y having at
O the Giteaux derivative F“(0). Assume that F (0) is
compact. If either a) P 1s strongly continuous on D (0,1)
and for each 4y, € D (0, 1) and real A
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IF(Aw)-FAw)l=1al IF(w)- Fcw)ll

or b} F 1is bounded on D (0, 1) and for each 4,

» & DO, 1) and real A

I Fiaw) = FAw) il = 12~ I F ()= F)ll
with 2 > 1 , then F possesses the Fréchet derivative
F’c(0) at O,

Proof. Let h be an arbitrary (but fixed) element of
X . By our hypothesis for given € > 0 there exists a
number oy (£, A) > 0 such that

(1) 1t v, thrn<e

whenever 0 < (t | < d; | where
w (0, th)=F(th)-FCO)-F'(OOth .

To prove our theorem we need to show that the numbers

d; (¢,4 ) have a positive lower bound J'C€) for a-
ny heX with- Al =1 and that (1) is valig for
these h « Suppss e contrary, there exist a positive number

g, ond sequences {#4,} e X with WA, I = 1
(m =4, 2,00, {t, 7 with 0< It,|< =
such that
(2) I @0, ty Byl > & -

”

Since X iso reflexive and {4, 7 is bounded, passing
to a subsequence {h,,% {§ we have that h”* , 4, .
Being D (0,1)  weakly closed, 4, € D (0, 1) . For
given €,, Ay, € X there exists a positive constunt
d (g, ,4,) suchthatir O < It| < & , then
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(3) 1§ @0, thl < & .

Since {h"‘h; is a subsequence of {hﬁf then the-

. 4
re exists ‘t% with 0 < lt”«. | £ Ton such that
(4) 1 g;@ (0y tuy Hrn, ON > £, -

We shall show that this conclusion leads to a contradic-

tion. By our hypothesisa

(5) Fltny hiny )= F(OVE F Oy by # @ (O, Prmg )

Flp 4, ) - FLO)= 4% tuh,,+ @ (0t A, )

Hence

+ Tog Fr0I b, ~Pmg)+ @ (0, g ) -

Assuming a) we have that

(D) 1 45,000 tny b g W& I F (hng)- FCRI +

+ UF0) Chy - brng) U+ N 7y @ (Ortmy F N
Since 4&,," Xy 4, as. b —> ”’&‘,%GD(D’ 1)
and F is strongly continuous on D (0,1), Flhmg ) —>
— F(4,) as k& —> co . Furthermore, F’(0) as a li-
near continuous operator from X into Y 1is weakly conti-
nuous, i.e. F7O0)Ai, 2 F’0) 4, . But

F'coy D (0, 1) is compact set in Y and weak conver-
gence in compact set gives a strong one (see (5], Lemma
4.1,p.68). Hence F/(0) (b, = Hp ) —> 0 a8 bo— co.
The third term on the right side of (7) tends to zero for
t,,..-—-} 0 as 4 —>co0 and P has the Gitemx
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derivative F7(0) at O . Hence

1

I ﬁ—“w (O,t,,%h,,,“ Yl — 0

as M =¥ o0 and this is a contradiction with (4). Assu-
ming o), according to (6) it is sufficient to show that

e N F g Any ) = Fltn, b)) 1= 0

e
whenever A& —¥ @0 . But the desired conclusion follows at

once from the following relations: ,

Vtng Nty b )= F (tny B, &

£ l't,,%l“(llF(h”h)“+ NF ) II) £2C 1Ty, 1“— 0

as k=Yoo fao t, — 0 askdoo,x>0

and C 1is a constant from the boundedness of F on

D (0,41). Now proceeding as above, we obtain a contradic-
tion with (4). This concludes the procf .

Corollary l. Let X be a reflexive linear normed spa-
ce, £ a functional on X having at O the Gateaux deri-
vative €/(0) . If either a) f is weakly continuous on
D(0,1) ad for each 4 € D (0,1) and real A
£(ah)=lal £(A), orb), f is bounded on D (0,7)
and for real A fah)=1AI®£(h) with 2 > 1,
then f possesses at O the Fréchet derivative +7(0).

