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I N E Q U A L I T I E S F O R SOME W H I T T A K E R F U N C T I O N S 

L E E LORCH 

Received December 26, 1966 

1. Introduction and Statement of Results. By a Whittaker function 
is meant a non-trivial solution of E. T. Whittaker's self-adjoint form of 
the differential equation for confluent hypergeometric functions [2; 3, 
Vol. 1, Ch. 6; 4 § 1.6]: 

(1) y" +{-i + ^ + i:^}y -= 0, 0 < ^ < co. 

This has been studied extensively for complex values of the para­
meters x, v and of the variables x, y, as well as in the real case. Here, 
however, the parameters and variables will be restricted to be real. 
(Reference [2] replaces v by \ \L in (1), with corresponding changes in 
other notations.) 

Standard forms of the Whittaker functions are 

00 

(2) MXtV(x) - e x r{^ + 2v_x) 2J H r ( 1 +2v + r) * 
r = 0 

and 

r(— 2v) r(2v) 
(3) Wx,v(x) =- 7 ^ ^ - Mx,v(x) + -j^J+f) M-{X)> 

where, in case 2v is an integer, we follow the usual convention of taking 
the limit of the right member of (3) as 2v approaches the integer involved. 
When 2v is an odd negative integer, the function Mxv(x) is not defined, 
but the function MXtV(x)ir(l + 2v) is. 

Important special cases of (2) and (3) include 

(4) M0tV(2z) = F(l + v ) 2 2 v + M Iv(x), v > - 1 , 
and 
( 5 ) W0,V(X) = (XJTZ)%KV(\X), 

where Iv(x) and Kv(x) are the modified Bessel functions of order v. 



Concerning these special cases, R. P. Soni [5] has shown that 

(A) Iv(x) —Iv+X(x) > 0 for v > —\, x > 0 
and 
(B) Kv+t(x) — Kv(x) > 0 for v > 0, e > 0, x > 0. 

(Inequality (A) is true also for v = —I; the definitions of I±(x) and I x (x) 
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make this obvious. Inequality (B) holds also for v = 0. as Soni's own 
proof shows.) His proofs were based on integral representations of Iv(x) 
and Kv(x). 

Here these inequalities wrill be generalized to Whittaker functions and, 
at the same time, made more precise. The function WyjV(x) will be 
considered as it stands, but it is convenient to replace 3Iy>v(x) by another 
solution of (1), myv(x), defined as follows: 

T(4 + v — x) ]/2K MXtV(x) 
m (x) ~ 

<«> =Җ^L-*,,<-> 
Г(\ + v) 2

2v+iГ(l + v) 

-f- v — ; 
Г(Г+~2v~) 

i v + | £ Г_ Г(v — x + r + ł) 
" xr, r(2v + l+r) 

r - 0 

where the equality of the middle two members of (6) follows from 
Legendre's duplication formula for the gamma function [3, Vol. 1, 
p. 5 (15)]. When x = 0, my>v(x) is defined for all v, and when x -^ 0, 
mXtV(x) is meaningful when v + \ — x is other than a non-positive 
integer. 

A non-trivial solution of (1) can have only a finite number of positive 
zeros [6, p. 20 (Theorem 1.82.3)], since the coefficient of y(x) in (1) is 
negative for x > 2x + (4tx2 — 4i>2 + l)"2, if this last quantity is real, 
and for all x > 0 otherwise. In some instances (e.g., x -= 0, v > — 1 , 
when the modified Bessel functions Iv(x), Kv(x) arise), there are no 
positive zeros at all. In other cases (cf. [2, pp. 208—216] and [4, Chap­
ter 5]), positive zeros do occur, although in a finite number. 

Accordingly, it is appropriate to define the symbol z(x, v) to be the 
largest positive zero of myv (x), if there are any positive zeros, and to be 0 
otherwise, and the symbol t,(x, v) similarly for Wy>v(x). 

