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HOMOLOGICAL FIXED POINT THEOREMS, II.
Gomar HAJEK, Preha

This paper consists of some notes and generalisations of
results of the preceding paper [4].

The first of these concerns lemms 2 of [4], stating that
the invariant J§ of endomorphisme f of a group G 1s in-
dependent of the behaviour of f on the periodic part of
G . Here we present a considerably stronger result in theo=
rem 1l .

The second extends a result of [4](for. a continuous
£ : g2, g0 , £2 hes & fixed point) to & more general
class of spaces, admitting formation of cartesian products;
lemma 1 and theorem 2 .

The rdle which even~-dimensionslity plays in this result
suggests the possibility of a connection with other familiar
theorems having similar restrictions: Brouwer’s theorem on
antipodals [1, ch. XVI, § 5], or the “hedgehog theorem" of
Poincaré (loc.cit., there is no nonzero tangent vector field
on §2% ), A closer exeminstion revesls that the resemblance
is only superficisl: the latter theorems edmit & natural ge-
neralisation to e.g. odd-dimensionsal spheres, 2s will be shown
in theorem 3; our result does not.

As in [4], we consider the category QJ. consisting of
abelian groups with an integrity domain J as left operators,
and of their operator homomorphisms, The reader is first re-
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ferred to [2], exercises D in chap.IV. Tlere it is shown how
one may assign to each group G. in CjJ a vector space G”
over J , the quotient field of J ; md toeach £ : G—> G’
in §; a J -homomorphism f£* : G*~— G’* . The resulting ob-
Ject turns out to be an additive exact covarient functor A
from G; to 93 o (The definition loc.cit. of the tran-
sitive reletion ~ should, however, be corrected to:
(6, %3] ~ [0,, x,] iff €6, x; = 09, X, for some © +0 in
J o) The circumflex A will henceforth be used in this sen~
se, and not in that of [4].

Exactness of A then implies that, on the category

d g J of differential groups over J , the homology functor
and A commute:
H(G") = (H(G))" , (£%), = (£)" .

It is noted (loc.cit.) that A preserves ranks. Since
J(144) = (rank G)/(1 - A) [ 4, section 1], this is the f =
= jdentity special case of the followlfxg

Theorem 1. If f : G — G in §; , then j(£) = e .

By [4, definition 3], gli depends on j ; thus theorem 1
implies gli(f) = gli(f") for £ : G - G in the category of
group sequences. In [ 4, theorem 3] it was shown that gli(f) =
= gli(f,) for £ : G— G in the category of differential
group sequences (i.e., complexes); our present result yields,
then,

gli(e) = gua(e) )

Proof of theorem l. There is & canonic mapping ¢ : G = 6
defined by ¢ x = (1, x) ; we have ce Hom; (G, G") and ¢ f
.=f%¢ for fe Hom; (G, G) . It is easily shown that, if B
is a we-base in G [ 4, section 1], then ¢(B) 4is linearly
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independent and generates é ; thus c¢(B) is a base in g.
The relsations
used to define matrices D, A and then p, j [4, def.l and
2 ] carry over to
A 3
8 £hexy = }_‘J Ky CXy;
thus they define the same matrices D, A and hence also p,
J « This completes the proof.
Definition. A triangulable_space_will be_called non-odd

ficients) are periodic. .

This definition is a modification df an earlier inadequa-
te version; the present formulation and also the proof of the
lemma to follow were suggested to the author by Mr. A, Pultr,
the referee. o

Cella and even-dimensional spheres are non-odd, since
their odd-dimensional homology groups are trivial., Even-dimen=-
sional projective spaces sare non-odd, as may be shown directly.
We note that the Euler characte;‘istic of a non-odd space redu=-
ces to the sum of ranks of the even-dimensional .homology groups;
hence it is positive unless the spaces is empty.
pon-odd.

Proof. Let X, Y be non-odd; the Kinneth formula (e.g.[3 ,
chap.I, th. 5.5.2) is )

= Z Y) .
H (X xY) pfannp(x) ® Hy(Y) + Mm-lT”(HP(X)’ Hy(Y)

The second sum is always a periodic group; consider any summ=
and in the first sum. For odd n=p + q , ohe of p, q 1is al-
80 odd, so that by assumption one factor is periodic; hence

Kp(X)G Hq('{) is periodic. This completes the proof.
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It may be remarked that if the condition in the definition
is strengthened to "all odd-dimensionsal homology groups are
triviel®, then the corresponding lemma no longer holds.

Theorem 2. Let £ : X —> X be a continuous mapping of a
non-odd space X# 0 . Then one of

e, £2, £3, ..., £5%)
has a fixed point.

As a triviel but weird example, for every map f of a
finite set of n points into itself, at least one of £, ...,
£f? has a fixed point; this is easily checked directly, and in
general, f£% cannot be replaced by a preceding iterate.

Corollary. fx(x“ has a fixed point.

This includes our corollary to theorem 5 in [4], and also the
Brouwer fixed - point theorem; it(s " . 2, %(E") =1 res-
pectively. As concerns the conjecture in [4, section 31, we now
have the following result. A space X consisting of the product
of n cells and m even-dimensional spheres has as Euler cha-
racteristic X (X) .the product of characteristics of its fac-
tors, nemely 2® . Thus one o.f

£, 22,8, ..., &
does have a fixed point, but here one may not omit the fi
with 14 29 (e.g. for X = 5% s° ).