Corollary 1 follo#s immediately from Theorem 1 if
we  aware that the GAteaux derivative €7(0) as an ele-
ment of X* 1is weacly continuous. Theorem 1 can be use-
ful for instance in branching theorys It is well=known [5l]
that the points of bifurcation of completely continuous o=
perator F (under further special conditions on F) may
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be only the eigenvalues of the Fréchet derivative F’(¢0)
of F at 0.

Let X,Y be linear normed spaces, F: X — ¥ a
mapping of X into Y . The following result is due to
M.M, Vajnberg [5,Th.3.3]: If there exists the GAtesux de-
rivative F’(X) of F in some neighbourhoed U(x,) of
X, € X and this derivative is continuous at X, in
the norm of the space (X —» %) of a&ll linear continuous
operations from X into Y , then F possesses the Fré-
chet derivative F'(Xx,) at x, .

Now we shall prove that for convex subadditive func-
tional £ (with some further properties) the existence of
the Gitesux differential Vf (x, ) in some neighbour-

heod U(0) of O and the Fréchet differential &f (0,+#4)
at O imply the existence of the Fréchet derivative ¢’(x)
on U(0) . More exactly we have the following

Theorem 2. Let X be a reflexive linear normed spa-
ce, f a convex subadditive functional on X such that f
is upper—bounded on some convex open subset M ¥ 2 of X
and $(0) = 0 . Assume f possesses the Giteaux diffe-
rential V{ (X,4# ) for each &, X = O  of some o-
pen convex neighbourhood U (0) of O and that there
exists the Fréchet differential dt (0, 4 ) € f at
O. Then f possesses the Fréchet derivative ¥/(x) on
ucoy.

Broof. Continuity of £ follows at once from Theo=-
rem 2 [6,I1,§ 5]. Convexity of f£ implies that V£ (X, A)=
=Df(X,#) for each x € U(O) and every Hh € X .
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According to Proposition 6 [T) DFf(x,A) = f'(x, K )
for each x 6 U(0) eand every 4 € X , where +¢/(x)
denotes the GAteaux derivative of £ at x . By our hypo-
thesis, o f(0, A) exists and hence f possesses the
Fréchet derivative <§7/(0) at O . Suppmse there does not
exist the Fréchet derivative +#/(x) at some x € U (0),
X = 0 . We proceed as in the proof of Theorem.l. In re-
lations (1},(2),(3),(4) write x for O , f for P and
the remainder in (1) replace by l
W (X, th)=f(x+th)-F(X)~+L(xX)Th .

Since the one-sided GAteaux derivative V, ¢ (x,A ) is
equal to +/(x) and f is convex, we deal here only
with a sequence { t, 7 of positive 2umbers. The elements
4, , {M, 32, and the sequencéyhiave there the same
meaning as in proof of Theorem l. Instead (5) we have

(8) F (X + T M V= FUXVm () gy Bty + @ (X1 T g Py ) s

B X4ty My ) = (X)) = £7UX) tup h, + DX, Tng 1, )
By convexity of f and in view of Lemma 2 [3]

(9) W (X ytmg Mmg) &2 0, @(X;Tapb,) 2 0
_for each & (&k=41,2,...) . Again in view of subadditi-
vity and convexity of f we have that

(10)  #(X+ oy My, )= F(X) & F(ng finy )
and
(11) $(0- X+t A,) £ £ (-2, b )-F(X) &

€8 (-t, A,

Hence from (8),(9),(10),(11) one obtains that
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(12) 0 é (7] (\x;tm*h%) € ‘fct,,bh”*)-f'f(-t”hhp ) +
XV g (P Bomy ) + W, Ty #1,) -
Since 4(0) =0 and f is Fréchet-differentiable
at ¢,
(13) £ (tpg Hiny )= F/(0)tny by @ (Or8ny Hny )
F(=tuy )= = #0) oy by + @ (0, =Cng ) .
From (12) and (13) it follows that
0% -ti;m(.x,t,‘h,“) & F00) Py -,V +

U = By ) + -j:;w (X, m g Ao+ z':—;w(qt‘hu»

1
+—t:—h (3] Co,—t,‘*'»h’ ) .