In particular, £(0, v) -= 0, and, when v ^ — 1 , 2(0, v) = 0. Moreover, 
z(x, ?>) = 0 if # < ! + !> and v > —\ , since the coefficients in the power 
series in (6) are all positive under these conditions, while £(#, v) < 2x + 



+ ( 4 ^ 2 _ 4 v 2 + i ) i [6, p. 20 (Theorem 1.82.3)], since the coefficient 
of y(x) in (1) is negative for larger values of x and (cf. § 3) WXtV(x) = 
= o (1) as x -> oo. More detailed information on the zeros of Whittaker 
functions can be gleaned from [3, Vol. 1, pp. 288—289; 4, Chapter 6]. 

In formulating the results to bs established here, an obvious notation 
is helpful: the expression "g(x) f 1, a < x f b" means that g(x) increases 
in the interval a < x < b and has limit 1 as x increases to b. Similarly 
for "g(x) | l , a < x \ b." 

In this symbolism, the results are: 
Theorem 1. If Z(K, V) ^ Z(K, v + e), then 

(7) 0 < ™*>»+fx) f i ; Z(X} v + €) < x f oo, 
mXyV(x) 

where e > 0, v > — \ e and, when K ^ 0, neither \ + v — K nor \ + 
+ v + e — K equals 0, — 1 , —2, . . . . The conclusion holds also when 
v = — | e (here v < 0), if r(\ — | e — K) F(| + \e — K) sin (ize) > 0. 

W^en K = 0 and v > — 1 , we have 

(8) 0 < *£^L f 1, 0 < x f oo, 

for e > 0, v > —\e, and if sin (\TZS) > 0, also for v = —Je. 
Theorem 2. / / Z(K, V) > Z(K, V + e), then either 

(9) 3 ^ L | i z{ v) K x f ^ 
™*,v(x) 

or there exist unique ocx, oc2, with Z(K, V) < oc2 < ocx < oo, such that 

(10) ^ ^ ^ ^ ^ 
mXtV(x) Y m^fa) 

while 

(11) 0 < ^ ^ l f l , a 1 < ^ f oo, 

and 
(12) ™*,v+e(a2) = wx>v(a2). 
Again, it is assumed throughout that v > —\e, e > 0 and that neither 
\ + v — K nor \ + v + e — K equals 0, — 1 , —2, . . . . 

The relation (8) shows that the hypotheses of Theorem 1 can be 
realized, with Z(K, V + e) = Z(K, V) = 0. It is also possible to have 
Z(K, V) > Z(K, v + e), as supposed in Theorem 2. One may take K = 0,3, 
v = —1,1, e = 3 (note that v > —|e) and observe from [3, Vol. 1, 
p. 289] that Z(K, V) > 0, while Z(K, V + e) = 0. 



The inequality (8) both generalizes (A) and makes it more precise. 
A corresponding extension of (B) is 

Theorem 3. 

(13) ^ / +1, £(*,*•)<* too , 

when e > 0, v _i 0. 
Putting x = 0 yields the following more precise version of (B): 

(14) ^ H . 0 < , t c o 

for e > 0, v _t 0. 

The proofs of (7) and (13), and of their respective corollaries (8) 
and (14), will be based on the Whittaker differential equation (1). The 
essential tools are Sturm-type comparison theorems incorporating side 
conditions introduced by G. Szego (cf. [6, pp. 18—21]). 

2. The Comparison Theorems. The theorem appropriate to the proof 
of (7) and (8) is 

(I) Let y(x) and Y(x) be positive solutions of the differential equations 

V" +f(x) y = 0, Y" + F(x) Y = 0, a <x <b, 

respectively, with f(x) < F(x), a < x < b, and such that 

(15) lim {y'(x) Y(x) — y(x) Y'(x)} _z 0 
.r-*a-f-

and 

Then Y(x) > y(x), a < x < b, and, if equality holds in (16), 
y(x)jY(x) f 1, a < x f b. 

