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Comment ationes Mathematicae Universitatias Carolinse

5, 2 (1964)

REMARK TO THE SOLUTION OF NCi-LINEAR FUNCTIONAL EQUATIONS IN
BANACH SPACES
Josef KOLOM{ , Praha

In the papers of A, Hemmerstein [1] and M. Golomb [2]
the non=linear functional eqamtion
(1)  x=B F(x)
is investigated. M. Golomb assumed that B is a linear com=
pletely continuous self-adjoint positive operator, F(x) is
a continuous strongly potential operator. Later M.M. Vajnberg
[3], applying the variational principle on the equation (1),
proved the existence of the solution of (1) under weaker as-
sumptions. Further the problem to solve the Hammerstein in-
tegral equaetions has been developed by many mathematicians
such as N.N. Nazarov [4], C.L. Dolph [5], M.A. Krasnosels-
kij [6], Weng-Sheng-Wang [7], G.J. Minty [8] and some other
under various conditions,

In the lest time the great attention is paid to the ques-
tions of the approximate solutions, estimates of the speed of
their convergence and to the question of uniqueness of the
solutions of non-linear functional equations. L.V. Kantoro=
witch [9] generalized the Newton method to these eqations;
further this method has besn develcped by I.P. Mysovskich
(101, M.L. Stein ([11], M. Altmen [12], J. Schroder [13] and
others. The variational theory of solving non-linear equa-
tions has been discussed in the papers of A. Langenbach [14j,
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S.G. Michlin [15], D.P. Zeragiya [16]and some other under va=
rious conditions. The Galerkin’s method is investigated in [6].
The method of steepest descent for finite dimensionel spaces
was discussed by H.B. Curry [17], A.D. Rooth [18], J.B. Croc-
ket = H. Chernoff [19] and some others. It was Yu.G. Lumiste
[20] who first applied this method to the solution of non-li-
near equation x + F(x) = 0 , where F(x) is a potential ope-
rator in Hilbert space H such that the following inequalities
NP(xsh) = F(x)ll £ MUK , (P(x+h) = F(x), h) 2 mini? ;
m>0, M< V1+2m-v2m2 hold for every x € H and he H .
The last condition is very restricting one. The approximate
solution x, (n =1,2,...) d1s given by the equality x, =
=xpy * Ep (X g * F(xn_l)), where the parameters €,
determined either as the solutions of certain non-linear al=-

are

gebraic equations, or they are chosen so that 1nequa'lities
-1/l*m « €, < = 1/1#M are fulfilled. Kwan-Chao-Chih
[21]) solved the non-linear equation F(x) = O by the method of
steepest descent, where the parameters are determined from cer-
tain quadrstic inequalities, under the assumption that F(x)
hes on the set E ¢ H the Frechet’s derivative F’(x), which
1s a positive definite operator ((F’(x) h, h) 2 ml ni? ;
m>0) on E . The question of uniqueness is not solved. L.
A. Kivistik [22] assumes that the mapping F(x) hsas the se=
cond Frechet s differential in some neighbourhood JL(x,r)
of x, e H; F'(x,) is positive definite and F’(x), F'“(x)
are uniformly bounded on L (x,,r). Further he requested the
convergence of certain sequences. In the second paper he gene-
ralized the method of M.A. Krunogelakij - S.G. Krein to non-
lineer equations under similarly restricting sssumptions. Si~-
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milar method proposed B.M. Fridman [23]. The convergence of his
method is proved under the following conditions: || x - x /I is
small in some ball m , the mapping F(x) hes the
bounded inverse [F’(x)] ~} for every x ¢ 2 (x,,r) and the
Frechet’s derivative F’’(x) is uniformly bounled on f2(x,,r).
St1ill other claim is laid on certain parameters, which should

be very troublesome in practical computing. The paper of M.M.
Vajnberg [24] advanced greatly the theory of the methad of
steepest descent by presenting much weaker conditions of conver-
gence than any earlier paper. H., Schaefer [25] and S.V. Simeo-
nov [26] and others gave some modification of the method of
successive approximation. S.V. Simeonov solved (1), where

B =3 in semi-ordered Banach spaces under the assumption that
Prechet’s derivative F’(x) hes the property that m I =
& F'(x) = MI forevery x 6 { X),X, > , where the ele-
ments X;, X, € B are such that F(x;) - Xy 'F(xz) ~ % he
ve different signs. In the paper [27] the non~linear functional
equation

(2) T

was solved under the assumption that the continuous Gatesux’s
derivative F’(x) exists and is a symmetric and positive defi-
nite operator on a closed set E c H . The iterative process

(3) . Xpep X, -~ PR(x,)) +Pf, x € E

is proposed, P being a suitable linear operator. Its conver-
gence 1s of order Il x - x*l § ka®, o« < 1, where x* is
a unique solution of (2) in some neighbourhood of the element
e E . The operator P can be specified to obtain several i-
terative methods. For example if we put P = I , we obtain Wier-

da’s process and if P = [P (x)] “1 we get the Newton-Kanto-
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rowitch process.