Since 'h”‘b Xy o, and £7(0), ¥/(x) are
weakly continuous ( 4/(0), (X ) belong to X* ),
F00) (R p= A1, )+ 0, £7(X) (=W ) —> 0 28 S —¥ 00 .

By our hypothesis f has the Gidteaux derivative £7(x)

on U(0) (see the first part of this proof) and thus
g;a(x,tmng—, 0, {:‘w (0,-ta, ) —+ 0

whenever MR —¥ o0 , for Tap = 0 . The term

A
o @ (o,tnzh ’h..* ) tends to zero as 4 —> ¢o
in view of the existence of the Fréchet derivative +€/(0)
of £ at O and the fact that t, —» 0 as e—r @
and |l h.,.“ Il = 4, Hence
A — 0
t,,*w(""t"b’hﬂ'l. )
as fe —» a0 , We have obtained a contradiction. Thus f
possesses the Fréchet derivative +‘(x) on U (0).
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This concludes the proof.
Corollary 2, Let X be a reflexive linear normed
space, £ a subadditive positive homogeneous (i.e.f(AX)=

e A€(X) forany A 20 and X € X ) functional on
X such that £ 1is upper bounded on some open convex sub-
set M % J of X . Noreover, suppse f possesses the
GAteaux differential V¢ (x, h) for each x , X #= 0
of some open convex neighbourhood U (0) of O and the
Fréchet differential o ¥ (0, 41 ) at 0. Them £ has
the Fréchet derivative /(X)) on U(C0) .

Remark l. If a functional f defined on a Banach spa-
ce X is either a) upper-semicontinuous at some point
X, € X or b) lower-semicontinuous on X , then there e-
xists an open ball D and a constant N sueh that f is
upper bounded on D by the number N . The assertion a)
follows at once from definition of upper-semicontinuity of
f at X, ,while b) follows immediately from Theorem (8,
pe 31). Recall that & reflexive linear normed space is a
Banach (reflexive) space.

Now we shall deal with so-called weak one sided Lip~-
schitz condition (compare [5],chapteI). We make first

Definition. Ve shall say that a convex functic;nal big
defined on a linear normed space' X satisfies the condi-
tion (A) at X, € X if for each 4 € X  with Il hl=
= 1 there exists a number (A )> 0 such that

F(Xg+th) + #(X,~th) - 2¢(x,) € CEt A
whenever 0 < t < 0°(h ) , where the constant C does
nat depend on H € X (lhl=1).
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A functional f 1s said to satisfy a weak one-si-
ded Lipschitz condition at X, € X if for each h €
€ X with A ll= 4 there exists a number o~ (H)>
>0 suchthat if 0 < t <« dCH ) there is

I (Xe+th)=Ff(X)| & Nt AN ,

where the constant N > 0  does not depend on $ € X
Hhlt=1).

Theorem 3. Let X be a linear normed space, f a
convex functional on X satisfying the condition (A)
at X, € X . Let one of the following three coniitions
be fulfilled: a) f is continuous at X, ; b)

V,f(x, ,# ) 1is upper bounded on some open convex sub-
set M¥f of X ; ¢) X is complete amd V, f(x,,Hh )
is lower-semicontinuous on X . Then f satisfies a weak
one-sided Lipschitz condition at x, .

Proof. Since f is convex, V. f(x,,4) 1is sub-
additive and positive homogeneous [9] and hence convex on
X . Assuming b) and using Theorem 2 [6,II,§ 5] we see that
V,t(x,, 5 ) is continuous on X . But continuity of
this mapping irplies the boundedness of V, § (&, , 4 )
in some neighbourhood of O . Now the positive homogenei-
ty of V, #(X,,4 ) implies that there exists a con-
stant C., >0 such that
(14) | V_,,-f(.x.,h)l & C, Ihl .

The case ¢) we transfer to b), see remark l. Assume a),
V; (%o, A)  satisfies (14) by Theorem 8a) [3]. Set

G(Xort, h) e E(xo4Th)+ £ (X,=th ) ~2F(Xs)
for t > 0 2nd A € X. Then
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(15) $ (X4 th)-F(X)= G (Xo, 0, 1 )+ F(X,)- £ (X p~ThR ) .
By our hypothesis for each 4 € X with l#a =1
there exists a number (4 )> 0  such that if 0 <

<t<dCh), then
(16) G (Xort,H) £ Ct IR .