Furthermore, the above conclusion still holds when f(x) ===== F(x),a < x < b 
(so that y(x), Y(x) are solutions of the same differential equation), provided 
assumption (15) is replaced by the stronger condition 

(15+) Hm{y'(x) Y(x) — y(x) Y'(x)} > 0. 
.r-*a+ 

The supplementary conclusion is essentially trivial, since the Wrons-
kian of any pair of solutions of the equation y" + f(x)y = 0 is a constant; 
in view of (15+), a positive constant for Y, y. Thus, 

{y__\ _ y'J_____ 
\Y(x)J ~ Y* > U ' 

so that y{x)(Y(x) increases for a < x < b. 



The proof of the main conclusion follows a familiar pat tern (and can be 
modified in an obvious way to incorporate the supplementary conclusion): 

(y'T — yY'Y = y"Y — yY" 
= {F(x) —f(x)} y(x) Y(x) > 0, a < x < b, 

so tha t y'Y — yY' increases for a < x < b. In view of (15), this implies 
tha t y'Y — yY' is positive in the interval (a, b). Hence (y/Y)' > 0, 
a < x < b, showing tha t y(x)jY(x) is an increasing function. The 
conclusion follows now from (16). 

For the proof of (13) and (14), the following modification of (I) is used; 
its proof is essentially the same as tha t of (I): 

(II) Let y, Y be positive solutions of the same differential equations 
as in (I), with, again, f(x) < F(x), a < x < b, and suppose that 

(17) \\m\ 
X -*-ò— 

[y'(x) Y(x) — y(x)Y'(x)} ѓ o, 

(18) lim 
.r->ò— 

У(x) > ^ 
Y(x) = * 

The У(x) > Y(x), a < x < b, and, if equality holds i (18) 
y(x)jY(x) | 1 as a < x f b. 

3. Preliminaries. Before applying the comparison theorems to prove 
Theorems 1 and 3 (the argument for Theorem 2 does not depend directly 
on a comparison theorem but is similar in spirit), some additional 
information is needed. 

From the s tandard asymptotics of Mxv(x) [3, Vol. 1, p . 264 (1) 
and p . 278 (3)] and of WXtV(x) [3, Vol. l , p . 262 (2) and p . 278 (1)], 
it is clear t h a t 

(19) rnXtV(x) = e*xx~* [1 + 0(l/a;)], x -> oo, 

when | + v — x =>--. 0, — 1 , — 2 , . . . (for x ^ 0), and, always, 

(20) WXtV(x) = e ~ i V [ l + 0(1/*)], x -> oo. 

I n particular, both mXtV(x) and WXtV(x) are positive for all sufficiently 
large x. Thus, mXtV(x) > 0 when x > z(x, v) and WXtV(x) > 0 when 
x > £(x, v). 

Formula (2.4.24) of [4, p . 25] states tha t 

(21) *W'XtV(x) = (ix - x) WXtV(x) - Wx+ltV(x) 

and so 

W'x,v+t(x)Wx,v(x)-W'x,v(x)Wy,v+t(x) = a.-i Wx+hv(x) Wx>v+e(x)-

-^WK+1,v+e(x)Wx,v(x) 



which, in view of (20), shows that 

(22) W'KiV+t(x) WKiV(x) - Wx[v(x) WKtV+l(x) = O(e-V-i) = o(l), 

as x ~~> co. 

The formula for Myv(x) corresponding to (21) [4, p. 24 (2.4.12)] 
is complicated by the presence of the denominator \ + v — x. The 
situation is simpler when Myv(x) is replaced by myv(x), where the 
analogue to (21) is 

(23) xm'x,v(X) = mx~l,v(X) ( 2 ^ K) mx,v(X)-

Thus, 
X[™x,'v+s(X) mx,v(X) — ™>x',v(X) mx,v+t(X)] 

= mx-i,v+e(x) mx,v(x) — ™x-ltV(x) mXtV+l(x). 

