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REDUCED DIMENSION OF PRIMITIVE CLASSES OF UNIVERSAL ALGEBRAS
Jaroslav JEZEK, Praha

This paper is a continuation of my paper [1].

Let us define the reduced dimension of a primitive
class YL of algebras of (an infinitary) type T as the
least regular number 2%% such that £ is equivalent to
a primitive class of algebras of dimension '29* . In this
pmer we shall find a necessary and sufficient condition for
a primitive class to be of a reduced dimension =< 2%%* whe~
re 19-* is a given regular number; see Theorem 1 below. If
S* = R, , then this result can be strengthened; see Theo-
rem 2,

Theorem 2 follows easily from Theorem 1 and “"Hauptsatz
Uber algebraische Hiillensysteme" (J. Schmidt [2],p.25). How=
ever, we shall give an independent proof of Theorem 2, not
requiring any of the two theorems.

Lemmg. Let A\ be an algebra of type = (dimension
2% ) with an independent set of generators X o cardi-
nality =2 2* . Let A be an algebra of type = * (di~
mension 2™ ) such that A = A* , Let each fundamental
operation of A* be algebraic in A and
(1) C (M) = Cyp (M) far all M & X .

Then the algetras A\, A*  are equivalent.
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Proof. It is sufficient to prove that each fundamen=
tal operation of A is algebraic in A* (see [1],
theorem 3)o. Let 4 € I . There exists an injectiom &
of K; into X .Put a =4 (ca). By (1) we get
a € Cuu (W (a)). By Corollary 1 of Theorem 5 of (31
there exists an algebraic operation . € R (A*) such
that @ = /o (& ) . By our assumption, b € H (A).
Hence, both f; and M are algebraic in A and
f,(a) = A (a); as the set W (&) is independent in

A , we get f; = A by Corollary 1 of Theorem 11 of

[3]. As A 1is algebraic, f; 1is algebraic in A* ,too.

Let A Dbe an infinite cardinal number. A set M of
sets is called A -directed if for all N & M  such that
Cawal N < A there exists an Ae M with B < A
for al1 B € N . (Every Q0 -directed set is evidently
non-empty.) A set is called directed if it is X, =-directed.
Every non-empty chain of sets is directed.

Theorem l. Let YL be a non-trivial primitive class
of algebras of type = (dimension 2% ). Let 28® be a
regular number. Let X be a set of cardinality
2max (¥, P*) ana € an <L -free algebra with L -
basis X . The following conditions are equivalent:
(i) <4 is equivalent to a primitive class of algebras of
dimension ’19* .
(11) If A € @L , then the union of any 28" -directed set
of sets closed in A\ 1is also closed in A .
(iii) The union of any H*  —directed set of sets closed
in € is also closed in C .
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Proaf. (1) =» (i1): well-known and easy. (ii) ==
=> (i1ii): evident. (i1ii) ==> (1): Let us define a type
~* in this way: its domain I™ is the set of all ordered
pairs {M, ¢ > such that M c X, Card M < 28* and
c €l (M); if i =dM,e >e I*, then put
K%* = M, Evidently, 2™ is the dimension of z=* , Let
us define an slgebra C* of type = * with C*= C in
this way: if 1 = <M, ¢ > € I* , then there exists
(by [3],Corollary 1 of Thearem 5 and Corollary 1 of Theorem
11) exactly one algebraic operation 41 € HK?(C Y= H"cC)
such that 4 (1d, ) = c (where <d,, denotes the i-
dentical mapping of M onto itself); put ,h’: A (the
i=th fundamental operation of C* ).

U}

Hence, each fundamental operation of C* is alge=-
braic in C .

Let M € X . put
(2) D=4N; Ne M & Card N < 8%
and
(3) E={CG(N)Y; NeD§ .
If Ne D , then it follows easily from the independence of
X that X n C, (N) = N ., Hence, the mapping & de-
fined by g (N) = CC (N) is a one-to-one mapping of D
onto E  and it is an order-isomorphism if we consider I
and E  as prtially ordered by the set-theoretic inclusione
The set D 1is 1%* -directed because 29* is regular; hen-
ce, a'-o the set E 1s 23*-directed. By our assumption

(1ii) we get that the union N% C. (N) is cl¢ .ed in
€ .As M is evidently contained in t’.is union, we get
' = (N)Y .

(4) G (M= U Co
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Let us prove

(5) CC (M) = Cc,, M) .

The inclusion " 2 " is trivial, Let @ € Cc (M) . By
(4) there exists an N € D such that @ € C. (N .
Puti:(N,a).Im N c X andCade<#*,we
get i € I*. By the construction of %f we get @ =
= hllidy ) . Hence, a € C, (N) S C, (M)
We have proved (5).

Conditions of the lemma are thus satisfied and we in=-

fer that the algebras C, C* are equivalent. Hence, X
is also an independent set of generators of c* + There
exists exactly one primitive class & such that C’* is
& ~free with & -basis X . By Theorem 6 of [1] the
classes YL, & are equivalent.

Theorem 2. Let <4 be a non-trivial primitive class
of algebras of type 2 (dimension 2% ). Let X be a set
of cardinalty =2+ and C an YL =free algebra
with YL -basis X . The following conditions are equiva-
lent:

(1) €L 1is equivalent to a primitive class of finitary
algebras.

(11) If A € <L , then the union of any non-eupty well-
ordered chain of sets closed in A  is also closed in A .
(iii) The uni‘on of any non-empty well-ordered chain of sets
closed in € is also closed in € .

Proof. (i) = (1i) and (ii) == (iii) is easy.

(1i1) => (ii): Construct =* and C* as in the proof
of Theorem l. Let us prove by transfinite induction that
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for each cardinal number ¢t the following holds:

(6) 1t M e X amd Cakd M = o , then Cp (M)=

= C“, (M) .

If ot is finite,we can repeat the proof of (5) if we put
there N = M ., Let &« be infinite and let (6) hold for
all cardinal numbers less than o€ . As Caxd M = & ,the~
re exists a one-to~one mapping ) of o onto M (re-
call that oC is the set of all ordinal numbers less than
o ). Evidently,

n Ce (MY = C (L) 7"y )

(where 7" o denotes the range of 7 ' 77 ). The set
of all C, (7" o) fa < & 1is evidently a non-
empty well-ordered chain of sets closed in C shence, its

union is closed in €  and thus evidently

®) C " )= L C 'y ) -
If 9 < o, then Caxd (") = Cardl ¥ < o because

oc 1s a cardinal number; by the inductional assumption we

have G, (") =Con (" ) . Hence,
(9) (%Cc (qz"T)stchc* n"y) .
As C* is finitary, we get

(10) 7%C¢,‘(’?2"7)= C‘*(T“.‘{_'}Z“T)s ct* (M) .,

By (7),(8),(9) and (10) we get (6). The proof of (iii) ==
=5 (i) can be finished similarly as in Theorem 1l.
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