By (15),(16) and (14) and according to lemma 2 [3]
x4+ tR)-F)ECLIMI+ ] \{rf(xp,th)l £

&Ntlall; N=C+C,

if 0<t<0(h) m:d h is an arbitrary (but fixed)
element of X with 4 /l=4 . On the other hend, by
lemma 2 [3] and (14)

Fldo+t ) ~F(X)2 V,#(x,,th) 2 -C,t nali .

Hence

X+ th)= £(x, ) £ Nt AR

whenever 0 <t <d(#r) end N ll= 1. This concludes
the proof.

Remark. 2, We shall say that a functional f has one-
sided symmetric differential \4" £ (x,, h) ateX
if there exists for arbitrary (but fixed) 4 € X  the

limit

.4 _ _ S .
g‘f".,",: T (G +th)-F(X, th)) = AR (X,, 4

For convex functional f the one-sided symmetric diffe-

rential V: f(x,h) always exists for every xe€ X .

Moreover, if \{Psf(.x.,,—h) - \44(X.,h ? for e~

very o € X , where f 1is a convex functional, then

f possesses a linear GAteaux differential D ¥ (X,, 4 )

st X, . Thus, if VS f(x,, h) = V, $(x,, #) for
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every e X and f 1is for instance continuous at x,,
then ¢ possesses the GAteaux derivative f7(x,) atx.
Theorem 4. Let X be a linear normed space, f a
linear functicnzl on X . Suppose there exisis a convex
functional g such that for some %, € X +(X;) =
=g(3) amd f(x) & g (x) for every X € X .
Then f 1is continuous on X if ore of the following three
conditions is fulfilled: a) g is continuous at x, ; b)
V+ C 4 (X, ’ o is upper bounded on some convex open
subset M =% @ o X ; ¢) X is complete and
V; g (x,, &) is lower-semicontinuous on X .
Broof. Let /o € X ang t > 0, Then
QLX)+t () = (X, )+ 4 (h )= £ (X, th) 8 G (Xo+THh ) -
Hence
(17) fhq) &6 V. g (x,,4), Hhoe X .
Furthermore,
(18) fh) = =-$£(-H)2 -V, g (X))

for every /o € X . The inequalities (17),(18) and lemma 2
[3] give

9(¥e) - g (Xo=-h) & - Vg (x, ) £ £(h) £
&€ V,606,h) 6 g +h)-¢ (X))

for every o € X . Assming n) the continuity of g at
X, implies continuity of f at 4 & O . Being £ li-
near, £ is continuous on X ., For the cases b),c) we pro-

ceed as in the beginning of the proof of Theorem 3., This
comple tea the proof.

- 452 -



Remark 3. From the assumntions of Theorem .4 [7] it

follows that £ is continvows everywhere in ¥ (and not
only on the open ball Bp ). The same ocssertion follows
at once from the conclusion of Corollary 1 [4). The result
of Proposition 1 [4) one may rewrite as follows: if f is
a convex functional on a linear normed space X , then f
possesses a linear GAteaux differential D+ (x,, £2) at
X, € X if md only if f is directionslly smooth at
X, (see [4]). Hence Theorems 2,3 [4] and the result of
Ivanov [10] imply the following assertions:

(a) If X ie & linear separable normed space, f a
convex functional on X such that f 1is upper bounded on
some open convex subset M = @ of X , then the set

‘P of Al X e X where f 1is directionally smooth is
a Fg, =set. The same conclusion is valid if X is a
separable Banach space and f a convex lower-semicontinu-
ous funétional on X .

(v) I f is convex and Lipschitzian in a separable
Banach space, then the set P of all x € X where f is
directionally smooth is a Feo~ —set of the second cate-
gory in X .

(c) Let X be a linear normed space with dém X < o0,
f a convex functional on X such that f  is directionally
smooth at X, € X and Lipschitzian in some convex
neighbourhood of X, Then f has the Fréchet derivative
€/ (Xo) at X, .
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