We shall now prove a general theorem, concerning *he sol=
ving of the equation (2), with weaker conditions of convergen-
ce than the theorem 2 [27]. From it will follow the conditions
of convergence of Wiarda’'s and Newton-Kantorowitch processes.
The proof is based on the following theorem which is & modifi-
cation of the well known theorem of L. Collatz [29].

Theorem l. Let F(x) be an arbitrery mapping of Banach
spece B into B and let P be a linear bounded operator in
B such thet Pt
filled:

exjats., let the following conditions be ful-

1) There exists a convex closed set Ec B and & :;'eal'number
& (0 < & < 1) such that for every u, veE ’
Il PF(u) = PP(v) = (u-v)ll g ot llu-v |l .
2) The closed ball L (x;,r) = {x € B:ll x=x;ll £ v}, where

x; 4s defined by (3), r = I X;-X, I, 1ies in E . Then

l-x
the equation (2) has a unique solution x’* in the ball
£ (x,,r). The sequence {x } defined by (3) converges in the
norm of B to the solution x* of (2) and the error of the

epproximation x, satisfies the inequility
n

4) Al xn-x*ll' s

Il X=X, I .

We say thet {x;} converges in B to the solution x* of
(2) with the speed of the geometric sequence, if |l xn-x*ﬂg
S kq" where k 18 a positive constant. We shall understand
by the estimate of the speed of its convergence the last ine=-
quality.

Theorem 2..Let Pl be a linear bopnded operator in Hil=-
bert space H such that P‘.'Ll exist 8, Let F(x) be & mapping
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of B into H such that there exists the Gatesux’s derivati-
ve F’(x) for every x€ Ec H, where E 1is a convex clo-
sed set of H , and

(5) Re (Py F'(x),h,n) z mlihl?; m>o0

helds for every he H and x€ E . é‘et 1% be the number sa-
m
tisfying the inequality O eV < -K— s where

K=sup IBF'x)lit< + o0 .
Let us put
(6) Xp, = X, - PF(x;) + Pf,
A () = I-PF(x)Il , P= P, r=~—2|xx |
 oup It x AP, T oo 1m17%oll

where x, 1is an arbitrary element from E . Let ..Q.(xl,r) be
a closed ball which is contained in E . Then the equation (2)
hes a unique solution x* in the ball .-O.(xl,r) +« The se=
quence {xn} defined by (6) converges in the norm of H to
the solution x* of (2) and the inequality (4), where o¢ =

= o (1), holds. The estimate of the speed of the convergence
is greatest, when 1} = dopt a —;4— « Then

1

Proof. First of all it is evident that K > O . For every
fixed point x € E and Ve (0, ;“ ) we have

T = PP’(x)1? = sup (h - PF’(x)h, h = PF’(x)h) =
IIil=1
% sup (1 -2 Re(F'(x)n, b) +I PPGI?) £ 1 - 2+ 4%
Let us put f£(2¢) = 1 = 2m + % ; then I I - PF () SVEH)
and hence o« (%) s VF(F) . Further £(0) =1, f(gﬁ-) =]

and the function f(%%) catches for Y= LN ;('L the
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minimum value £( "}opt) 2] - f— =] - 7 m . The function

opt
£(4%) 1s descending on the interval (O, ’}opt > and inc-

reasing on < im- ). Hence o« (%) < 1 for every

opt?
9 e (0, 8B-), Now let e be any linear functional in Hil-
X

bert space H such that |l ell21 . Wwe define a real valued
function R(t) on the interval <0, 12> by
R(t) = e(PF(tu + (1-t) v)) for u, v€ E . Then we ha=
ve R(1) = e(PF(u)), R(0) = e(PF(v)) . From the mean value
theorem we obtain R(1) = R(0) = e[PF(u) = PF(v)]= e(PF(¥)(u=v)),
where U 1is an element which lies on the line-segment connect-
ing the points u, v 6 E , Because E is a convex set, YeE.
Then Il e[(PF(u) = PF(v) = I(u-v)] Ml = lle [(PF’(¥) = I)(u-v)l =
= fell UPF (W) - I Hu=vll & (B)flu-vil.
From Hahn-Banach theorem we have | PF(u) = PF(v) = I(u=-v)l
s x(¥) | u-vll; oc(if) < 1. Thus, all the conditions of
the theorem 1 are fulfilled. This completes the proof.
corollary. Let P, be a linear bo{mded operator in Hilbert