Proof of the theorem 2. Let fy be the homomorphiem of
the homology sequence of X , induced by f . From theorem 1 ,

gli(f) = gli(fg ) .
From [ 4], section 3, lemma 4 snd definition 3, we then have for

the Lefschetz number J

r AT PR
(2) J(£F) = g(g,T) = Zq tr u;z(‘)

since by our assumption on X, Hq(f{)‘ =2 Q0 for odd dimensions
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q . Finally, from the proof of theorem 2 in [4],

0,
ATy o % r
(3) tr(go) = S5 A Y

where r, = rank H,(X)* = rank Hq(x) , and A’J;q are certain
complex numbers (characteristic roots of certain matrices

1 r

Dyq Azg)e It is kmown thet tr (£,3) =1 if X is connected

(e.ge[1], chap. XVII, § 1); in our case we have at least that

tr(f;g) =m, apositive integer since X 4is nonempty.

Substitute (3) into (2), omit all A = 0 , assemble all

A =1, and finally all equal A°s . Thus we may write
J(£F) = m, + Zx;}:i'l my .‘/\3‘

with my > O integers, my> 0, Ajs distinct with O #

*'.XJ # 1 . (By non-oddness, % (X) = = rank qu = 5 Trq i

thus there are at most X (X) distinct AJ , of which at

least one is included in the m, term.

With notation thus established, assume tbet the assertion
of the theorem does not hold., Thus the iterate f° with 1 =
£ p £ X (X) hes no fixed points, and from the Hopf-Lefschetz
theorem we obtain x (T) equations J(£5) = 0 ., Substracting

the r-th from the following there resulta
(X)-1 r” - 6 p -
2‘131 myAy(ay-1=0 Q=r xx-1.
Consider these as a system of equitions in unknowns m:j « Ob-
viously the determinant of the system is
TT - ese RN
4= JJ\JxTTJ(AJ 1) = V( AJ )
with V the Vandermonde determinant. Since by construction the
AJ are all distinct and O * ﬁj + 1, we cgnclude my 2 0
for sll j . Thus our relations J(fT) = O reduce to my, =0 ;

this contrediction with m, > 0 proves our theorem,
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To unburden the formulation of the .theorem to follow, we
first introduce, provisionally, two new terms.
is trisngulable connected, with positive dimension n , and

Hq(T) =0 for O<q<n, rankl-ln('l‘) =],
Cbviously, spheres are sphere-like; however s® and €e e
S"» 8™ or E® arenot (n>0).

A homeomorphism h : T—> T of a sphere-like space will
be called pogitive or negative in accordance with the sign of
its degree. This latter term may be introduced for continuous
maps £ : T—> T (sphere-like) as follows. Teke any element
x € H (T) of infinite order; since H,(T) hes rank 1 , there
exists integers © & O and - such that

] fxn X® XX}
then set
degree (f) = —:— .

This is easily shown to be independent of the choice of x,  ,
« , (In the notation of [4], degree (f) = tr(f*n) =

a .
abry 3n(f; 2y o) I T =", H (S®) 1s infinite eyclic

and degree (f) is an integer, and coincides with the customary
concept. If f 4s a homeomorphism, degree (f) = b | ; for T
a simply connected region in s2 this coincides with the sign
of £ as defined in [4, p. 433]. The identity map is a positive
homeomorphism; if T = sP » then change of sign of k of the
n + 1 coordinates is positive or negative according as k 1is
even or odd.

Theorem 3. Let £ : T—> T be & continuous mep of & sphe-
re-like space T . Then

fx=hzx
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is solvable in T , either for all positive or for all negative
homeomorphisms h : T— T. If f itself is a homeomorphisn,
then precisely one of these slternatives holds.

Proof. With the Hopf-Lefschetz theorem, the proof is al- .
most trivial: it sufficed to consider existence of fixed
points of n~1

J(n~le)

f , and
1 + (-1)® gegree (n~lg) =
=1 + (-1)" degree (h) degree (f) =+ ©

for at least one of degree (h) = 21, 1f also degree (f) = x 1,
then there is precisely one possibility.

As an exemple, take T = s2n « Then either fx = x is sol-
vable ( h = identity, degree (h) =1 ) or fx = - x 1is solvable

2™l 2 _ 1), This is Brouwer's

(h x = = x, degree (h) = (=1
theorem on antipodals.

Theorem 3 suggests that it may be interesting to obtain
further results on solvability of

fx=gx

for given continuous £, g : X = X .

A problem was formulated in [4], to prove
(4) J(£) = X (A)
for all meps £ : X—»X of a triangulsble space X end with
A the set of fixed points of f . A clsss of maps was exhibit-
ed for which the stronger relation

x (A)
11(L) =
& 1-A

holds [ 3, theorem 6]. The desirability of formula (4) followa
from the informstion concerning A which could be obtain=d

from rather superficisl information sbout f ; e.g., the Hopf=
Lefschetz fixed point theorem would follow.
However, the conjecture is not valid, snd the heuristics

vhich led to it were not sufficiently careful: thers is a
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simple counter-example, Take X = S1 , treated as the unit
circle in the complex plane. Let f£ be defined by £ x = xd ’
d 1integer. Then f has degree d [ 2, ch.XI, theorem 4.5],

and thus

J(g) =1 =-4a.
For d & 1, f hes precisely [d - 1| fixed points, and
in any case

A (A) =la -1l
for the set A of fixed points of f . Thus J(f) + g (4)
for 4 > 1.,
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