Using the power series in (6), we obtain 

(24) mx\v+t(x) mx>v(x) — mx\v(x) mXfV+E(x) ~ yXtVx
2v±f:, a -> 0, 

where 
_ r(\ + v — x)r(\ + v + e—x)e 

Г(\ + 2v) Г(l +2v + 2e) 

= 2-
_ 9_4„-2 e Г(l + v+є-x)Щ + v-x)є 

r(\ + v + e) r(i + v + e) r(\ + V) m + V) 
Clearly, y0> v > 0 when 2v + e ^ 0, e > 0, v > — 1 . 

4. Proof of Theorem 1. Here comparison theorem (I) is used, with 
a = z(x, v + e), b = 00, 

/(*) = - i + ^ + ^ ( ^ , F(x) = -i+l + i-V' 
X X* 

y(x) = mXtV+E(x), Y(x) = mXtV(x). 

First, we consider the case z(x, v + e) = 0. 
When 2v + e > 0, it is clear that f(x) < F(x) so that it remains to 

verify (15) and (16), the latter with equality, since mXtV(x) and mXtV+€ (x) 
are both positive for x > z(x, v + e) ^ z(x, v). But (15) is obvious 
from (24), and (16), with equality, from (19). Thus (7) follows from 
comparison theorem (I) when 2v + e > 0. 

For x = 0, it is clear that yXtV and all other quantities involved in the 
various calculations are well-defined for v > — 1 , and that z(x, v) = 
= z(x, v + e) = 0. This verifies (8). 

When 2v + e = 0, the functions mXtV+e(x) and mXtV(x) are solutions 
of the same differential equation, since f(x) = F(x). Therefore the 



Wronskian mXtV+e(x) mX)V(x) — ^*,r(#) mXtV+t(x) is a constant. The 
sign of the derivative of mXfV+£(z)[mxv(z) is the same as the sign of the 
Wronskian. 

Applying the definition (6) to the known value of the Wronskian 
of MXtV(x), MXi -v(x) with v = —\e (formula (2.4.26) of [4, p. 26]), we 
find that 

™>X\EI*(*) ™x,-eli(X) — mx,el2(X) ™>y'-,l*(X) 

^er(\-\e-K)T(\ + \e-K) 
r(\ - e) F(l + e) 

The right hand member can be transformed by using the familiar 
relations F(l + e) = cT(e), JT(e) T(l — e) = iz esc (ne) [3, Vol. 1, p. 3], 
becoming n'1 F(\ — \ e — K) r(\ + \ e — K) sin (ne). 

When this constant is positive, it follows that the derivative of 
mXtti2(x)[mx-ei2(x) is also positive. Thus, this function increases to the 
limit it approaches as x -> oo, which, from (19), is 1. 

In case x = 0, we have again that z(0, v) = z(0, v + e) = 0, v > — 1 . 
The Wronskian simplifies to the quantity 2 sin (\en). 

This completes the proof of Theorem 1 when Z(K, V + e) = Z(K, V) = 0. 
When Z(K, V + e) = oc > 0, it suffices to establish (15) in considering 

the case 2v + e > 0, since (16) has already been verified. For (15) 
we have 

lim{y'(x) Y(x) — y(x) Y'(x)} 
X-+OL 

= y'(oc)Y(oc)-y(oc)Y'(oc) 

= V'(oc) Y(oc), 

since oc > 0 and y(oc) = mxv+e(oc) = 0. 
The assumption that Z(K, V) ^ Z(K, V + e) = OC implies that 

mXi v(x) > 0 for x > oc, so that 7(a) > 0. If F(a) = 0, the Wronskian 
would be zero at a — Z(K, v + e) and (15) would be verified. 

