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Commentationea Mathematicae Universitatis Carolinaa 
5, 2 (1964) 

HOMOLOGICAL FDC1D POINT THBORIMS, II. 
Otomar HÍJEK, Praha 

This páper conaiata of some notes and generalisationa af 
reaulta of the preceding páper f4]# 

The firat of these concems lemma 2 of [4], stating that 
the invariant j of endomorphiama f of a group G Í8 in­
dependent of the behaviour of f on the periodic part of 
G . Here we present a conaiderably stronger reault in theo­
rem 1 . 

The aecond extenda a reault of [4](for.a continuoua 
f • s n̂~> Si n , tr haa a fixed point) to a more generál 
clasa of spaces, admitting formátion of carteaian products; 
lemma 1 and theořem 2 • 

The role which even-dimensionality plays ln this reault 
auggeata the poaeibility of a connection with other familiar 
theorema having aimilar re8trictiona: Brouwer'8 theorem on 
antipodala [l, ch» XVI, § 5], or the "hedgehog ti^orem" of 
Poincaré (loc.eit., there ia no nonsero tangent vector field 
on s )• A cl08er examination reveala that the resemblance 
ia only auperficial: the latter theorema admlt a naturel ge-
neraliaation to e.g. odd-dimensional sphere8, aa will be ahown 
in theorem 3; our reault doea not* 

Aa ln [4], w« conaider the category 9j consisting of 
abtlian groupa with an integrity domain «J aa laft operátora, 
and of their operátor homomorphiama. The reader ia firat re-
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ferred to f2 ] , exercisea B in chap.IV. The re i t i s shown how 
one may assign to each group G in Qj a vector space GA 

over 3 , the quotient f ie ld of J ; and to each í : G —> G' 
in J , a J -homomorphism t* : GA~* Q'* • The resulting ob-
ject turns out to be an additive exact covariant functor A 
from S- to $s • (The definition l o c . c i t . of the tran-
s i t ive relation ^ should, however, be corrected to: 

[e l f x^l ~ fe^t ^2J i f f 9©2 x l * ®®i *2 í o r 8 0 a i e ® * ° i n 

J •) The circuaďlex A will henceforth be ušed in this sen-
se , and not in that of [4]« 

Exactness of A then implies that, on the category 
& 9 j of differential groups over J , the homology functor 

and A eoamute: 
H(G*> * (H(G))A , ( f % » {tMr . 

It i s noted ( l o c . c i t . ) that A preservea ranka. Since 
jtid^) » (rank G)/(l - A ) [ k , section 1J , thia i s the f * 
=* identity speciál čase of the following 

Theorem 1. If f : G -* G in § j , then j ( f ) * j(f*) . 
By [4, definition 3J, g l i depends on j ; thus theorem 1 

implies g l i ( f ) * gl i ( fA) for f : G -+ G in the category of 
group sequences. In 14, theorem 3] i t was shown that g l i ( f ) =* 
* g lKf j ) for f : G - • G in the category of differential 
group sequences ( i . e . , complexes); our present resuit yie lds , 
then, 

g l i ( f ) * g l i ( f£ ) 

Proof of theorem !• There i s a canonic mapping c ; 6 -* G 

defined by c x • (1, x) ; we háve c € Hom, (G, GA) and c f 

. » fA C for f e Homj (G, G) . It i s easily shown that, i f B 

i s a w-base in G 1 4 , section 1 ] , then c(B) i s linearly 
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independent and generates G ; thus c(B) i s a base in G • 
The relations* 

e i ř *i - Zj *lj *j 
ušed to def ine matrices D, A and then p, j £ 4, def.l. and 
2 ] carry over to 

thus they def ine the samé matrices D, A and hence also p, 

j . This completes the proof. 

Peflnition. A trian^uaable^sfiace^wili, te_cal_e<| U9BT9ŘŘ 
if^all^i^s^odd-dii^nsional^homolog^ J8F2PR9 (°ver integer coef-
f icients) are £eriodic. 

This definition i s a modification ét &n earlier inadequa-

te version; the present formulation and also the proof of the 

lemma to follow were suggested to the author by Mr. A, Pultr, 

the referee. 