1

space H such that P]~ exists. Let F(x), where F(x,) =0

for some element x, of H , be mapping from H "into H such
that there exists the Gatqpux’s derivative F’(x) on the clo=-
sed ball N (xo,r) c H eand the inequality (5) holds for eve-

ry x € 2 (x,,r), he H. Let °% be a number satisfying the

inequality 0<7 < 2 m/K , where K = su Il 7y F (2l %<
x€ef XgsT
< ’ w .
e (1 (4*))
-oC r
fll§ ———————, where oc(¥*) =sup |II -PF (X,
*t’\ﬂPlll xef(x ,r)

P =Y P, , then the equation (2) hes a unique solution of x*
-102 =



in the bell - (x,,r). The sequence {x,} defined by (6) con-
verges in the norm of H to the solution x* of (2) and the
inequality (4) holds, where o« = &£ (1%).

Proof. From the esssumptions it follows that the mepping
A(x) = x - PF(x) + Pf 1is Lipschitzian‘with the constent
® () < 1 . Further for every x e {L (x,,r)

WA(x) = x !l = Il x=x - PF(x) + PF(x,) + PrliglPF(x) - PF(x,) -
= (x=x Ml +llPLll £ & (D)l x-xfl +D2NPHALN = .

Thus A( L (x,,r)) € (. (x,,r) . From Banach’s theovem it fol-
lows that the equation x = A(x) has a unigue solution x* in-
the ball () (x ,r) and therefore the equstion (2) has & uni-
que solution x* in N (xot,r)lil(li;)c):gmpletes the proof.

The condition |l £/ € -———————— does not restrict

Sip
the class of the equations (2); because we cén choose as P,
such & linear operator, which norm | Pll is sufficiently
" small. .

Remerk 1. Let the equation F(x) =x = A $(x) =f be
given, where é (x) 1is a mapping of H 'into H . The opera-
tor @ (x) has the Gateaux’s derivative @'(x) on a closed
convex set Ec H such that for every x€ E and h € H

Re(A §(x)h,n) Z 0. Then m =1, A, =LK, K=

)=k =(1 - l/K)i' . We de~-

= - ‘ 2
xagpﬁl A (e, “"'ﬁopt

fine {x,} by (6) where P; = I . If the closed ball .n.(xl,r)
k

is & subset of E , where r = I xy=x, I , then all the

statements of the theorem 2 hold.
® Remark 2. Let the inequality Re{ A &'(x)h,h) & ZAn 2
(£ real, £< 1) hold for every x€E and he H . Then
mn=1-2 , #opt-(l-t)/x,
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ﬁ(dopt)s p=V1- (l_ua/K o If the closed ball

f(x;,r) € E, where r =

I Il x3-x, Il , then hold ell the
-p

statesments of our theorem. The case in the remark 1 is & spe-
cial case of the remark 2 when £ = 0.

Remark 3. If we now set in (6) P, = I , we obtsin the
sufficient conditions of the convergence of Wiarda’s method.
It Py ==l[I-"(xc).'I":L we get Newton-Kantorowitch method. When
in (2) f£= 0, then the formula (6) has the simple form:

Xpey = X, - PF(x) ; x,€ E . In the case that H is a real
Hilbert space, the conditions of the theorem 2 are the same,
“only (5) hes the form: (P, F'(x)h,n)Z m A ni¥ ; m=>o0.

We say that A 1is a regular value of a linear operator
£ 12 (I =241 exists.

Let us set in (6) P =I + J , where J is a linear boun-
ded operator in Banach space B . We get the following result.