Suppose now that F(a) > 0. Clearly, y'(oc) -^ 0, since y(oc) = 0. 
If y'(oc) < 0, then y(x) would be negative for some x > Z(K, v + e). 
But this would imply the existence of a zero x0 oiy(x), x0 > Z(K, V + e), 
since y(oo) = +oo, contradicting the definition of Z(K, V + e). 

Therefore, y'(oc) > 0, and (15) is satisfied. 
This proves the theorem for the case Z(K, V + e) > 0, 2v + e > 0. 
All that remains is the case Z(K, V + e) > 0, 2v + e = 0. 
Here y(x) and Y(x) are linearly independent solutions of the same 

differential equation (1), since F(| — \ e — K) JT(| + \ e — K) sin (ne) f 0 
according to our hypotheses. Hence Y(oc) ^ 0, and so Y(oc) > 0, since 
again, Y(oo) = +oo . 
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In this case, therefore, the Wronskian y'(oc) 7(a) — y(<x) Y'(oc) > 0, 
so that, again, the derivative of mXtei2(x)lmXt..el2(x) is positive for 
x > Z(K, %e) = a. This ratio must, then, increase to its limit as x -> oo; 
the limit is 1. 

All parts of Theorem 1 are proved. 
5. Proof of Theorem 2. As before, the differential equation (1) shows 

that the Wronskian mx\ v+e(x) mXt v(x) — mx\ v(x) mXt v+e(x) increases 
where both mXt v(x) and mXt v+e(x) are positive. Under the present 
hypothesis that Z(K, v + e) < Z(K, V) — l3, this is the case when x > (5. 

When x = /3, this Wronskian is strictly negative, since mXt r(/3) = 0, 
mx\ V(P) > 0, mXt v+€(l3) > 0. (The two inequalities are, as in a similar 
case before, consequences of mXt v(oo) = +oo.) 

Hence, the derivative of the quotient mXt v+e{x)jmXt v(x) is negative 
for /5 S x < oc1, where ocx rg + oo. (We take ocx to be the largest number 
satisfying these conditions.) 

If ax = +oo, then (9) follows; if <xx < +co, then (10), (11) and (12) 
hold, since the Wronskian is a strictly increasing function of x whose 
sign is the same as that of the derivative of mXt v+E(x)/mX) v(x), and this 
ratio has limit I. 

6. Proof of Theorem 3. In applying here comparison theorem (II), 
we have the same f(x) and F(x) as in § 4, with now 

a = max {£(K, V), £(K, V + e)}, 6 = oo, 

y(x)=WXtV+e(x), Y(x)=WXtV(x). 

Thus, f(x) < F(x) when v ^ 0, e > 0. From (22) it is seen that (17) 
is satisfied, with equality, and from (20) that (18) holds, with equality. 
Furthermore, y(x) and Y(x) are both positive for x > a, as explained 
in §3, following (20). 

This completes the proof of Theorem 3, except for demonstrating that 
the largest positive zero of WXt v(x) is a non-increasing function of v, i.e., 

(25) f(K, v + s) ^ £(*, v), e > 0. 

Suppose the contrary, i.e., f (K, V + e) > £>(K, v). Then a = £(tf, v + e) 
and the proof, as thus far given, would show that 

W*t v+e(x) 
WXtV(x) 

in particular, 

W*. v+e(x) 

| 1 £(я, v + є) < x f oo; 

> 1> C(», v + є) < x < oo. 



Then, 

But 

] i m % T T ^ L 

x-+a *V XtV(X) 

W • (r) 
lim * ' V + ; Y = 0 , a = £(x, v + e) > £(*, v), 
x-*a ** y v\x) 

a contradiction. 
This establishes (25) and, with it, Theorem 3 . 
Remarks 1. Equality can occur in (25), since both quantities can be 

zero. 
2. The monotonicity relation (25) contrasts with a standard theorem 

[1, p. 211 (Theorem 8.4.4)] on the monotonicity of zeros, whose hypo­
theses, of course, are not satisfied here. 
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