Cella and even-dimensional spheres are non-odd, since 

their odd-dimensional homology groups are t r iv ia l . Even-dimen­

sional projective spaces are non-odd, as may be shown directly. 

We notě that the Euler characteristic of a non-odd space redu-
ces to the sum of ranks of the even-dimensional homology groups; 
hence i t i s positive unless the spaces i s empty. 

Lemma 1* Jhe carte^sian £roduc_ of_two_non-odd_s2Qc.es i s 

non-od^ 

Proof. Let X, X be non-odd; the Kunneth formula (e.g#f3 > 

chap.I, th. 5.5.ŽD i s 

IL(Xxí) * 2 En(X) <S> H0(T) • 2 Tor(H„(X), ÍL.ÍY). . 
p+q=n ť H p*q»n-l p H 

The second sum is always a periodic group; consider any summ-
and in the first sum. For odd n * p • q , oňe of p, q is al­
so odd, so that by assumption one factor is periodic; hence 
ffp(X)® Eq(t) is periodic. This completes the proof. 
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It may be remarked that if the condition ln the definition 
ia atrengthened to "all odd-dimenaional homology groups are 
trivlal", then the corresponding lemma no longer holde* 

The ořem 2« Let f : X —» X be a continuoua mapping of a 
non-odd apace X 4* j0 • Then one of 

t. f2, f3 ** £ x ) 

haa a fixed point* 

Aa a trivial but weird exaaple, for every map f of a 

flnlte set of n pointa into itself, at least one of f, ..., 

fn haa a flxed point; thia ia eaaily checked directly, and ln 

generál, f*1 cannot be replaced by a preceding iterate. 

Corollary, f*(x)l haa a fixed point. 

Thia includea our corollary to theorem 5 in £43, and alao the 
/q2n\ 

Brouwer fixed - point theorem} %K* ' * 2 , \ (E") * 1 res-

pectively. Aa concerna the conjecture in C4, aection 3J, we now 

háve the following result. A apace X consisting of the product 

of n cella and m even-dimensional apheres haa aa Euler cha-

racteristic X (X) the product of charaeteri8tica of ita fac-

tors, námely 2 m . Thua one of 

ff i , f , • •• , X* 

doea háve a fixed point, but here one may not omit the f 

with i + 2J (e.g. for X • S°x S° ). 

Proof of the theorem 2. Let f^ be the homomorphiam of 

the homology 8equence of X , induced by f . Prom theorem 1 , 

gli(f) » gli(f£ ) . 

Froffi C4ít aection 3, lemma 4 and definition 3, we then háve for 

the Lefschetz number J 

<2> J(fr) * J(f*r) * 5 q tr (£*.) 

aince by our assumption on X, HA(X)
A * 0 for odd dimenaions 
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q . Pinally, from the proof of theorem 2 in [4lt 

o) tr(f;2;) » z ) x l x ;>q 

where r » rank Hr(X)
A * rank H (X) , and X> are certain 

complex numbers (characteristic roota of certain matrices 

D2q A2q*# J t i s k n o w n t h a t t r **£P * 1 if X is connected 

(e.g.tllf chap. XVII, § 1); in our ca8e we háve at least that 

tr(f*£) * m , a positive integer since X is nonempty. 

Substitute (3) into (2), omit all A • 0 , aasemble all 

A » 1 , and finally all equal A's . Thus we msy write 

Jitr) m m + £ *<X>-1 » J L ' 
o j=1 i J 

with nu > 0 integers, m0 > 0 , A's distinct with 0 4* 

*Ai # 1 • (By non-oddness, ^(X) * S rank H2 * X *2q
 5 

thus there are at most % (X) distinct A.« , of which at 

least one i s included in the m̂  term. 
o 

With notation thus established, assume that the assertion 

of the theorem does not hold. Thus the iterate t° with 1 & 

£ r Á ^ (X) has no fixed points, and from the Hopf-Lefschetz 

theorem we obtain \ (T) equations Jíf*) = O . Substracting 

the r-th from the following there result? 
2 ( X ) - 1

 ffij A j " ( A j - 1) * O ( 1 * r *£<X) - .1) . 