Theorem 3. Let ¢ (x) be mapping of B into B such that
the Gateaux’s derivative ¢'(x) exists on a convex closed
set EcB. Let A be.a reguler value of ¢'(x) for eve-
ry x€E . Let G, (x) be the resolvent operator for the ope-
retor $‘(x) and let J be e linear bounded operstor in B
such that
(1) A6 (x) ~Jisp< p1 for every x €& E, where p =

= suglll “Afd ') « +o0.

x€
Let us set

(8) X,y = (I40)2 - Jx, + A (IN) P (x) ,

&y = sup A (1w) $'(x) =Jll, v =-f-L Hxl-xoll.
xe E 1-dJ
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Let .(x,,r) be a closed ball which is contained in E.
Then the equation
(9 . x=Ap(x)=2£, feB
has a unique solution x* 4in the ball .ﬂ.(xl,r). The sequence
{ :51} defined by (8) converges in the norm of B to the so=-
lution x* of (9) and the inequality (4) holds, where
a=o 0, sup - a¢ I,

Proof. To show that Pl = (1+0)"1 exists, we use the
following lemma: Let T,, T; be linear mappingsof B into
B such that 1';1 exists and Tl < —;‘-;‘%1—"— « Then

°
T=7T,+ T, has an inverse L,

That P~! exists is now clear. It is sufficient to set
Tolx) = I+ A6y (X =(I-Aa¢ N,

For every fixed x€ E we have that
PF'(x) = (IWNNI =2 ¢ (x)) = [(T+A6, (x)) - (A6, (x) =J)]
(I=-2¢'(x))=2I=-(G,(x)=J)(IT=-2g'(x)).

Hence

I=-PP(x) =(AG, (x) =dNI =2 (x))=(I+) AP (x)=y

and
I -PF ()N =2l(I0) AF'(x) -Jllg NAG, (x) -J0 -

I-A§ g (swpllag, (x)-gl Y AOYR
IT- 2g' g (owp 1Ac, (@ -Jlewpl-A4 (I

Therefore ;< 1 . Further, by the-same way as in thedrem 2
we can prove that the mapping 1y (x) =x = (I+J) (x =4 (x))
is Lipschitzian on E with the constant Xy < 1l . From the
theorem 1 follow tl?e statements of our theorem. The proof is

complete.
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The theorem 3 generaliges P.A. Samuelson’s result
([30],[31]) for solving of a linear functional egstion . We
may assume the condition (7) in the stronger form: .

llkGa(x) -Jlsp < i -l for every x € E , where £ =

= 1+su A $'(x)l< + co . From the assumptions of the
x€E

theore'm 3 it follows that the operator R(A, §'(x)) =
= (I =2 § (x))7! exists and 1s bounded for every x € E c B:
HRCA, ' =0T + AGA(x)“ E 1+1AGXIg1+p+lall.
Corollery. Let $ (x) be a mapping from B into B,

$ (0) = 0, such that there exists the Gatesux’s derivative

$’(x) on & closed ball N (O,r)c B . Let A be a regular
point of §'(x) for every x e {L(O,r). Let G, (x) be the
resolvent operator for $'(x) and let J be a linear bounded
operator in B such that the inequality (7) holds for every

1 -a
xeN(o,r). If I 2lS J X se. T -a' i,
= Teton ) Tase- g AT-Adx

then the equation (9) has a unique solution x* in the ball
£ (0,r). The sequence {xn} defined by (8) converges in the
norm of B to the solution x* of (9) and the inequality (4)
holds, where «£= OCJ .

Let the equation
(10) X =-AV(x) = £
be given, where A is a linear symmetric completely continu-
ous mapr;ing of H (real or complex) into H , MV(x) is in ge-
neral non-linear opérator, f & H. Under thes;: general assum-
ptions we introduce (see [32]) some conditions that R(QX ,AV (x)),

A Gatesux’s derivative of V(x), exists as the)
where V°(x) is theVlinear mepping of H into H for every

x€ Ec H. This is equivalent to the condition that the equa-
tion x - AV (u)x = O has only the trivisl solution x = 0 ,
- 106 =



We define the characteristic velues by: x -1 Ax =0 , xg 0.,
The sequence of characteristic values may be arranged as fol=-
lows:

£, % A_j<0<X 22, s5..

where A (A ), nZ 1l are positive (negative). One of the

two sequences may be empty. Let M(E) be the set of mappings
Gyy X€ EcH, which haye the followirng properties:

1) A1l Gy € M(E) are mappings of H into H ,

2) A1l G, e M(E) are linesr bounded and symmetric. From (2)
it follows that (G, u, u) is real for every u€ H and

G, € M(E). If o is & real number we write G, < « I,

Gy & < I, Gy >ex I, Gy & o« I when the corresponding pro-
duct (G u, w) is <, = , > , & o< (u,u) respectively
for every u€H and u g 0., If G, & M(E) and G, &0
then there exists a unique linear symmetric and bounded opera-
tor G2 such that 6,22 0.1If G >0, then G, 2 > 0.,
The following two lemmas due to H. Ehrmenn [ 32].

Lemma 1. Let A be a linear completely continuous symmet-
ric mapping of Hilbert space H into H , let A, (1=1,2,...)
be its characteristic values and let G, € M(E). Then the equa-
tion :

u-A Gy u= 0
has only the solution u =0, i.e. “=1 1is not an eigenva-
lue of A Gy » if one of the following conditions holds:
8) A, md A, (A_, end A_(n+1))r B2 1 exist and

A< Gy «Apy) T (AT > 6 > A (e ) .

b) ﬁn (A_,) exists s the lsrgest positive (smallest nega-
tive) characteristic value and Gy > I (Gx <a_,D
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¢) There is no positive (negative) characteristic value and
6, & 0 (G, & O).

a) 2y (2_1) exists and 0 §G, < 111 (A_,I<0y, £0),
e) lla ll< lin (21).

f) xIg6, £AI, (£, > does not contain the charac-
teristic values of A .
We now assume (see [32]) the conditions a) through e) in
the stronger form:
&) A, and A ., (A_, end a-(n*-l))’ n2 1 exist and
A1:|I<""im:[5 O # ApgI <A I (A I> x, I3 6 2

e "-(n'fl)I > a-_(n_._l)I )e

) An (A_n) exists as the largest positive (smallest nega-
tive) characteristic value and G, Zotn1>3.nl (6, Fac_ I <
<A_ 1)

€) There is no positive(negative) characteristic value end
6,80 (G, & 0.

d) 2y (A_)) exists and 05 G, SGI <A,I
(AT < x_;IT& G & 0).

€) IGx'|§o(.<minl3.1( .

Lemma 2. Let A be a linear completely continuous symmet-
ric mapping of H into H , let A’i be its characteristic va-
lues and let G, € M(E). Finally, let one of the above condi-
tions a) thro&gh e) end f£) be satisfied. Then the inequality
l(ﬂ-i -1l m >0 holds for the eigenvalues (%3 ©of A Gy
where m is a constant which does not depend on Gx but only
on the interval < otil,ac‘.}l) in which G, 1s assumed to lie
according to the conditions a) ... e) and f .
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Remark 4. From lemma 2 it follows under its assumptions
that the operstor (I = A Gx)"l exists and is bounded.

Theorem 4. L;t A be a linear completely continuous sym-
metric mapping of H into H , let A, be its characteris-
tic values, Let V(x) be a mepping from H into H such
that the Gateaux’s derivative V’(x) exists on a convex clo-
sed set ECH end let V'(x) =G, , G, € M(E), sstisfy ore
of the conditions @) through €) and f) (as defined for the
lemma 2 and 1) for every x €& E. Let J be a linear operator
in H such that llG(x) - JI&@ < p-l holds for every x € E,
where G(x) is the resolvent operator for A G, and p = *
=gupllI - & lel<+ 00 . Let us set

XeE

(11 Xpyy = (I¥I)E = Jxy + (I+J) AV(x,),

o
€y = sup 1(13) A G - Jll, r=-1:-fa—ﬂ 2-x, 0 .

Let ML (x;,r) be a closed ball which is contained in E .
Then the equation (10) has a unique solution x* in the ball
D (xl,r). The sequence {xn} defined by (11) converges in
the norm of H +to the solution x* of (10) and the inequality
(4) holds, where K= SR . :\:II;”I"AGX‘-‘

Proof. To ®prove the theorem we use the theorem 3 and lemma
2. According tg lemma 2 the mapping (I - A Gx)"l exists and
is bounded for every x € E . Hence the resolvent operator
G(x) 1s bounded and from the inequality I G (x) - J & P <p™*
it follows that J is bounded operator in H . From theorem 3
follow the statements of the>theorem 4 . This completes the
proof,
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Theorem 5. Let F(x) be a weakly continuous mapping
from reel H into H such that it has on a convex closed
bounded set Ec H the Gateaux’s derivative F’(x). Let
PF’(x) be a symmetric operator for every x € E such that
(PF'(x)h,h) Z O for every x€ E and h € H, where P is
a8 linear operator in H having the property that P"l ex=
ists end O <1l Pll < & ; DasuwllF (x)ll €« + 00 . Let us

D X6E

set A(x) = x = PF(x) + P for every x € E . Let A(E) ¢ E.
Then the equation (2) has at least one solution x* in E.
The sequence {x;} defined by

«12) X4 2 X, - APR(x)) +4PE, O<fpB <1,

where X, is an arbitrary element from E , weakly converges
in the norm of H to any solution x* of (2).