Consider these as a systém of equations in unknowns nu • Ob-

viously the determinant of the systém is 

á * TTj Aj x TTj (A, - 1) x V(... A, ...) 

with V the Vandermonde determinant• Since by construction the 

^ j are all distinct and O * A . #» 1 , we CQnclude m. » O 

for ell j . Thus our relations Jíf1*) = O reduce to i « 0 ; 

this contradiction with m0 > O proves our theorem. 
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To unburden the formulation of the theořem to follow, we 
f i r s t introduce, proviaionally, two new terms. 

A topological apace T may be calied_8£here-like_if i t 

ia triangulable connected, with positive dimension n , and 

HQ(T) a 0 for 0 < q < n , rank Ĥ CT) * 1 . 

Obvioualy, spherea are aphere-like; however S° and e.g. 

S n n Sm or ď are not (n > 0 ) . 
A homeomorphiam h i T —f T of a 8phere-like 8p8ce will 

be called positive oř negative in accordance with the aign of 
ita degree* Thia latter term may be introduced for continuoas 
mapa f : T -» T (aphere-like) aa follows. Také any element 
x c B^íf) of infinite order; aince H^T) haa rank 1 , there 
exiata integera © *•» O and - such that 

9 ř * n x * ** * 
then aet 

degree (f) » - ^ • 
e 

Thia ia eaaily shonn to be independent of the choice of x, 0 , 
«c • (In the notation of C4J1 degree (f) • tr ( f ) » 

» - — j n ( f ; X } \ X m Q . ) If T « Sn , H^S11) ia infinite cyclic 

and degree (f) i s an integer, and coincidea with the cuatomary 
concept. If f ia a homeomorphism, degree (f) * - 1 5 for T 
a aimply connected region in S2 thia coincidea with the aign 
of f aa defined in £4* P# 433J. The identity map Í8 a poaitive 

homeomorphiam; i f T = Sn , then change of aign of k of the 

n • 1 coordinates i8 poaitive or negative according as k i s 

even or odd. 

Theorem 3« Let f : T - » T be a continuoua map of a aphe­

re-l ike apace T • Then 

f x • h x 
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is solvable in T , either for a l l positive oř for a l l negative 

homeomoxphisma h : T —* T. If f i tae l f ia a hoaeomorphiaaf 

then precisely one of these glternstives holds. 

Proof • With the Hopf-Lefschetz theorem, the proof ia a l - . 

most tr iv ia l : i t sufficeě to consider existence of fixed 

points of h~ f f and 

J íh^f ) = 1 + ( - l ) n degree (h^f) * 

* 1 • (-l)n degree (h) degree (f) + O 
for at least one of degree (h) =* - 1 • If also degree (f) * - 1, 
then there is preciaely one possibility. 

As an example, také T a S • Then either fx * x is sol­
vable ( h » identity, degree (h) a 1 ) or fx * - x ia solvable 
(h x « - x, degree (h) » (-l)2114"1 * - 1). This ia Brouwer's 
theorem on antipodals* 

Theorem 3 euggests that it may be interesting to obtain 
further results on solvability of 

f x » g x 
for given continuous f, g : X ~* X'. 

A problém was formulated in [4jf to prove 
<4) J(f) » ^ (A) 
for a l l maps f : X-*X of a triangulable apace X and with 

A the aet of fixed pointa of f • A class of mapa was exhibit-

ed for which the stronger relation 

g l i ( f ) * • 

1 - A 

holda [3, theorem 61* The desirability of formula (4) folloaa 
from the informatici* concerning A which could be obtaln&d 
from rath«*r superficial information ahont f ; e*g«f the Hopf-
Lefschetz fixed point theorem would follow. 

However, the conjecture is not valid, &nů the heuristice 
which led to it were not sufficicntly careful: th*r» is a 
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simple counter-example» Také X * S , treated as the unit 
circle in the complex plane# Let f be def ined by f x * x , 
d integer, Then f has degree d £ 2 , ch.XI, theorem 4.5j f 

and thus 

J(f) =« 1 - d . 
For d #s 1, f has precisely 1 d - l i fixed points, and 
in any čase 

£(A) « |d - l i 
for the set A of fixed points of f • Thus J(f) # Jí (A) 
for d > 1 . 
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