Proof. The equation (2) is equivalent to the equation
(13) x = A(x)

Considering that P is a linear bounded operator, it is
clear that A(x) 4is weakly continuous mepping in H ad
A(x) € E for every x € E . Because every bounded set in H
is weakly compact and every convex closed set in H is weak=
ly closed, all the assumptions of Schsauder’s theorem III [ 33]
are fulfilled. Hence there exists at leasst one solution x*
of (13) and therefore at least one solution x"‘w of (2). We
show that A(x) is Lipschitzian mapping with constant one.

For every x € B we have A'(x) = I - PF'(x) and
T -pF(x)I = sup | (h=PF'(x)h,h)| = sup [1 = (PF'(x)h,h)]=
Inil =1 Inl =1
2gsup (1 - (PF'(x)h,h)) =1 ,
* dnil =1

because O F (PF'(x)h,h) & NPl . sup [ F(x) < 1 for every
xeE and heH with Hhil=1.
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Therefore ofp = au% Il I=-pPF(x) £ 1 . Further, by the si-
x€

milar way as in theorem 1 we can prove that A(x) is Lipschitz-
ian with constant one. Thus all the assumptions of theorem 3
[25] are fulfilled and we get that the sequence {xn} defined
by

1]

(1 -8)x, +p3Alx) =
(1-p8) x, +A8x, - APF(xy) + B PF =

!xn-/;PF(xn)+/§Pf; 0O<fB<1,x,€6E

Xn+1

weakly converges in H to any solution of (2), This completes
the proof.

Remerk 5 ., Equally with the theorem 2 we may put P = £ 1,
P= Z“F'(xo)-l , where /3 , Y are such that the inequality
o<liPl< -i holds.

Example. Let the equation
1
F(x) = x(8) = / st arctg x(t)dt = £(s)
0

be given, where f(8) & L2(0,l) . w"e suppose that L2(0,1)
is real. Let us denote § (x) = /[ st arctg x(t)dt. Then

¢ (x) is Heammerstein’s operator :Nith the symmetrical kernel
K(s,t)= st. Then Caratheodory’s conditions for the function
g(u,t) = arctgu are evidently fulfilled and hence the opera=
tor hu = arctgu 1is of Nemyckij type in the space 1.2(0,1).
The function g(u,t) has the continuous derivative g;(u,t)

for ue (=00, +a0), Hence the operator hu has a linear

Gateaux’s differentisl Dh(u,v) = é‘ v(x) in L,(0,1)
1+u®(x)

which is bounded end continuous in u, v . Therefore ¢ (x)

has the completely continuous Gateaux’s differential

1
D (x,h) = t —1 n(t)at
p (=, ;f 2t
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and we may write DQ (x,h) =@’ (x)h . Further

(§'(x)n,h) = f_/' 1+x2( ) h(t)n(s)at ds =
1 4
fff1st h(t) h(s) dt ds = f’sh(s)ds. J t h(t)at =
o o o o

1
. =(/4ah(s)ds)2 =/ ¢%ds f’ n?(s)ds = %ﬂhlz .
0 o H

Thus
(F*(x)h,h) = (n,h) = (FxIn,n) = 0 0 - 3 (nk® =5 ni® .

Hence the condition (5) of the theorem 2 is fulfilled and the=
refore we may solve the equation by (6), where Pp=1I.

Remark 6 , when this paper was written I acquainted
by means of [34] with the result of E,H. Zarantonello [35].

He considers the equation x = F(x) + y , where F is an e~
verywhere defined Lipschitzian function, which is either
"supra-unitary" or "infra-unitary" in a real Hilbert space H.
This equation is solved by contractive averenging.

Correction to my paper [28]. In the theorems 2,3 shall
be: "for every X € E ..., " instead of "for every x € H .co".
T;Ie assumptions of the theorem 9 shall be completed by:
IF(x) & e (1 -y (R, )3% ), and the assumptions of the theo-
rem 4 by: H reel, F(x) 1is weakly continuous mapping such
that Gateaux’s derivative F’(x) is continuous on B and
commutative with a symmetric operator P, (I =PF)Ec E . The

thearem 4 does not generalize the result of M.M. Vajnberg [ 3],
§ 10.
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